

Revision 1

Certain figures in this Report contain sensitive, securityrelated information protected from public disclosure by Federal and State law. This Report is suitable for public disclosure only after these figures are removed.

HYDROGEOLOGIC INVESTIGATION REPORT

FLEETWIDE ASSESSMENT ZION STATION ZION, ILLINOIS

Prepared For: Exelon Generation Company, LLC

DISCLAIMER: SOME FORMATTING CHANGES MAY HAVE OCCURRED WHEN THE ORIGINAL DOCUMENT WAS PRINTED TO PDF; HOWEVER, THE ORIGINAL CONTENT REMAINS UNCHANGED.

SEPTEMBER 2006 Ref. no. 045136 (22)

Prepared by: Conestoga-Rovers & Associates

651 Colby Drive Waterloo, Ontario Canada N2V 1C2

Office: (519) 884-0510 Fax: (519) 884-0525

web: http://www.CRAworld.com

TABLE OF CONTENTS

<u>Page</u>

EXEC	UTIVE SUN	/IMARY	i
1.0	INTRODU	JCTION	1
2.0 STATION DESCRIPTION		DESCRIPTION	2
	2.1	STATION LOCATION	
	2.2	OVERVIEW OF COOLING WATER OPERATIONS	2
	2.3	SURROUNDING LAND USE	4
	2.4	STATION SETTING	
	2.4.1	TOPOGRAPHY AND SURFACE WATER FEATURES	5
	2.4.2	GEOLOGY	6
	2.4.3	HYDROGEOLOGY	7
	2.5	AREA GROUNDWATER USE	8
3.0	AREAS FO	OR FURTHER EVALUATION	9
	3.1	SYSTEMS EVALUATIONS	9
	3.2	HISTORICAL RELEASES	.12
	3.3	STATION INVESTIGATIONS	.12
	3.3.1	PRE-OPERATIONAL RADIOLOGICAL	
		ENVIRONMENTAL MONITORING PROGRAM	.12
	3.3.2	RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM	.13
	3.3.3	DEFUELED SAFETY ANALYSIS REPORT	.14
	3.3.4	WISCONSIN DEPARTMENT OF HEALTH AND	
		FAMILY SERVICES MONITORING	.15
	3.4	IDENTIFIED AREAS FOR FURTHER EVALUATION	.15
4.0	FIELD ME	ETHODS	.18
	4.1	STAFF GAUGE INSTALLATION	.18
	4.2	GROUNDWATER MONITORING WELL INSTALLATION	.18
	4.3	GROUNDWATER MONITORING WELL DEVELOPMENT	.20
	4.4	SURVEY	.21
	4.5	GROUNDWATER AND SURFACE WATER	
		ELEVATION MEASUREMENTS	.21
	4.6	GROUNDWATER AND SURFACE WATER SAMPLE COLLECTION	.22
	4.7	DATA QUALITY OBJECTIVES	.24
	4.8	SAMPLE IDENTIFICATION	
	4.9	CHAIN-OF-CUSTODY RECORD	.25
	4.10	QUALITY CONTROL SAMPLES	.26
	4.11	ANALYSES	.26

TABLE OF CONTENTS

<u>Page</u>

5.0	RESULTS	SUMMARY	
	5.1	STATION GEOLOGY	
	5.2	STATION HYDROGEOLOGY	
	5.2.1	GROUNDWATER FLOW DIRECTIONS	
	5.2.2	MAN-MADE INFLUENCES ON GROUNDWATER FLOW	29
	5.2.3	VERTICAL HYDRAULIC GRADIENTS	30
	5.2.4	LATERAL GROUNDWATER FLOW AND VELOCITY	30
	5.3	GROUNDWATER QUALITY	31
	5.3.1	SUMMARY OF BETA-EMITTING RADIONUCLIDES	
		ANALYTICAL RESULTS	31
	5.3.2	SUMMARY OF GAMMA-EMITTING RADIONUCLIDES	
		ANALYTICAL RESULTS	32
	5.3.3	SUMMARY OF FIELD MEASUREMENTS	32
	5.4	SURFACE WATER QUALITY	33
	5.4.1	SUMMARY OF BETA-EMITTING RADIONUCLIDE	
		ANALYTICAL RESULTS	33
	5.4.2	SUMMARY OF GAMMA-EMITTING RADIONUCLIDES	
		ANALYTICAL RESULTS	33
6.0	RADION	UCLIDES OF CONCERN AND SOURCE AREAS	35
	6.1	GAMMA-EMITTING RADIONUCLIDES	35
	6.2	BETA-EMITTING RADIONUCLIDES	35
	6.3	TRITIUM	35
	6.3.1	GENERAL CHARACTERISTICS	35
	6.3.2	DISTRIBUTION IN STATION GROUNDWATER	36
	6.3.3	CONCEPTUAL MODEL OF TRITIUM	
		RELEASE AND MIGRATION	37
	6.3.4	ATTENUATION OF TRITIUM WITHIN THE SHALLOW	
		GROUNDWATER SYSTEM	37
7.0		RE PATHWAY ASSESSMENT	
	7.1	HEALTH EFFECTS OF TRITIUM	
	7.2	BACKGROUND CONCENTRATIONS OF TRITIUM	
	7.2.1	GROUNDWATER	
	7.2.2	PRECIPITATION DATA	
	7.2.3	SURFACE WATER DATA	41
	7.2.4	DRINKING WATER DATA	
	7.2.5	EXPECTED TRITIUM BACKGROUND FOR THE STATION	42
	7.3	IDENTIFICATION OF POTENTIAL EXPOSURE	
		PATHWAYS AND POTENTIAL RECEPTORS	43
	7.3.1	POTENTIAL GROUNDWATER MIGRATION TO DRINKING	
		WATER USERS OFF THE STATION PROPERTY	43

TABLE OF CONTENTS

<u>Page</u>

	7.3.2 POTENTIAL GROUNDWATER MIGRATION TO		
		SURFACE WATER USERS	44
	7.4	SUMMARY OF POTENTIAL TRITIUM EXPOSURE PATHWAYS	44
	7.5	OTHER RADIONUCLIDES	45
8.0	CONCLU	SIONS	46
9.0	RECOMN	1ENDATIONS	
	9.1	DATA GAPS	49
	9.2	GROUNDWATER MONITORING	49
10.0	REFERENCES		

LIST OF FIGURES (Following Text)

- FIGURE 1.1 STATION LOCATION MAP
- FIGURE 1.2 STATION BOUNDARIES AND FEATURES
- FIGURE 2.1 STATION SURFACE WATER FEATURES
- FIGURE 2.2 REGIONAL STRATIGRAPHIC CROSS-SECTION
- FIGURE 2.3 CROSS-SECTION OF THE ZION BEACH-RIDGE PLAIN
- FIGURE 2.4 PRIVATE/PUBLIC WATER SUPPLY WELL LOCATIONS
- FIGURE 3.1 AREAS FOR FURTHER EVALUATION
- FIGURE 4.1 GROUNDWATER AND SURFACE WATER MONITORING LOCATIONS
- FIGURE 5.1 STATION GEOLOGIC CROSS-SECTION LOCATION MAP
- FIGURE 5.2 GEOLOGIC CROSS-SECTION A-A'
- FIGURE 5.3 GEOLOGIC CROSS-SECTION B-B'
- FIGURE 5.4 POTENTIOMETRIC SURFACE CONTOURS MAY 2006 -SHALLOW GROUNDWATER ZONE
- FIGURE 5.5 POTENTIOMETRIC SURFACE CONTOURS JULY 2006 -SHALLOW GROUNDWATER ZONE
- FIGURE 5.6 TRITIUM CONCENTRATIONS GROUNDWATER AND SURFACE WATER
- FIGURE 5.7 RADIONUCLIDE CONCENTRATIONS GROUNDWATER AND SURFACE WATER

LIST OF TABLES (Following Text)

- TABLE 4.1SUMMARY OF MONITORING WELL INSTALLATION DETAILS
- TABLE 4.2SUMMARY OF MONITORING WELL DEVELOPMENT PARAMETERS
- TABLE 4.3SUMMARY OF GROUNDWATER AND SURFACE WATER ELEVATIONS
- TABLE 4.4SAMPLE KEY
- TABLE 4.5SUMMARY OF MONITORING WELL PURGING PARAMETERS
- TABLE 5.1ANALYTICAL RESULTS SUMMARY TRITIUM IN GROUNDWATER
AND SURFACE WATER
- TABLE 5.2ANALYTICAL RESULTS SUMMARY RADIONUCLIDES IN
GROUNDWATER AND SURFACE WATER

LIST OF APPENDICES

- APPENDIX A WATER WELL INVENTORY RECORDS
 - A.1 BANKS 2006 WATER WELL REPORT
 - A.2 ISWS LOGS
- APPENDIX B BORING LOGS
 - B.1 2006 STRATIGRAPHIC AND INSTRUMENTATION LOGS
 - B.2 HISTORIC GEOTECHNICAL LOGS
- APPENDIX C QUALITY ASSURANCE PROGRAM TELEDYNE BROWN ENGINEERING, INC.
- APPENDIX D LABORATORY ANALYTICAL REPORTS
- APPENDIX E DATA VALIDATION MEMORANDUM

EXECUTIVE SUMMARY

This Hydrogeologic Investigation Report (HIR) documents the results of Conestoga-Rovers & Associates' (CRA's) May to July 2006 hydrogeologic investigation pertaining to the Zion Station (Station). CRA prepared this HIR for Exelon as part of its Fleetwide Program to determine whether groundwater at and in the vicinity of its nuclear power generating facilities has been adversely impacted by any releases of radionuclides.

CRA collected and analyzed information on any historical releases, the structures, components, and areas of the Station that have the potential to release tritium or other radioactive liquids to the environment and past hydrogeologic investigations at the Station. CRA used this information, combined with its understanding of groundwater flow at the Station to identify the Areas for Further Evaluation (AFEs) for the Station.

Fifteen new monitoring wells were installed, including 11 permanent and 4 temporary monitoring wells. CRA also collected two rounds of water levels from the newly installed wells and the surface water staff gauge. All groundwater and surface water samples were analyzed for tritium, strontium-89/90, and gamma-emitting radionuclides. Field activities were completed between May and July 2006.

The results of the hydrogeologic investigation are:

- Gamma-emitting radionuclides associated with licensed plant operations were not detected at concentrations greater than their respective Lower Limits of Detection (LLDs) in any of the groundwater or surface water samples obtained and analyzed during the course of this investigation;
- Strontium-89/90 was not detected at a concentration greater than the LLD of 2.0 picoCuries per liter (pCi/L) in any of the groundwater or surface water samples obtained and analyzed during the course of this investigation;
- Tritium was not detected within any area in or adjacent to the Station at levels above the United States Environmental Protection Agency drinking water standard of 20,000 pCi/L in any of the groundwater or surface water samples obtained and analyzed during the course of this investigation;
- Low levels of tritium were detected at concentrations greater than the LLD of 200 pCi/L, which is considered background;
- Tritium was detected in groundwater samples collected from monitoring well MW-ZN-01S. These concentrations ranged from less than LLD (most recently) to 586 ± 141 pCi/L (lower interval) and 220 ± 123 pCi/L to 261 ± 124 pCi/L (upper

interval). The detected concentrations are significantly less than applicable drinking water standard. The source of tritium in this location is likely attributable to historical releases in this area. However, the most recent sample results are within the range of background concentrations;

- Based on the results of this investigation, tritium is not migrating off the Station property at detectable concentrations;
- Based on the results of this investigation, there is no current risk from exposure to radionuclides associated with licensed plant operations through any of the identified potential exposure pathways; and
- Based on the results of this investigation, there are no known active releases into the groundwater at the Station.

Based upon the information collected to date, CRA recommends that Exelon conduct periodic monitoring of selected sample locations.

1.0 <u>INTRODUCTION</u>

Conestoga-Rovers & Associates (CRA) has prepared this Hydrogeologic Investigation Report (HIR) for Exelon Generation Company, LLC (Exelon) as part of its fleetwide program to determine whether groundwater at and near its nuclear power generating facilities has been adversely impacted by any releases of radionuclides. This report documents the results of CRA's May 2006 Hydrogeologic Investigation Work Plan (Work Plan), as well as several other investigative tasks recommended by CRA during the course of the investigation. These investigations pertain to Exelon's Zion Station (Station) in Zion, Illinois (see Figure 1.1). The Station is defined as all property, structures, systems, and components owned and operated by Exelon LLC and located at 101 Shiloh Boulevard, Zion, Lake County, Illinois. The approximate property boundaries are depicted on Figure 1.2.

Pursuant to the Work Plan, CRA assessed groundwater quality at the Station in locations designated as areas for further evaluation (AFEs). The process by which CRA identified AFEs is discussed in Section 3.0 of this report.

The objectives of the Work Plan were to:

- characterize the geologic and hydrogeologic conditions at the Station including subsurface soil types, the presence or absence of confining layers, and the direction and rate of groundwater flow;
- characterize the groundwater/surface water interaction at the Station, including a determination of the surface water flow regime;
- evaluate groundwater quality at the Station including the vertical and horizontal extent, quantity, concentrations, and potential sources of tritium and other radionuclides in the groundwater, if any;
- define the probable sources of any radionuclides released at the Station;
- evaluate potential human, ecological, or environmental receptors of any radionuclides that might have been released to the groundwater; and
- evaluate whether interim response activities are warranted.

2.0 STATION DESCRIPTION

The following section presents a general summary of the Station location and definition, overview of Station operations, surrounding land use, and an overview of both regional and Station-specific topography, surface water features, geology, hydrogeology, and groundwater flow conditions. This section also presents an overview of groundwater use in the area.

2.1 <u>STATION LOCATION</u>

The Station is a former nuclear power generating facility that, in the early spring of 1998, converted both units' generators to synchronous condensers that provide voltage stability to the northeast Illinois power grid. The Station encompasses approximately 250 acres (Exelon, 2004). Figure 1.2 presents a Station Boundaries and Features plan.

The Station is located on the eastern edge of Zion between 23rd and 29th Streets, from the Chicago and Northwestern Railroad tracks to Lake Michigan.

The Station is being maintained and monitored under the "SAFSTOR" (safe storage of components of the nuclear power plant) phase of decommissioning, as is discussed below.

2.2 OVERVIEW OF COOLING WATER OPERATIONS

Former Operations

In the mid-1950s, Commonwealth Edison Company (ComEd) purchased about 250 acres on the eastern edge of Zion. The Station operated as a dual unit pressurized water reactor plant. A construction permit was issued in December 1968. An operating license was issued October 19, 1973 for Unit 1 and November 14, 1973 for Unit 2. Commercial operations commenced in December 1973 for Unit 1 and September 1974 for Unit 2.

Unit 1 operations ended on February 21, 1997 and Unit 2 operations ended on September 19, 1996. All fuel was removed from the reactor and placed in the spent fuel pool on April 27, 1997 for Unit 1 and on February 25, 1998 for Unit 2. Commercial operation of the plant ended on January 14, 1998 when the Unicom Corporation and ComEd Boards of Directors authorized the permanent cessation of operations at the Station. Exelon submitted the certification of fuel transfer on March 9, 1998. In addition

to maintaining the synchronous condensers, the Station's employees also monitor the safe storage of spent fuel.

Discharges from the Station are subject to the requirements of Nuclear Regulatory Commission (NRC) Operating Licenses DPR-39 and DPR-48. Discharges from the Station are also subject to regulation under the Illinois Environmental Protection Agency (EPA) National Pollutant Discharge Elimination System (NPDES) Permit IL0002763. The NPDES permit provides limits on parameters such as pH, total suspended solids, and oil and grease.

Cooling Water Operations 1973-1997

The Station is comprised of two nearly identical pressurized water reactors with supporting facilities. Both primary reactor coolant systems were designed by Westinghouse Corporation and each is comprised of a reactor vessel and four heat transfer loops. Each loop contains a reactor coolant pump, steam generator, and associated piping and valves. In addition, each system includes a pressurizer, a pressurizer relief tank, interconnecting piping, and the instrumentation necessary for operational control.

Each Containment Building is cylindrical with a shallow dome roof and has a flat slab foundation. The entire structure is internally lined with a welded steel plate and completely encloses the primary coolant system, steam generators, reactor coolant loops, and portions of the auxiliary and engineered safety feature systems.

Heat produced in the reactor was converted to electrical energy by the power conversion system between 1973 and 1997. A turbine generator converted the thermal energy of steam produced in the steam generators into mechanical shaft power and then into electrical energy.

The exhaust steam from the turbine was condensed and deaerated in the main condenser. The waste heat in the main condenser was removed by the circulating water system. Circulating water was withdrawn from Lake Michigan, approximately 450 feet east of the condensate storage tank, via an intake pipe connected to the circulating water pumps. After circulating through the plant condensers, the cooling water was routed back to the lake via discharge lines (ComEd, 1999).

Primary coolant was treated to remove impurities and recirculated through the primary water (PW) system. Primary coolant was stored in two above ground storage tanks (ASTs) located on the east side of the Turbine Building.

3

Secondary cooling water (condensate cooling water) was treated to remove impurities and recirculated through the condensate (CD/SC) system. Secondary cooling water is stored in ASTs located on the east side of the Turbine Building.

Circulating water is drawn from Lake Michigan by way of an intake pipe that extends approximately a half mile into the Lake. Circulating water is returned to Lake Michigan by way of two discharge pipes that extend approximately a quarter mile into the lake.

Liquid wastes have been discharged under the NRC permit through the blowdown line, which is piped to the circulating water discharge pipe located east of the Turbine Building.

Voltage Stabilization and SAFSTOR

The Station is being decommissioned under the NRC regulatory process. The Station is currently in the "SAFSTOR" phase of the decommissioning process where the Station is maintained in a condition that allows it to be safely stored and subsequently decontaminated to levels that permit its release for unrestricted use.

2.3 <u>SURROUNDING LAND USE</u>

The Station is located on the shore of Lake Michigan, in the eastern portion of the City of Zion, and adjacent to the Illinois Beach State Park.

The Illinois Beach State Park is located along the Lake Michigan shoreline and is divided into a northern unit and a southern unit, with the Station situated between the two units. The Illinois Beach State Park encompasses 4,160 acres and received approximately 2.75 million visitors in 1998. The Park is considered a natural resource (ATSDR, 2000).

The land located to the west of the Station is generally undeveloped with a limited number of industrial/commercial facilities present along Deborah Avenue. Residential areas and the City of Zion downtown are located west of the Chicago & Northwestern Railroad, which is west of the Station. Lake Michigan borders the Station to the east.

2.4 <u>STATION SETTING</u>

The following sections present a summary of the topography, surface water features, geology, hydrogeology, and groundwater flow conditions in the region surrounding the Station. The information was primarily gathered from Sections 2.1 and 2.3 of the Zion Defueled Safety Analysis Report (DSAR) last revision dated October 2004 (Exelon, 2004). The main references the DSAR relies upon are listed in Section 10.0 of this HIR. CRA checked and verified all DSAR references that apply to this HIR.

2.4.1 <u>TOPOGRAPHY AND SURFACE WATER FEATURES</u>

Lake County consists of moraines, outwash plains, lake plains, kames, stream terraces, flood plains, beaches, and bogs. The county is in the Wheaton Morainal country of the Great Lakes section of the Central Lowland province. Relief in Lake County was caused by differences in the thickness of deposits left by the most recent glacier. The land surface gradually slopes to the south or southeast. The highest point in the county, 957 feet above mean sea level (AMSL), is located on Gander Mountain in the northwest corner of the county. The lowest point is at the Lake Michigan shore near Waukegan. Several moraines run through the county. From east to west, they are the Lake Border Morainic System, the Tinley Moraine, the Valparaiso Morainic System, and the Fox Lake Moraine. In general, Lake County has a poorly defined drainage pattern. Many drainage ways terminate in depressions and marshes. The land area falls into four major watersheds and 26 drainage basins. The Chicago River, Des Plaines River, Fox River, and Lake Michigan watersheds are all shared with neighboring counties in Illinois and Wisconsin (NRCS, 2005).

The Lake Michigan shoreline between North Chicago, Illinois and Kenosha, Wisconsin comprises the Zion beach-ridge plain. The Zion beach-ridge plain consists of linear, generally coast-parallel mounds of sand and gravel that have been built up by wave action to extend the coast outward into Lake Michigan. The Zion beach-ridge plain has a maximum width of approximately 1 mile near the City of Zion (Chrzastowski and Frankie, 2000). The older dunes become root-bound by vegetation resulting in long lines of sandy ridges separated by linear marshes.

The main portion of the Station is located on a sand ridge that runs parallel to the Lake Michigan shoreline as shown on Figure 1.2. The area in the immediate vicinity of the Station has been leveled and is paved. The ground elevation at the main complex is 591 feet AMSL. The average lake level is 577 feet AMSL. The eastern portion of the Station is a beach gently sloping to the Lake Michigan shoreline. The area to the west of the Station is a low-lying wet area.

Lake Michigan has a surface area of 22,300 square miles, with a mean depth of 276 feet and a volume of 1,170 cubic miles. Lake Michigan has a natural outlet through the Straits of Mackinac on the north end of the lake and a second outlet through the Illinois Waterway near Chicago (USEPA, 1995).

The average surface elevation of Lake Michigan is 577 feet AMSL. The surface elevation of Lake Michigan varies daily and annually, and is affected by hydrologic and atmospheric conditions and flow through the two outlets. Water levels in Lake Michigan typically vary about 1 foot in elevation between annual low and high measurements. Generally, the lowest levels occur in winter when much of the precipitation is locked up in ice and snow on land, and dry winter air masses pass over the lakes enhancing evaporation. Levels are highest in summer after the spring thaw when runoff increases (USEPA, 1995).

The low-lying wet area on the western portion of the Station is in the watershed of the Dead River, which flows through the marshy swales located to the west of the longitudinal sand dunes that follow the Lake Michigan shoreline. The Dead River passes through the Illinois Beach State Park as shown on Figure 1.1. The Dead River flows into Lake Michigan at a point approximately 2.3 miles south of the Station. The Dead River was so named because the mouth is periodically blocked by shifting sandbars on the Lake Michigan shoreline.

Storm water runoff from the switchyard is captured by the perimeter ditch, which is a drainage channel that follows the Station's outer fence. The perimeter ditch connects to Lake Michigan to the north and south of the Protected Area (PA). Figure 2.1 presents a depiction of the perimeter ditch and the stormwater drainage ditches that control surface water at the Station. On the western portion of the Station property some of these drainage systems intercept the shallow groundwater. This is not the case on the eastern portion of the Station property where the stormwater drainage system is located above the water table as it drops towards Lake Michigan.

2.4.2 <u>GEOLOGY</u>

This section presents an overview of Station geology based upon the 1967 Foundation Investigation (Dames and Moore, 1967) and other geologic publications. The Station is underlain by overburden deposits and a regionally extensive sequence of consolidated sedimentary deposits. The major stratigraphic features can be divided into Paleozoic aged bedrock and Quaternary Period overburden deposits. Figure 2.2 presents a stratigraphic cross-section representative of bedrock units in Lake County, Illinois. Figure 2.3 presents a cross-section of the overburden deposits associated with the Zion beach-ridge plain.

Rocks of the Cambrian through Silurian Periods are marine in origin and were deposited in a sea that covered all of Illinois (Willman, 1971). The rocks consist of sandstones, shales, and carbonates for a combined thickness of approximately 2,500 feet. Southerly long shore currents have eroded the Root River delta and transported the sediments along the western shore of Lake Michigan to form the Zion beach-ridge plain (Chrzastowski and Frankie, 2000).

2.4.3 <u>HYDROGEOLOGY</u>

Groundwater in the region occurs in shallow glacial, alluvial, and lacustrine deposits. The shallow water-bearing zone is isolated from the underlying regional bedrock aquifers by a significant thickness of glacial or lacustrine silts and clays.

Bedrock units form three major aquifer systems in northeastern Illinois. The uppermost bedrock aquifer consists of the Silurian dolomites. The underlying Maquoketa Group shales hydraulically separate the Silurian aquifer from deeper units.

The deeper aquifer systems include the Cambrian-Ordovician aquifer group, which includes the St. Peter and Ironton-Galesville sandstones. The underlying Eau Claire Formation hydraulically separates the Cambrian-Ordovician aquifer group from the deeper Mt. Simon Aquifer (Visocky et al., 1985).

The sandstones of the Mt. Simon Formation are not typically used for potable water because of undesirable characteristics including high concentrations of total dissolved solids and natural radioactivity. Crystalline basement rock underlies the Mt. Simon Formation (Visocky et al., 1985).

Lake Michigan acts as a major regional discharge zone for groundwater. The groundwater flow in both unconsolidated deposits and bedrock units in the region is generally toward the lake; however, localized pumping induces variations in flow directions in the bedrock aquifers.

2.5 <u>AREA GROUNDWATER USE</u>

A water well inventory compiled as part of this investigation indicates a number of wells located (or formerly located) near the Station. The locations of wells in the vicinity of the Station are provided on Figure 2.4. A water well report was prepared using Illinois water well databases and associated well logs, and is provided in Appendix A. The well records for locations nearest to the Station (map identifiers 5, 6, and 10) are mis-located (Map Id. 5¹), not a water well (Map Id. 6²), or no longer exist (Map Ids. 6 and 10³). With the exception of Map Ids. 6 and 10, the wells identified in the water well report have not been field verified and it is expected that many of the wells listed have been abandoned.

The City of Zion provides municipal water to the City residents and the surrounding area. The City purchases water from the Lake County Public Water District (LCPWD). The LCPWD obtains its water from Lake Michigan by means of an intake pipe located approximately 1.1 mile north of the Station and extending 3,000 feet into the Lake. The City of Zion municipal code requires all improved properties to be connected to the City's water supply. It is "unlawful for any person to construct, permit or maintain a private well or water supply system within the City which uses groundwater as a potable water supply" (City of Zion, 2004). The only exception is for existing wells constructed prior to March 2, 2004 at properties located more than 100 feet from the municipal supply system, which must: 1) enter into an agreement with the City, and 2) demonstrate that the well water is unlikely to contain any contaminant at concentrations exceeding the United States Environmental Protection Agency (USEPA) drinking water standards (City of Zion, 2004).

The Station is connected to the Zion municipal water supply and does not use groundwater in its operations. The Illinois Beach State Park is serviced by municipal water.

Map ID 5 is a private water well at Lot #1, Beach Homeland subdivision, Beach Park, Illinois.
 The latitude and longitude listed in the ISWS database is inconsistent with the address listed in the well log (Beach Park is located between Zion and Waukegan).

Map ID 6 is an engineering test hole installed by Norm Hester of the ISGS on November 1, 1972. The total depth was 15 feet. This boring was installed as part of a study documented in Fraser and Hester (1974).

³ Map ID 10 is a water well installed by F H Ferguson at 'Zion Estates' at an unknown date. The total depth of the well was 138 feet. The location specified in the well record (42.446046N, 87.800889W) indicates that this well was located on the eastern edge of what is now the Zion Station. 'Zion Estates' may have been part of the Hosah Beach subdivision (see Bannon-Nilles 2003) which was purchased by ComEd in about 1967. This well is not currently present at the Zion Station.

3.0 AREAS FOR FURTHER EVALUATION

CRA considered all Station operations in assessing groundwater quality at the Station. During this process, CRA identified areas at the Station that warranted further evaluation or "AFEs". This section discusses the process by which AFEs were selected.

CRA's identification of AFEs involved the following components:

- Station inspection on March 22 to 23, 2006;
- interviews with Station personnel;
- evaluation of Station systems;
- investigation of confirmed and unconfirmed releases of radionuclides; and
- review of previous Station investigations.

CRA analyzed the information collected from these components combined with information obtained from CRA's study of hydrogeologic conditions at the Station to identify those areas where groundwater potentially could be impacted from operations at the Station.

CRA then designed an investigation to determine whether any confirmed or potential releases or any other release of radionuclides adversely affected groundwater. This entailed evaluating whether existing Station groundwater monitoring systems were sufficient to assess the groundwater quality at the AFEs. If the systems were not sufficient to adequately investigate groundwater quality associated with any AFE, additional monitoring wells were installed by CRA.

The following sections describe the above considerations and the identification of AFEs. The results of CRA's investigation are discussed in Section 5.0.

3.1 <u>SYSTEMS EVALUATIONS</u>

Exelon launched an initiative to systematically assess the structures, systems and components that store, use, or convey potentially radioactively contaminated liquids. Maps depicting each of these systems were developed and provided to CRA for review. The locations of these systems are presented on Figure 3.1. The Station identified a total of 17 systems that contain or could contain potentially radioactively contaminated liquids. The following presents a list of these systems.

System Identification	Description
AD	Auxiliary Drains
AX	Auxiliary Steam
BD	Blowdown System
CF	Cavity Fill
CW	Circulating Water
VC	Chemical and Volume Control
CC	Component Cooling
CD/SC	Condensate and Condensate Storage
MS	Main Steam
PW	Primary Water
RR	Resin Removal
SI	Safety Injection
SW	Service Water
SF	Spent Fuel
TD	Turbine Building Drains
WD	Waste Disposal
WT	Waste Water

After these systems were identified, Exelon developed a list of the various structures, components and areas of the systems (e.g., piping, tanks, and process equipment) that handle or could potentially handle any radioactively contaminated liquids. The structures, components, and areas may include:

- aboveground storage tanks;
- condensate vents;
- areas where confirmed or potential historical releases, spills, or accidental discharges may have occurred;
- pipes;
- pools;
- sumps;
- surface water bodies (i.e., basins, pits, ponds, or lagoons);
- trenches;
- underground storage tanks; and
- vaults.

045136 (22) Zion Station

The Station then individually evaluated the various system components to determine the potential for any release of radioactively contaminated liquid to enter the environment. Each structure or identified component was evaluated against the following seven primary criteria:

- location of the component (i.e., basement or second floor of building);
- component construction material (i.e., stainless steel or steel tanks);
- construction methodologies (i.e., welded or mechanical pipe joints);
- concentration of radioactively contaminated liquid stored or conveyed;
- amount of radioactively contaminated liquid stored or conveyed;
- existing controls (i.e., containment and detection); and
- maintenance history.

System components, which were located inside a building or that otherwise had some form of secondary containment, such that a release of radioactively contaminated liquid would not be discharged directly to the environment, were eliminated from further evaluation. System components that are not located within buildings or did not have some other form of secondary containment were retained for further qualitative evaluation of the risk of a release of radioactively contaminated liquid to the environment and the potential magnitude of any release.

Exelon's risk evaluation took into consideration factors such as:

- the potential concentration of radionuclides;
- the volume of liquid stored or managed;
- the probabilities of the systems actually containing radioactively contaminated liquid; and
- the potential for a release of radioactively contaminated liquid from the system component.

These factors were then used to rank the systems and system components according to the risk for a potential release of a radioactively contaminated liquid to the environment. The evaluation process resulted in the identification of structures, components, and areas to be considered for further evaluation.

3.2 <u>HISTORICAL RELEASES</u>

CRA also reviewed information concerning confirmed or potential historical releases of radionuclides at the Station, including reports and documents previously prepared by Exelon and compiled for CRA's review. CRA evaluated this information in identifying the AFEs. Any historical releases identified during the course of this assessment that may have a current impact on Station conditions are further discussed in Section 3.4.

3.3 STATION INVESTIGATIONS

CRA considered previous Station investigations in the process of selecting the AFEs for the Station. This section presents a summary of the pre-operational radiological environmental monitoring program (pre-operational REMP), past station investigations, and the radiological environmental monitoring program (REMP).

3.3.1 PRE-OPERATIONAL RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

A pre-operational REMP was conducted to establish background radioactivity levels prior to operation of the Station. The environmental media sampled and analyzed during the pre-operational REMP were surface water, well water, air particulates, milk, locally grown vegetables, and aquatic plants and animals (ComEd, 1971). The results of the monitoring were detailed in the report entitled, 1971 Zion Station Final Safety Analysis Report, December 1971.

The pre-operational REMP report noted that surface water was sampled at five public water intakes. Generally, the gross beta radioactivity of Lake Michigan was less than 10 picoCuries per liter (pCi/L) with typical concentrations between 3 pCi/L to 6 pCi/L. Gross alpha radioactivity was typically less than 3 pCi/L (ComEd, 1971).

Tritium levels in Lake Michigan water were studied in the vicinity of Zion Station throughout 1970. The concentration of tritium in the surface water samples from the Lake at Zion ranged from approximately 311 ± 20 pCi/L to 374 ± 34 pCi/L and averaged 340 pCi/L. There was no statistical difference in average tritium concentrations among the stations (eight stations from Kenosha to Waukegan) (ComEd, 1971).

1973 Aerial Radiological Measuring System

An Aerial Radiological Measuring System (ARMS) survey was conducted at the Station prior to the startup of the reactors in 1973. The ARMS survey was conducted using small aircraft flying at an altitude between 300 and 500 feet. Ground-based measurements were obtained from two locations as part of the study. Tritium measurements were not included in the ARMS survey (ComEd, 1999).

The ARMS survey showed that cosmic ray exposure rate was substantially less than the northern Illinois background radiation level (ComEd, 1999).

Soil samples contained small concentrations of uranium-238 and thorium-232. Cesium-137 activity in soil samples ranged from 0.276 to 0.40 picoCuries per gram (pCi/g) (ComEd, 1999).

3.3.2 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

The REMP at the Station was initiated in 1973. The REMP includes the collection of multi-media samples including air, surface water, groundwater, fish, sediment, and vegetation. The samples are analyzed for beta and gamma-emitting radionuclides, tritium, iodine-131, and/or strontium as established in the procedures developed for the REMP. The samples are collected at established locations, identified as stations, so that trends in the data can be monitored.

An annual report is prepared providing a description of the activities performed and the results of the analysis of the samples collected from the various media. The latest report generated was prepared by Station personnel and is entitled Final Monthly Progress Report to Exelon Nuclear, Radiological Environmental Monitoring Program – 2005. This report concluded that the operation of the Station had no adverse radiological impact on the environment. The annual report is submitted to the NRC.

Prior to the cessation of power generation in 1998, surface water samples were collected at the following six locations along Lake Michigan:

- Kenosha, Wisconsin (intake located 10 miles north of the Station);
- Lake County Public Water District (intake located 1.1 miles north of the Station);
- Waukegan, Illinois (intake located 6 miles south of the Station);
- North Chicago, Illinois (intake located 10 miles south of the Station);

- Great Lakes NTS (intake located 13 miles south of the Station); and
- Lake Forest, Illinois (intake located 16.5 miles south of the Station).

After 1998, surface water samples were collected at the following four locations along Lake Michigan:

- Kenosha, Wisconsin (intake located 10 miles north of the Station);
- Lake County Public Water District (intake located 1.1 miles north of the Station);
- Waukegan, Illinois (intake located 6 miles south of the Station); and
- Lake Forest, Illinois (intake located 16.5 miles south of the Station).

Lake Michigan surface water data are collected as part of the REMP. Tritium concentrations in surface water samples from Lake Michigan ranged from non-detect to 660 pCi/L.

3.3.3 DEFUELED SAFETY ANALYSIS REPORT

In October 2004, Exelon updated the Defueled Safety Analysis Report (DSAR). The DSAR discusses the overall adequacy of the Station for safety, storing, and handling of fuel and radioactive waste, and to monitor potential radiological effluent release paths. It provides information on Station and local characteristics such as geography, demography, meteorology, geology, and hydrogeology.

The DSAR states that intermittent liquid effluents from the Station will not affect groundwater supplies in the adjacent area in excess of concentrations in 10 CFR 20 due to local drainage patterns, release rates, and specific features of the sources of water supplies.

The DSAR also states that the Station's radioactive liquid waste generated is collected, treated and either recycled or discharged. Discharged liquid wastes are monitored to assure compliance with 10 CFR 20. Radioactivity levels should not exceed permissible concentrations at the cooling water outlet in Lake Michigan. The two closest municipal water intakes are the LCPWD (approximately 1 mile north) and the Waukegan Waterworks (approximately 6 miles south). The February 2005 REMP report indicates that there have been no tritium concentrations detected in surface water samples at concentrations exceeding the lower limit of detection (LLD) of 200 pCi/L.

3.3.4 WISCONSIN DEPARTMENT OF HEALTH AND FAMILY SERVICES MONITORING

The Wisconsin Public Health Statutes 254.41 mandates the Department of Health and Family Services (DHFS) to conduct environmental radiation monitoring around the nuclear power facilities that impact Wisconsin. The Station is included in this monitoring due to its proximity to the Wisconsin border. In the 2004 Zion Environmental Radioactivity Survey, the Wisconsin DHFS concluded:

- air particulate analysis shows no evidence of influence by the Station on air quality;
- the average yearly exposure of ambient gamma radiation is at background levels and is comparable to other areas within Wisconsin;
- the surface water samples showed no unusual concentrations of gross beta, gross gamma, tritium, and strontium;
- the gamma isotopic analysis for surface water indicated radioisotopes below their respective minimum detectable concentration;
- the gamma isotopic analysis on vegetation detected only a small amount of the naturally occurring elements potassium-40 and beryllium-7;
- the gamma isotopic analysis for soil detected potassium-40 and cesium-137. These were also detected in previous years and are naturally occurring (potassium-40) or attributable to fallout from previous atmospheric nuclear tests (cesium-137); and
- doses of radiation as a result of gaseous and liquid effluent are less than the limits allowed for an average individual as stated in Federal Regulations.

3.4 IDENTIFIED AREAS FOR FURTHER EVALUATION

CRA used the information presented in the above sections along with its understanding of the hydrogeology at the Station to identify AFEs, which were a primary consideration in the development of the scope of work in the Work Plan. The establishment of AFEs is a standard planning practice in hydrogeologic investigations to focus the investigation activities at areas where there is the greatest potential for impact to groundwater.

Specifically, AFEs were identified based on these six considerations:

- systems evaluations;
- risk evaluations;
- review of confirmed and/or potential releases;

- review of documents;
- review of the hydrogeologic conditions; and
- Station inspection completed on March 22 and 23, 2006.

Prior to CRA completing its analysis and determination of AFEs, Station personnel completed an exhaustive review of all historic and current management of systems that may contain potentially radioactively contaminated liquids.

CRA reviewed the systems identified by the Station, which have the potential for the release of radioactively contaminated liquids to the environment, and groundwater flow at the Station. This evaluation allowed CRA to become familiar with Station operations and potential systems that may impact groundwater. CRA then evaluated information concerning historic releases as provided by the Station. This information, along with a review of the results from historic site investigations, was used to refine CRA's understanding of areas likely to have the highest possibility of impacting groundwater. Where at risk systems or identified historical releases were located in close proximity or were located in areas which could not be evaluated separately, the systems and historical releases were combined into a single AFE. At times, during the Station investigation, separate AFEs were combined into one or were otherwise altered based on additional information and consideration. This HIR details the AFEs investigated.

Finally, CRA used its understanding of known hydrogeologic conditions (prior to this investigation) to identify AFEs. Groundwater flow was an important factor in deciding whether to combine systems or historical releases into a single AFE or create separate AFEs. For example, groundwater beneath several systems that contain radioactively contaminated liquids that flows toward a common discharge point were likely combined into a single AFE. The AFEs were created based on known groundwater flow conditions prior to the work completed during this investigation.

Based upon its review of information concerning confirmed or potential historical releases, historic investigations, and the systems at the Station that have the potential for release of radioactively contaminated liquids to the environment combined with its understanding of groundwater flow at the Station, CRA has identified four AFEs (see Figure 3.1).

AFE-Zion-1: Main Complex Area

This area was identified to evaluate the main area of the facility, which includes the two containment structures, the Fuel Building that contains spent fuel, the Auxiliary Building, and the Turbine Building.

AFE-Zion-2: Unit 1 (Southern) Aboveground Storage Tank (AST) Area

This area was identified to evaluate the quality of groundwater in the area around the Unit 1 systems including the primary water storage tank, the secondary condensate tank, oil separator, discharge tunnel, and discharge outfall. This AFE was established based on information regarding the storage, handling, and historical releases in this area.

AFE-Zion-3: Unit 2 (Northern) AST Area

This area was identified to evaluate the quality of groundwater in the area around the Unit 2 systems including the primary water storage tank, secondary condensate tank, oil separator, discharge tunnel, and discharge outfall. This AFE was established based on information regarding the storage, handling, and historical releases in this area.

AFE-Zion-4: Wastewater Treatment Plant Area

This area comprises the Wastewater Treatment Plant in the northeast corner of the Station. Groundwater monitoring was initiated in this area of the Station to evaluate the wastewater treatment and associated systems.

4.0 <u>FIELD METHODS</u>

The field investigations completed for this HIR were completed in May to July 2006. CRA supervised the installation of monitoring wells and a staff gauge, and collected samples from the newly-installed monitoring wells and the surface water location. The field investigations were completed in accordance with the methodologies presented in the Work Plan (CRA, 2006).

The scope of work presented in the Work Plan included the installation and sampling of nine permanent monitoring wells and the collection of a surface water sample. Based on the concentrations of tritium detected in monitoring well MW-ZN-01S, additional investigative activities were recommended by CRA, and implemented in June and July 2006. The additional investigative tasks included a second round of sampling at MW-ZN-01S and the installation and sampling of two permanent and four temporary monitoring wells. The additional investigative activities provided plume delineation and additional hydraulic information cross-gradient and down-gradient of MW-ZN-01S. The groundwater sampling events undertaken as part of the investigation are:

- May 24-26, 2006 sampling of MW-ZN-01S through MW-ZN-09S;
- June 28, 2006 sampling of MW-ZN-01S (second round);
- July 17, 2006 sampling of TW-ZN-100 through TW-ZN-103; and
- July 28, 2006 sampling of MW-ZN-10S and MW-ZN-11S.

4.1 <u>STAFF GAUGE INSTALLATION</u>

Figure 4.1 presents the location of the staff gauge installed as part of this investigation. CRA installed staff gauge SG-ZN-01, which is a notch in a bridge within the Intake Crib. The Intake Crib is hydraulically connected to Lake Michigan via the intake tunnel that extends approximately 1/2 mile into Lake Michigan.

4.2 <u>GROUNDWATER MONITORING WELL INSTALLATION</u>

Prior to completing any ground penetration activities, CRA completed subsurface utility clearance procedures to minimize the potential of injury to workers and/or damage to subsurface utility structures. The subsurface clearance procedures consisted of completing an electronic survey within a minimum of 10-foot radius of the proposed location utilizing electromagnetic and ground penetrating radar technology.

Additionally, a vacuum soft dig was used to verify utilities were not present at the proposed location to a depth to 10 feet bgs.

Fifteen new monitoring wells were installed for the fleetwide hydrogeologic investigation, including 11 permanent and 4 temporary monitoring wells. Monitoring well construction logs are provided in Appendix B. Figure 4.1 presents the location of the 15 new monitoring wells. These locations were selected based on a review of all data provided, the hydrogeology at the Station, and current understanding of identified AFEs, and modified based on conditions encountered during the investigation. Table 4.1 summarizes the well installation details.

Specific installation protocols for the permanent monitoring wells are described below:

- the borehole was advanced to the target depth using 4.25-inch inside diameter hollow-stem augers (HSA);
- a nominal 2-inch diameter (No. 10 slot) PVC screen, 10 or 20 feet in length, attached to a sufficient length of 2-inch diameter schedule 40 PVC riser pipe to extend to the surface, was placed into the borehole through the augers;
- a filter sand pack consisting of silica sand was installed to a minimum height of 2 feet above the top of the screen as the augers were removed;
- a minimum 2-foot thick seal consisting of 3/8-inch diameter bentonite pellets or chips was placed on top of the sand pack and hydrated using potable water;
- the remaining borehole annulus was sealed to within 3 feet of the surface using pure bentonite chips (the soft-dig portion of the borehole was backfilled with a mixture of soil and bentonite); and
- the remaining portion of the annulus was filled with concrete and a 6-inch diameter protective above-grade casing. The well head was fitted with a water-tight lockable cap.

Specific installation protocols for the temporary monitoring wells are described below:

- the borehole was advanced to the target depth using a 2-inch direct push technology (DPT) drill rig;
- a nominal 1-inch diameter (No. 10 slot) PVC screen, 15 or 20 feet in length, attached to a sufficient length of 1-inch diameter schedule 40 PVC riser pipe to extend to the surface, was placed into the borehole through the DPT casing;
- a filter sand pack consisting of silica sand was installed to a minimum height of 2 feet above the top of the screen as the augers were removed;

- a minimum 2-foot thick seal consisting of bentonite powder was placed on top of the sand pack; and
- the remaining borehole annulus was sealed at the surface using bentonite powder or chips.

The shallow soil borings completed in unconsolidated materials that were to be used for monitoring well installation were installed using either DPT or 4.25-inch inside diameter HSA drilling techniques. The borehole depths ranged from 19 to 45 feet bgs. During the subsurface utility clearance activities described above, the borehole was periodically examined and the soil types documented. A description was added to each monitoring well construction log. The overburden soils were classified using the Unified Soil Classification System (USCS).

4.3 <u>GROUNDWATER MONITORING WELL DEVELOPMENT</u>

To establish good hydraulic communication with the aquifer and reduce the volume of sediment in the permanent monitoring wells, well development was conducted in accordance with the procedure outlined below:

- monitoring wells were surged using a pre-cleaned bailer for a period of at least 5 minutes;
- a minimum of one well volume of water was purged using a submersible pump;
- the monitoring well was surged for 5 minutes again;
- water was purged from the monitoring well using an electric submersible pump;
- groundwater was collected at regular intervals and the pH, temperature, and conductivity were measured using field instruments. These instruments were calibrated daily according to the manufacturer's specifications. Additionally, observations such as color, odor, and turbidity of the purged water were recorded; and
- development continued until the turbidity and silt content of the monitoring wells were significantly reduced and three consistent readings of pH, temperature, and conductivity were recorded, or a minimum of ten well volumes was purged.

A summary of the monitoring well development parameter measurements is presented in Table 4.2.

4.4 <u>SURVEY</u>

The 15 monitoring wells and surface water gauge were surveyed to establish reference elevations relative to mean sea level. The top of each well casing was surveyed to the nearest 0.01 foot relative to the National Geodetic Vertical Datum (NGVD), and the survey point was marked on the well casing. The survey included the ground elevation at each well to the nearest 0.10 foot relative to the NGVD, and the horizontal well location to the nearest 1.0 foot. A reference point was also marked on the concrete at the surface water elevation measuring location.

The Lake Michigan shoreline was surveyed at the Station using a handheld Global Positioning System (GPS) with an estimated accuracy of \pm 12 feet. The GPS survey was conducted on June 30, 2006.

4.5 GROUNDWATER AND SURFACE WATER ELEVATION MEASUREMENTS

On May 23, 2006 and July 27, 2006, CRA collected water level measurements from the monitoring wells and the staff gauge at the Station in accordance with the Work Plan. Based on the measured depth to water from the reference point and the surveyed elevation of the reference point, the groundwater or surface water elevation was calculated. A summary of groundwater and surface water elevations is provided in Table 4.3.

Prior to the water level measurements, the wells and staff gauges were identified and located. Once the wells were identified, CRA completed a thorough inspection of each well and noted any deficiencies. Water level measurements were collected using an electronic depth-to-water probe accurate to ± 0.01 foot. The measurements were made from the designated location on the inner riser or steel casing of each monitoring well and reference point on the staff gauge. The water level measurements were obtained using the following procedures:

- the proper elevation of the meter was checked by inserting the tip into water and noting if the contact was registering correctly;
- the tip was dried, and then slowly lowered into the well or surface water body until contact with the water was indicated;
- the tip was slowly raised until the light and/or buzzer just began to activate. This indicated the static water level;

- the reading at the reference point was noted to the nearest hundredth of a foot;
- the reading was then re-checked; and
- the water level was then recorded, and the water level meter decontaminated prior to use at the next location.

Surface water measurements for Lake Michigan were obtained from the National Oceanic and Atmospheric Administration (NOAA) gauging stations at Milwaukee, Wisconsin (Station 9087057), and Calumet Harbor, Illinois (Station 9087044) for the date and time when the water levels in monitoring wells were measured (NOAA, 2006).

Station	Time Period	Median Lake Elevation
9087057 Milwaukee	May 23, 2006 8:00-13:00	577.99
9087044 Calumet Harbor	May 23, 2006 8:00-13:00	577.94
May 23, 2006 8:00-13:00 Aver	577.97	
9087057 Milwaukee	July 27, 2006 9:15-11:10	577.91
9087044 Calumet Harbor	July 27, 2006 9:15-11:10	577.96
July 27, 2006 9:15-11:10 Aver	577.93	

4.6 <u>GROUNDWATER AND SURFACE WATER SAMPLE COLLECTION</u>

CRA conducted one round of groundwater sampling during the hydrogeologic investigation, with additional samples collected from monitoring well MW-ZN-01S. A total of 15 monitoring wells were sampled between May 24, 2006 and July 28, 2006. Eleven new permanent monitoring wells were installed. The sampling was scheduled to allow for 2 weeks to elapse between well development and groundwater sample collection. Four temporary monitoring wells were installed and sampled in July 2006.

At the monitoring well locations, CRA conducted the sampling using peristaltic pumps and dedicated polyethylene tubing to employ low flow purging techniques, as described in Puls and Barcelona (1996).

For permanent monitoring wells with 20-foot screen lengths (MW-ZN-01S through MW-ZN-08S, MW-ZN-10S and MW-ZN-11S), separate samples were collected from the lower portion and the upper portion of the screened interval. The lower sampling interval targets potential releases from deep structural features such as the basement of the Auxiliary Building. The upper sampling interval targets potential surface and near surface releases such as spills from the primary cooling water ASTs.

The groundwater in the monitoring wells was sampled by the following low-flow procedures:

- the wells were located and the well identification numbers were verified;
- a water level measurement was taken;
- the well was sounded by carefully lowering the water level tape to the bottom of the well (so as to minimize penetration and disturbance of the well bottom sediment), and comparing the sounded depth to the installed depth to assess the presence of any excess sediment or drill cuttings;
- the pump or tubing was lowered slowly into the well and fixed into place such that the intake was located at the mid-point of the well screen, or a minimum of 2 feet above the well bottom/sediment level;
- the purging was conducted using a pumping rate between 100 to 500 milliliters per minute. Initial purging began using the lower end of this range. The groundwater level was monitored to ensure that a drawdown of less than 0.3 foot occurred. If this criterion was met, the pumping rate was increased dependent on the behavior of the well. During purging, the pumping rate and groundwater level were measured and recorded approximately every 10 minutes;
- the field parameters [pH, temperature, conductivity, oxidation-reduction potential (ORP), dissolved oxygen (DO), and turbidity] were monitored during the purging to evaluate the stabilization of the purged groundwater. Stabilization was considered to be achieved when three consecutive readings for each parameter, taken at 5-minute intervals, were within the following limits:

pН	$\pm0.1~\mathrm{pH}$ units of the average value of the three readings,		
Temperature	\pm 3 percent of the average value of the three readings,		
Conductivity	tivity ± 0.005 milliSiemen per centimeter (mS/cm) of the average value of the three readings for conductivity <1 mS/cm and ± 0.01 mS/cm of the average value of the three readings for conductivity >1 mS/cm,		
ORP	\pm 10 millivolts (mV) of the average value of the three readings,		
DO	±10 percent of the average value of the three readings, and		
Turbidity	\pm 10 percent of the average value of the three readings, or a final value of less than 5 nephelometric turbidity units (NTUs);		

• once purging was complete, the groundwater samples were collected directly from the pump/tubing directly into the sample containers; and

• in the event that the groundwater recharge to the monitoring well was insufficient to conduct the low-flow procedure, the well was pumped dry and allowed to sufficiently recharge prior to sampling.

All groundwater samples were labeled with a unique sample number, the date and time, the parameters to be analyzed, the job number, and the sampler's initials. The samples were then screened by the Station for shipment to Teledyne Brown Engineering Inc. (Teledyne Brown).

A sample key is presented in Table 4.4; field measurements for the hydrogeologic investigation are presented in Table 4.5.

CRA containerized the water purged from the monitoring wells during the sampling, as well as the water purged from all of the wells during the hydrogeologic investigation. The water was placed into 55-gallon drums, which will be processed by the Station in accordance with its NPDES permit.

One surface water sample was collected on May 26, 2006 from Lake Michigan at station SW-ZN-1, adjacent to the Station. The surface water sampling location is presented on Figure 4.1.

The surface water sample was collected by directly filling the sample container from the composite sampler at the determined location until completely filled. A sample key is presented in Table 4.4.

4.7 DATA QUALITY OBJECTIVES

CRA has validated the analytical data to establish the accuracy and completeness of the data reported. Teledyne Brown provided the analytical services. The Quality Assurance Program for the laboratory is described in Appendix C. Analytical data for groundwater and surface water samples collected in accordance with the Work Plan are presented in Appendix D. Data validation reports are presented in Appendix E. The data validation included the following information and evaluations:

- sample preservation;
- sample holding times;
- laboratory method blanks;
- laboratory control samples;

- laboratory duplicates;
- verification of laboratory qualifiers; and
- field quality control (field blanks and duplicates).

Following the completion of field activities, CRA compiled and reviewed the geologic, hydrogeologic, and analytical data.

The data were reviewed using the following techniques:

- data tables and databox figures;
- hydrogeologic cross-sections; and
- hydraulic analyses.

4.8 <u>SAMPLE IDENTIFICATION</u>

Systematic sample identification codes were used to uniquely identify all samples. The identification code format used in the field was: WG - Zion - MW-8L - 052406 - MS - 001. A summary of sample identification numbers is presented in Table 4.4.

WG	-	Sample matrix -groundwater
WS	-	Sample matrix - surface water
Zion	-	Station code
ZN	-	Station code
MW-8L	-	Well location
052406	-	Date
MS	-	Sampler initial
001	-	Sample number

4.9 <u>CHAIN-OF-CUSTODY RECORD</u>

The samples were delivered to Station personnel under chain-of-custody protocol. Subsequently, the Station shipped the samples under chain-of-custody protocol to Teledyne Brown for analyses.

4.10 QUALITY CONTROL SAMPLES

Quality control samples were collected to evaluate the sampling and analysis process.

Field Duplicates

Field duplicates were collected to verify the accuracy of the analytical laboratory by providing two samples collected at the same location and then comparing the analytical results for consistency. Field duplicate samples were collected at a frequency of one duplicate for every ten samples collected. A total of three duplicate samples were collected. The locations of duplicate samples were selected in the field during the performance of sample collection activities. The duplicate samples were collected simultaneously with the actual sample and were analyzed for the same parameters as the actual samples.

Split Samples

Split samples from permanent monitoring wells and surface water were collected for the NRC for tritium simultaneously with the actual sample at every sample location. Split samples were delivered to the Station personnel and (if requested) made available to the NRC. Split samples from the temporary monitoring wells were collected directly by the NRC and the Illinois Emergency Management Agency (IEMA).

4.11 <u>ANALYSES</u>

Groundwater and surface water samples were analyzed for tritium and gamma-emitting radionuclides as listed in NUREG-1301, and strontium-89/90 as listed 40 CFR 141.25.

5.0 <u>RESULTS SUMMARY</u>

This section provides a summary of Station-specific geology and hydrogeology, along with a discussion of hydraulic gradients, groundwater elevations, and flow directions in the vicinity of the Station. This section also presents and evaluates the analytical results obtained from activities performed in accordance with the Work Plan.

5.1 <u>STATION GEOLOGY</u>

Geologic cross-sections in both a south-north and east-west profile have been developed. Figure 5.1 displays the cross-section locations across the Station and the cross-sections are provided on Figures 5.2 and 5.3. These cross-section locations were chosen because of their close proximity to the AFEs and structures potentially influencing groundwater flow patterns.

The Station is underlain by overburden deposits and a regionally extensive sequence of consolidated sedimentary deposits as discussed in Section 2.4.3. In descending order, the following overburden stratigraphic units have been identified and characterized during the various Station investigations:

- Upper Sand Unit: Dense to very dense granular soils which range in gradation from very fine sand to fine to coarse sand, and which contains some gravel and occasional cobbles and boulders. Depth ranges from the ground surface to an elevation of approximately 555 feet AMSL.
- Silt-Clay Unit: Hard silt, silty clay, clayey silt, and sandy silt, which contain some sand and gravel and occasional cobbles and boulders. Depth ranges from approximately 525 feet to 555 feet AMSL.
- Lower Sand Unit: Dense to very dense sands and silty sands which contain some gravel, occasional cobbles and boulders, and layers of hard silty clay, clayey silt, and sandy silt. Depth ranges from approximately 480 feet to 525 feet AMSL (ComEd, 1969).

The Upper Sand Unit includes the surficial deposits of the Zion beach-ridge plain and consists of sand and gravel of the Lake Michigan Formation. The Lake Michigan Formation describes Holocene shallow-water, near-shore beach sediments predominantly consisting of medium-grained sand with local lenses of sandy gravel, and containing beds of silt.

The Silt-Clay Unit is consistent with quiet water lacustrine deposits and may be associated with post-glacial Lake Michigan (Nipissing Phase).

The Lower Sand Unit is consistent with recurring sequences of beach and quiet water lacustrine deposits and may be associated with the extreme Lake level fluctuations. As Lake levels rose, beach deposits moved westward with the shoreline and were followed by quiet water silt and clay deposits (a transgressive sequence). As Lake levels fell, the beach moved eastward with the shoreline (a regressive sequence).

The overburden sediments are underlain by Silurian carbonate bedrock of the Niagaran Series, which was encountered at depths ranging from 102 to 116 feet bgs (ComEd, 1969). In northeastern Illinois the Niagaran Series includes the Racine, Sugar Run, and Joliet Formations (Willman et al., 1975). Below the Silurian carbonates lie Pre-Cambrian through Ordovician sedimentary rocks, including shales, carbonates, and sandstone. Crystalline basement rock is located at a depth of approximately 2,500 feet. The sedimentary bedrock strata are generally horizontal with a gentle dip to the east (Visocky et al., 1985).

Some of the Station structures are constructed to depths of approximately 60 feet bgs. Excavations were completed from grade, through the Upper Sand Unit and into the topmost portion of the Silt-Clay Unit. Excavated sands were stockpiled during the construction and used as backfill (Exelon, 2004), and are considered to be hydraulically similar to the Upper Sand Unit.

The fifteen new monitoring wells (MW-ZN-01S, MW-ZN-02S, MW-ZN-03S, MW-ZN-04S, MW-ZN-05S, MW-ZN-06S, MW-ZN-07S, MW-ZN-08S, MW-ZN-09S, MW-ZN-10S, MW-ZN-11S, TW-ZN-100, TW-ZN-101, TW-ZN-102, and TW-ZN-103) were installed within the Upper Sand Unit or fill, which consists of a primarily fine-grained sand that overlies the Silt-Clay Unit. The monitoring well logs wells are presented in Appendix B.

Cross-Section A-A' (Figure 5.2) is a north-south profile through the east side of the Station. It begins at monitoring well MW-ZN-08S and terminates at MW-ZN-05S. This cross-section transects AFE-Zion-2, AFE-Zion-3, and AFE-Zion-4. This cross-section also shows the relationship between the groundwater and the geology, excavated areas, and reactor containment and building foundations.

Cross-Section B-B' (Figure 5.3) is an west-east profile that runs from monitoring well MW-ZN-07 through the Station to Lake Michigan and intersects AFE-Zion-1 and

AFE-Zion-3. This cross-section shows the relationship between the groundwater and geology, and building foundations.

5.2 <u>STATION HYDROGEOLOGY</u>

This section presents the Station hydrogeology, including groundwater flow direction, man-made influences on groundwater flow, vertical hydraulic gradients, and lateral groundwater flow and velocity.

5.2.1 <u>GROUNDWATER FLOW DIRECTIONS</u>

The shallow groundwater flows to the east toward Lake Michigan. The building foundations restrict the groundwater flow, which causes the groundwater to flow around the Station. As mentioned previously, the shallow water table intercepts the stormwater drainage ditches in the west area of the Station property, but does appear to affect the flow of groundwater to the east and toward Lake Michigan. Groundwater flow directions for May 2006 are provided on Figure 5.4, flow directions for July 2006 are provided on Figure 5.5. Both figures present groundwater flow in the shallow groundwater system. The sheet pile wall limits the flow of groundwater towards Lake Michigan. Groundwater between the sheet pile wall and the Turbine Building flows to the north or south around the wall. Although groundwater flow circumscribes the sheet pile wall, a small component of leakage through the wall is expected.

The sheet pile wall is constructed of MZ-27 steel sheet piling. MZ-27 sheet piling is comprised of z-shaped sheet steel sections which are 18-inches wide with a 12-inch offset. The sections are 45 feet long, 3/8-inch thick, and weigh 27 pounds per square foot of wall.

5.2.2 MAN-MADE INFLUENCES ON GROUNDWATER FLOW

The building foundations of the main complex extend through the Upper Sand Unit and into the top of the underlying silts and clays. Deep structures include the Reactor Containment Buildings, the Fuel Storage Building, the Auxiliary Building, the Turbine Building, and the crib area. The deep building foundations act as hydraulic barriers for shallow groundwater as is discussed below. During the construction of the Station, a sheet pile wall was installed along the Lake Michigan shoreline to prevent lake water from entering the excavation. The sheet pile wall was modified over the course of the construction and currently extends to a depth of approximately 45 feet bgs. The top of the sheet pile wall is lined with boulders and forms a breakwall, which is shown on Figure 5.3.

Shallow groundwater will flow into the stormwater drainage ditches located on the west portion of the Station property. However, the groundwater in this area is upgradient of the PA and areas within the Station that potentially contain tritiated water. As such the groundwater discharge to these stormwater systems is not expected to be impacted by tritium.

5.2.3 <u>VERTICAL HYDRAULIC GRADIENTS</u>

The Upper Sand Unit is a high permeability unit that is directly connected to Lake Michigan, which is a regional discharge feature, and which generally allows unrestricted lateral groundwater flow. Vertical groundwater flow is limited by the underlying Silt-Clay Unit, which has a low permeability and is approximately 30 feet thick. To the extent that vertical flow can occur, the vertical gradient is expected to be upward based on the artesian pressure observed in the Lower Sand Unit during the 1967 Foundation Investigation (Dames and Moore, 1967).

5.2.4 LATERAL GROUNDWATER FLOW AND VELOCITY

Fifteen monitoring wells were installed at the Station as part of the 2006 hydrogeologic investigation. Shallow groundwater is present at a depth less than 12 feet bgs in the Upper Sand Unit. The shallow water-bearing zone is isolated from the underlying regional bedrock aquifers by the underlying Silt-Clay Unit. The Silt-Clay Unit is approximately 30 feet thick and extends approximately 15 feet below the deepest structural feature at the Station.

Shallow groundwater flows is generally towards Lake Michigan. A potentiometric surface contour map is provided on Figure 5.4 (May 2006) and Figure 5.5 (July 2006). The hydraulic gradient ranges from 0.001 feet per foot near the switchyard (west of the Station) to 0.008 feet per foot near the eastern portion of the Station. The hydraulic conductivity of the surficial sands is expected to be approximately 12 feet per day based on the median measurement from a study conducted along the Illinois-Indiana border of the shallow aquifer along Lake Michigan (USGS, 1996). The velocity of the shallow

groundwater may be roughly approximated using the Station-specific hydraulic gradient with the literature value for hydraulic conductivity and a typical value for porosity. Using the hydraulic gradient range of 0.001 to 0.008 feet per foot with a hydraulic conductivity of 12 feet per day and an assumed porosity of 0.32 yields a velocity range of 14 to 110 feet per year (USEPA, 1996).

5.3 <u>GROUNDWATER QUALITY</u>

CRA personnel collected groundwater samples from fifteen wells. The samples were analyzed for tritium and additional radionuclides. Teledyne Brown provided the analytical services. The Quality Assurance Program for the laboratory is described in Appendix C. The analytical data reports are provided in Appendix D.

The analytical data presented herein have been subjected to CRA's data validation process. CRA has used the data with appropriate qualifiers where necessary.

The data reported in the figures and tables do not include the results of recounts that the laboratory completed, except if those results ultimately replaced an initial report. The tables and figures, therefore, include only the first analysis reported by the laboratory. Where multiple samples were collected over time, then the most recent result has been used in the discussion, below.

Two samples were collected from two different elevations in each permanent monitoring well except for monitoring well MW-ZN-09S. The samples were collected at 16 feet above the well bottom for the upper sample and 3 feet above the well bottom for the lower sample. At monitoring well MW-ZN-09S there was not a sufficient depth of water for both samples to be collected and a single sample at MW-ZN-09S was collected at 3 feet above the well bottom, which is the equivalent of an upper sample in the other monitoring wells.

5.3.1 SUMMARY OF BETA-EMITTING RADIONUCLIDES ANALYTICAL RESULTS

A summary of the tritium results for the groundwater samples collected during this investigation is provided in Table 5.1 and shown on Figure 5.6.

Groundwater samples were collected from the upper and lower portions of the screen in each monitoring well with a 20-foot screen (MW-ZN-01S through MW-ZN-11S with the

exception of MW-ZN-09S). Groundwater samples were also collected from Temporary Wells (TW-ZN-100 through TW-ZN-103). All tritium concentrations were below the USEPA drinking water standard of 20,000 pCi/L. Tritium was not detected greater than the LLD of 200 pCi/L in samples collected from 14 of the 15 monitoring wells. Concentrations of tritium exceeding the LLD of 200 pCi/L were only detected in groundwater samples collected from monitoring well MW-ZN-01S. The concentrations of tritium detected in the initial round of sampling were 586 ± 141 pCi/L in the lower portion of the screen and 261 ± 124 pCi/L in the upper portion of the screen. MW-ZN-01S was re-sampled on June 28, 2006 and the concentrations of tritium were less than the LLD of 200 pCi/L in the lower portion of the screen.

Strontium-89/90 was not detected at concentrations exceeding the LLD of 2.0 pCi/L. A summary of the strontium-89/90 results for the groundwater samples collected as part of the investigation that is the subject of this HIR is provided in Table 5.2 and shown on Figure 5.7.

5.3.2 SUMMARY OF GAMMA-EMITTING RADIONUCLIDES ANALYTICAL RESULTS

Gamma-emitting target radionuclides were not detected at concentration greater than their respective LLD. A summary of the gamma-emitting radionuclides results for the groundwater samples collected as part of the investigation that is the subject of this HIR is provided in Table 5.2 and presented graphically on Figure 5.7.

Other non-targeted radionuclides are included in the tables but excluded from discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides, which would otherwise indicate the potential of production from the Station.

5.3.3 <u>SUMMARY OF FIELD MEASUREMENTS</u>

Table 4.5 presents a summary of monitoring well purging parameters collected during the well purging and sampling activities. These field measurements included pH, dissolved oxygen, conductivity, turbidity, and temperature. The field parameters were typical of a shallow sand aquifer. The pH values ranged from 5.51 standard units to 10.42 standard units. The conductivity was indicative of a shallow water table system subject to surface water recharge.

Of note were the elevated turbidity readings above 900 NTU collected from the lower portion of the screen at MW-ZN-04S; however, the elevated turbidity readings are indicative of the very loose and fine-grained organic material at this well's lower screen interval, as shown on the MW-ZN-04S stratigraphic log. Overall, the readings were within the expected ranges for naturally occurring groundwater.

5.4 SURFACE WATER QUALITY

One surface water sample was collected from Lake Michigan at the location shown on Figure 4.1. This sample was analyzed for tritium, gamma-emitting radionuclides, and strontium-89/90. Teledyne Brown provided the analytical services. The Quality Assurance Program for the laboratory is described in Appendix C. The analytical data reports are provided in Appendix D.

5.4.1 SUMMARY OF BETA-EMITTING RADIONUCLIDE ANALYTICAL RESULTS

Tritium was not detected at concentrations exceeding the LLD of 200 pCi/L. A summary of the tritium result for the surface water sample collected in this investigation is provided in Table 5.1 and shown on Figure 5.6.

Strontium-89/90 was not detected at concentration exceeding the LLD of 2.0 pCi/L. The strontium-89/90 result for the surface water sample collected in this investigation is provided in Table 5.2 and shown on Figure 5.7.

5.4.2 SUMMARY OF GAMMA-EMITTING RADIONUCLIDES ANALYTICAL RESULTS

Gamma-emitting target radionuclides were not detected at concentration exceeding their respective LLD. A summary of the gamma-emitting radionuclides results for the surface water sample collected in this investigation is provided in Table 5.2 and shown on Figure 5.7.

Other non-targeted radionuclides are included in the tables but excluded from discussion in this report. These radionuclides were either a) naturally occurring and

thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station.

6.0 RADIONUCLIDES OF CONCERN AND SOURCE AREAS

This section discusses radionuclides evaluated in this investigation, potential sources of the radionuclides detected, and their distribution.

6.1 <u>GAMMA-EMITTING RADIONUCLIDES</u>

Gamma-emitting target radionuclides were not detected at concentration exceeding their respective LLD. Other non-targeted radionuclides were also included in the tables but excluded from discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station.

6.2 <u>BETA-EMITTING RADIONUCLIDES</u>

Strontium-89/90 was not detected in any of the samples collected at concentrations that were greater than the LLD of 2.0 pCi/L. Tritium was detected in one of the sixteen total sample locations. Concentrations of tritium ranged between less than the LLD of 200 pCi/L to 586 ± 141 pCi/L.

Since only tritium was detected above the radionuclides' LLDs, the following sections focus on tritium; specifically, providing general characteristics of tritium, potential sources, distribution in groundwater, and a conceptual model for migration.

6.3 <u>TRITIUM</u>

This section discusses the general characteristics of tritium, the distribution of tritium in groundwater and surface water, and the conceptual model of tritium release and migration.

6.3.1 <u>GENERAL CHARACTERISTICS</u>

Tritium (chemical symbol H-3) is a radioactive isotope of hydrogen. The most common forms of tritium are tritium gas and tritium oxide, which is also called "tritiated water." The chemical properties of tritium are essentially those of ordinary hydrogen. Tritiated

water behaves the same as ordinary water in both the environment and the body. Tritium can be taken into the body by drinking water, breathing air, eating food, or absorption through skin. Once tritium enters the body, it disperses quickly and is uniformly distributed throughout the body. Tritium is excreted primarily through urine within a month or so after ingestion. Organically bound tritium (tritium that is incorporated in organic compounds) can remain in the body for a longer period.

Tritium is produced naturally in the upper atmosphere when cosmic rays strike air molecules. Tritium is also produced during nuclear weapons explosions, as a by-product in reactors producing electricity, and in special production reactors, where the isotopes lithium-7 and/or boron-10 are bombarded to produce tritium.

Although tritium can be a gas, its most common form is in water because, like non-radioactive hydrogen, radioactive tritium reacts with oxygen to form water. Tritium replaces one of the stable hydrogen atoms in the water molecule and is called tritiated water. Like normal water, tritiated water is colorless and odorless. Tritiated water behaves chemically and physically like non-tritiated water in the subsurface, and therefore tritiated water will travel at the same velocity as the average groundwater velocity.

Tritium has a half-life of approximately 12.3 years. It decays spontaneously to helium-3 (³He). This radioactive decay releases a beta particle (low-energy electron). The radioactivity of tritium is the source of the risk of exposure.

Tritium is one of the least dangerous radionuclides because it emits very weak radiation and leaves the body relatively quickly. Since tritium is almost always found as water, it goes directly into soft tissues and organs. The associated dose to these tissues is generally uniform and is dependent on the water content of the specific tissue.

6.3.2 DISTRIBUTION IN STATION GROUNDWATER

This section provides an overview of the lateral and vertical distribution of tritium detected in groundwater at the Station. Tritium was detected in groundwater at concentrations exceeding the LLD of 200 pCi/L.

Tritium concentrations in groundwater are presented on Figure 5.6. Tritium was only detected in groundwater samples from monitoring well MW-ZN-01S in May 2006 from both the upper sampling interval ($261 \pm 124 \text{ pCi/L}$, 22 feet bgs) and the lower sampling interval ($586 \pm 141 \text{ pCi/L}$, 35 feet bgs). Tritium was only detected in groundwater

samples from monitoring well MW-ZN-01S in June 2006 in the upper sampling interval $(220 \pm 123 \text{ pCi/L}, 22 \text{ feet bgs})$. Tritium was not detected above the LLD of 200 pCi/L in June 2006 at the MW-ZN-01S lower sampling interval.

6.3.3 CONCEPTUAL MODEL OF TRITIUM RELEASE AND MIGRATION

This Section presents CRA's conceptual model of groundwater and tritium migration at the Station.

A conceptual model of groundwater and tritium migration is provided herein. This model is then used to discuss the recent detections of tritium observed during the hydrogeologic investigations presented in this HIR.

Groundwater flows within the Upper Sand Unit at the Station in response to the regional discharge point located to the east of the Station (Lake Michigan). Groundwater moving within the Upper Sand Unit is separated from the regional bedrock aquifer zones by the underlying low-permeability Silt-Clay Unit.

Groundwater in the Upper Sand Unit generally flows to the east and discharges to Lake Michigan. Groundwater flowing in Upper Sand Unit is affected by the building foundations which, in some cases, extend into the underlying glacial silts and clays. The sheet pile wall also limits the flow of groundwater towards Lake Michigan. There is no indication from the HIR investigation that tritium-impacted groundwater is migrating off the Station property.

6.3.4 ATTENUATION OF TRITIUM WITHIN THE SHALLOW GROUNDWATER SYSTEM

Tritium in the groundwater system would be affected by the infiltration from precipitation recharge. This could result in the upper water table zone of the sand aquifer having lower concentrations of tritium than deeper portions (these upper and lower zones are only separated by 10 feet).

The permeable nature of the Upper Sand Unit also supports attenuation of the tritium through lateral groundwater movement. The dispersion of the tritium as it flows through the Upper Sand Unit along with its natural decay rate will allow for reduction in concentrations over time and with distance from a release into the groundwater.

Tritium was not detected at concentrations exceeding the LLD of 200 pCi/L in the four temporary wells located downgradient of MW-ZN-01S and in surface water sample collected from Lake Michigan, which is the ultimate receptor of groundwater discharge from the Station. There is no indication from the HIR investigation that tritium-impacted groundwater is migrating off the Station property.

7.0 EXPOSURE PATHWAY ASSESSMENT

This section addresses the groundwater impacts from tritium and other radionuclides at the Station and potential risks to human health and the environment.

Based upon historical knowledge and data related to the Station operations, and based upon radionuclide analyses of groundwater samples, the primary constituent of concern (COC) is tritium. The discussions that follow are restricted to the exposure pathways related to tritium.

Teledyne Brown reports all samples to their statistically derived minimum detectable concentration (MDC) of approximately 150 to 170 pCi/L, which is associated with 95 percent confidence interval on their hardcopy reports. However, the laboratory uses a 99 percent confidence range (\pm 3-sigma) for determining whether to report the sample activity concentration as detected or not. This 3-sigma confidence range typically equates to 150 (\pm 135.75) pCi/L.

Exelon has specified a LLD of 200 pCi/L for the Fleetwide assessment. Exelon has also required the laboratory to report related peaks identified at the 95 percent confidence level (2-sigma).

This HIR, therefore, screens and assesses data using Exelon's LLD of 200 pCi/L. As is outlined below, this concentration is also a reasonable approximation of the background concentration of tritium in groundwater at the Station.

7.1 <u>HEALTH EFFECTS OF TRITIUM</u>

Tritium is a radionuclide that decays by emitting a low-energy beta particle that cannot penetrate deeply into tissue or travel far in air. A person's exposure to tritium is primarily through the ingestion of water (drinking water) or through ingestion of water-bearing food products. Inhalation of tritium requires the water to be in a vapor form (i.e., through evaporation or vaporization due to heating). Inhalation is a minor exposure route when compared to direct ingestion or drinking of tritiated water. Absorption of tritium through skin is possible, but tritium exposure is more limited here versus direct ingestion or drinking of tritiated water.

7.2 BACKGROUND CONCENTRATIONS OF TRITIUM

The purpose of the following paragraphs is to establish a background concentration through review of various media.

7.2.1 <u>GROUNDWATER</u>

Tritium is created in the environment from naturally occurring processes both cosmic and subterranean, as well as from anthropogenic (i.e., man-made) sources. In the upper atmosphere, "cosmogenic" tritium is produced from the bombardment of stable nuclides and combines with oxygen to form tritiated water, which will then enter the hydrologic cycle. Below ground, "lithogenic" tritium is produced by the bombardment of natural lithium isotopes 6Li (92.5% abundance) and 7Li (7.5% abundance) present in crystalline rocks by neutrons produced by the radioactive decay of uranium and thorium. Lithogenic production of tritium is usually negligible compared to other sources due to the limited abundance of lithium in rock. The lithogenic tritium is introduced directly to groundwater.

A major anthropogenic source of tritium comes from the former atmospheric testing of thermonuclear weapons. Levels of tritium in precipitation increased during the 1950s and early 1960s, coinciding with the release of significant amounts of tritium to the atmosphere during nuclear weapons testing prior to the signing of the Limited Test Ban Treaty in 1963, which prohibited atmospheric nuclear tests.

7.2.2 <u>PRECIPITATION DATA</u>

Precipitation samples are routinely collected at stations around the world for the analysis of tritium and other radionuclides. Two publicly available databases that provided tritium concentrations in precipitation are Global Network of Isotopes in Precipitation (GNIP) and USEPA's RadNet database. GNIP provides tritium precipitation concentration data for samples collected world wide from 1960 to 2006. RadNet provides tritium precipitation concentration data for samples collected at Stations through the U.S. from 1960 up to and including 2006.

Based on GNIP data for sample stations located in the U.S. Midwest including Chicago, St. Louis and Madison, Wisconsin, as well as Ottawa, Ontario, and data from the University of Chicago, tritium concentrations peaked around 1963. This peak, which approached 10,000 pCi/L for some stations, coincided with the atmospheric testing of

40

thermonuclear weapons. Tritium concentrations showed a sharp decline up until 1975 followed by a gradual decline since that time. Tritium concentrations in Midwest precipitation have typically been below 100 pCi/L since around 1980.

The RadNet database for several stations in the U.S. Midwest (Chicago, Columbus, Indianapolis, Lansing, Madison, Minneapolis, Painesville, Toledo, and Welsch) did not show the same trend, which can be attributed to pre-1995 data handling procedures. The pre-1995 data were rounded to the nearest 100 pCi/L, which dampened out variances in the data. The post-1995 RadNet data, where rounding was not applied, exhibit much more scatter, and similar to the GNIP data, the vast majority of the data were less than 100 pCi/L.

CRA constructed a non-parametric upper tolerance limit with a confidence of 95 percent and coverage of 95 percent based on RadNet data for USEPA Region 5 from 2004 to 2005. The resulting upper tolerance limit is 133 pCi/L, which indicates that CRA is 95 percent confident that 95 percent of the ambient precipitation concentration results are below 133 pCi/L. The statistical confidence, however, must be compared with the limitations of the underlying RadNet data, which does not include the minimum detectable concentration for a majority of the measurements. Some of the RadNet values below 200 pCi/L may be approximated. Nevertheless, these results show a background contribution for precipitation of up to 133 pCi/L.

7.2.3 SURFACE WATER DATA

Tritium concentrations are routinely measured in large surface water bodies, including Lake Michigan and the Mississippi River. Surface water data from the RadNet database for Illinois sampling stations include East Moline (Mississippi River), Moline (Mississippi River), Marseilles (Illinois River), Morris (Illinois River), Oregon (Rock River), and Zion (Lake Michigan). As is the case for the RadNet precipitation data, the pre-September 1995 Illinois surface water data was rounded to the nearest 100 pCi/L, creating a dampening of variances in the data. The post-1995 Illinois surface water data, similar to the post-1995 Midwest precipitation data, were less than 100 pCi/L, with the exception of the Moline (Mississippi River) station. Tritium surface water concentrations at this location varied between 100 and 800 pCi/L, which may reflect local natural or anthropogenic inputs.

The RadNet surface water data typically has a reported 'Combined Standard Uncertainty' of 35 to 50 pCi/L. According to USEPA, this corresponds to a \pm 70 to 100 pCi/L 95 percent confidence bound on each given measurement. Therefore,

the typical background data provided may be subject to measurement uncertainty of approximately \pm 70 to 100 pCi/L.

7.2.4 DRINKING WATER DATA

Tritium concentrations in drinking water from the RadNet database for three Illinois sampling stations (Chicago, Morris, and East Chicago) exhibit similar trends as the precipitation and surface water data. As with the precipitation and surface water data, the pre-1995 data have dampened out variances due to rounding the data to the nearest 100 pCi/L. The post-1995 results show tritium concentrations in samples of drinking water were less than 100 pCi/L.

7.2.5 EXPECTED TRITIUM BACKGROUND FOR THE STATION

As reported in the GNIP and RadNet databases, tritium concentrations in U.S. Midwest precipitation have typically been less than 100 pCi/L since 1980. Tritium concentrations reported in the RadNet database for Illinois surface water and groundwater, at least since 1995, have typically been less than 100 pCi/L. Based on USEPA Region 5's 2004 to 2005 RadNet precipitation data, 95 percent of the ambient concentrations of tritiated water in Illinois are expected to be less than 133 pCi/L, based on a 95 percent confidence limit. Tritium concentrations in surface water and drinking water at the Station are expected to be comparable or less based on historical data and trends.

Concentrations in groundwater similar to surface water and drinking water are expected to be less than precipitation values. The lower groundwater concentrations are related to the age of the groundwater as compared to the half-life of tritium. Deep aquifers in proximity to crystalline basement rock, however, can potentially show elevated concentrations of tritium due to lithogenic sources.

The Pre-Operational REMP report noted that lake water was sampled at five public water intakes. Generally, the gross beta radioactivity of Lake Michigan was less than 10 pCi/L. Typical values from throughout the Lake were between 3 to 6 pCi/L. Gross alpha radioactivity was typically less than 3 pCi/L (ComEd, 1971).

Tritium levels in Lake Michigan water were studied in the vicinity of Zion throughout 1970 (prior to the construction of the Station). The concentration of tritium in Lake Michigan near Zion ranged from approximately 311 ± 20 pCi/L to 374 ± 34 pCi/L and averaged 340 pCi/L. There was no statistical difference in average tritium levels among

the sample locations (eight sample locations from Kenosha to Waukegan) (ComEd, 1971).

As was noted in Section 7.0, the reporting limits for the tritium results are to an LLD of 200 pCi/L. This concentration also represents a reasonable representation of background groundwater quality, given the data for precipitation, surface water, and drinking water.

Based on the evaluation presented above, the background concentration for tritium at the Station is reasonably represented by the LLD of 200 pCi/L.

7.3 IDENTIFICATION OF POTENTIAL EXPOSURE PATHWAYS AND POTENTIAL RECEPTORS

There are two potential exposure pathways for tritium originating in or adjacent to the Station:

- potential groundwater migration off the Station property to private and public groundwater users; and
- potential groundwater migration off the Station property to Lake Michigan.

The following section provides an overview of each of these two potential exposure pathways for tritium in groundwater.

7.3.1 POTENTIAL GROUNDWATER MIGRATION TO DRINKING WATER USERS OFF THE STATION PROPERTY

Based upon the groundwater and surface water data presented in this HIR, groundwater flow is to the east towards Lake Michigan. The horizontal extent of the elevated concentrations of tritium in the direction of groundwater flow has been established, and is limited to the area around MW-ZN-01S. Tritium was not detected in the four temporary well installed near the shoreline above the LLD of 200 pCi/L. The tritium concentrations in groundwater samples collected from MW-ZN-01S ranged from less than LLD (most recently) to 586 ± 141 pCi/L (lower interval), 220 ± 123 pCi/L to 261 ± 124 pCi/L (upper interval), which are significantly less than the USEPA drinking water standard of 20,000 pCi/L. No tritium was detected above the LLD (200 pCi/L) in the other fourteen monitoring wells across the Station. In addition, there are no potable water supply wells downgradient of the Station or of monitoring well MW-ZN-01S.

The direction of groundwater flow is east towards Lake Michigan. Tritium was not detected at concentrations greater than the LLD (200 pCi/L) in the four temporary wells located downgradient of MW-ZN-01S. There is no potentially complete exposure pathway, and therefore there is no current risk of exposure associated with groundwater ingestion off the Station property.

7.3.2 POTENTIAL GROUNDWATER MIGRATION TO SURFACE WATER USERS

Based upon the groundwater and surface water data presented in this HIR, groundwater flow is to the east towards Lake Michigan. The horizontal extent of the elevated concentrations of tritium is limited to the area around MW-ZN-01S. The tritium concentrations detected in groundwater samples collected from MW-ZN-01S ranged from less than LLD (200 pCi/L) (most recently) to 586 ± 141 pCi/L (lower interval) and 220 ± 123 pCi/L to 261 ± 124 pCi/L (upper interval), which are significantly less than the USEPA drinking water standard of 20,000 pCi/L. No tritium was detected above the LLD (200 pCi/L) in the other 14 monitoring wells across the Station. In addition, no tritium was detected above the LLD (200 pCi/L) in the downgradient monitoring wells (MW-ZN-11S and TW-ZN-100 through TW-ZN-103) and the surface water sample collected from Lake Michigan at station SW-ZN-01, adjacent to the Station.

The Lake County Public Works Department obtains its water for the City of Zion from Lake Michigan by means of an intake pipe located approximately 1 mile to the north of the Station and extending 3,000 feet into the Lake. Since tritium was not detected at concentrations greater than LLD (200 pCi/L) in the four temporary wells and MW-ZN-11S (which are downgradient of MW-ZN-01S) or the Lake Michigan surface water sample, there is an incomplete exposure pathway. Therefore, there is no current risk of exposure associated with ingestion and recreational use off the Station property.

7.4 SUMMARY OF POTENTIAL TRITIUM EXPOSURE PATHWAYS

There are two potential groundwater exposure pathways for tritium originating at the Station:

- groundwater migration off the Station Property to private and public groundwater users (drinking water exposure); and
- groundwater migration off the Station Property to Lake Michigan (drinking water exposure and recreational exposure).

Based upon the groundwater and surface water data provided and referenced in this investigation, none of the potential receptors are at risk of exposure to concentrations of tritium in excess of USEPA drinking water standard (20,000 pCi/L).

7.5 OTHER RADIONUCLIDES

Target radionuclides were not detected at concentrations greater than their respective LLDs in the groundwater and surface water samples collected. Other non-targeted radionuclides were also included in the tables but excluded from discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station.

8.0 <u>CONCLUSIONS</u>

Based on all of the studies completed to date at the Zion Station, CRA concludes:

Groundwater Flow

- The water table is in the Upper Sand Unit. The depth to water ranged from 5 to 14 feet bgs.
- The shallow groundwater at the Station generally flows to the east towards Lake Michigan.
- Groundwater flow at the Station is affected by the construction (basements/foundations) of the Reactor, Turbine, and Auxiliary Buildings, which were constructed into the Silt-Clay Unit. These buildings are barriers to lateral flow.
- A sheet pile wall was initially installed to limit the infiltration of Lake Michigan water into the construction excavation for the main Station buildings. The wall currently influences groundwater flow on the east side of the Station by diverting the groundwater around the wall.

Groundwater Quality

- None of the detected tritium concentrations in the groundwater exceeded the USEPA drinking water standard of 20,000 pCi/L.
- Tritium was not detected at concentrations greater than the LLD (200 pCi/L) in 14 of the 15 monitoring wells collected as part of this investigation.
- Tritium was detected in groundwater samples collected from monitoring well MW-ZN-01S. These concentrations ranged from less than LLD (most recently) to $586 \pm 141 \text{ pCi/L}$ (lower interval) and $220 \pm 123 \text{ pCi/L}$ to $261 \pm 124 \text{ pCi/L}$ (upper interval).
- Gamma-emitting radionuclides associated with licensed plant operations were not detected at concentrations greater than their respective LLDs in any of the sample collected as part of this investigation.
- Strontium-89/90 was not detected at concentrations greater than the LLD of 2.0 pCi/L in any sample collected as part of this investigation.
- Tritium is not migrating off the Station property.

Surface Water Quality

- Tritium was not detected in the surface water sample at a concentration greater than the USEPA drinking water standard of 20,000 pCi/L.
- Tritium was not detected in the surface water sample at a concentration greater than the LLD of 200 pCi/L.
- Gamma-emitting radionuclides associated with licensed plant operations were not detected at concentrations greater than their LLDs in the sample collected as part of this investigation.
- Strontium-89/90 was not detected at concentrations greater than the LLD of 2.0 pCi/L in the sample collected as part of this investigation.

AFE-Zion-1: Main Complex Area, AFE-Zion-3: Unit 2 (Northern) AST Area, and AFE-Zion-4: Wastewater Treatment Plant Area

- Gamma-emitting radionuclides associated with licensed plant operations were not detected at concentrations greater than their respective LLDs in any of the groundwater samples collected from the monitoring wells in the vicinity of AFEs Zion-1, 3, and 4.
- Strontium-89/90 was not detected at concentrations greater than the LLD of 2.0 pCi/L in any of the groundwater samples collected from the monitoring wells in the vicinity of AFEs-Zion-1, 3, and 4.
- Tritium was detected in groundwater samples collected from monitoring well MW-ZN-01S. These concentrations ranged from less than LLD (most recently) to 586 ± 141 pCi/L (lower interval) and 220 ± 123 pCi/L to 261 ± 124 pCi/L (upper interval). The tritium is localized to the area in the vicinity of monitoring well MW-ZN-01S. No tritium was detected in the four temporary wells and MW-ZN-11S, located downgradient of monitoring well MW-ZN-01S. This well is located in close proximity to AFEs Zion 1, 3, and 4. The source of tritium in this location is likely attributable to historical releases in this area. However, the most recent sample results are within the range of background concentrations.

AFE-Zion-2: Unit 1 (Southern) Aboveground Storage Tank (AST) Area

• Gamma-emitting radionuclides associated with licensed plant operations were not detected at concentrations greater than their respective LLDs in any of the groundwater samples collected from the monitoring wells in the vicinity of AFE-Zion-2.

- Strontium-89/90 was not detected at concentrations greater than the LLD of 2.0 pCi/L in any of the groundwater samples collected from the monitoring wells in the vicinity of AFE-Zion-2.
- Tritium was not detected at concentrations greater than the LLD of 200 pCi/L in any of the groundwater samples collected from the monitoring wells near AFE-Zion-2.
- There have been no impacts to groundwater from AFE-Zion-2.

Potential Receptors

Based on the results of this investigation⁴, there is no current risk from exposure to radionuclides associated with licensed plant operations through any of the identified potential exposure pathways.

General Conclusions

- Based on the results of this investigation, tritium is not migrating off the Station property at detectable concentrations; and
- Based on the results of this investigation, there are no known active releases into the groundwater at the Station.

⁴ Using the LLDs specified in this HIR.

9.0 <u>RECOMMENDATIONS</u>

The following presents CRA's recommendations for proposed activities to be completed at the Station.

9.1 DATA GAPS

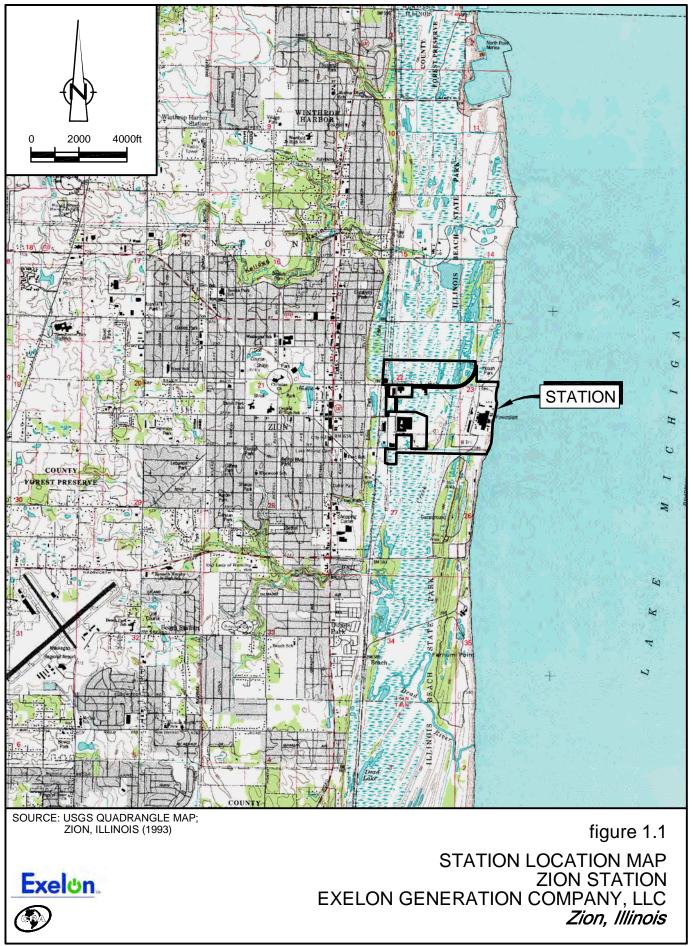
Based on the results of this hydrogeologic investigation, there are no data gaps remaining to support CRA's conclusions regarding the characterization of the groundwater regime and potential impacts from radionuclides at the Station.

9.2 <u>GROUNDWATER MONITORING</u>

Based upon the information collected to date, CRA recommends that Exelon conduct periodic monitoring of selected sample locations.

Temporary Well Abandonment

Four temporary wells were installed on the beach between the sheet pile wall and the normal high water mark. These temporary wells are not expected to survive the winter due to storms and ice buildup and should be properly abandoned before the onset of cold weather.


10.0 <u>REFERENCES</u>

- ATSDR, 2000. Public Health Assessment, Asbestos Contamination at Illinois Beach State Park, Illinois Beach Park, Zion, Lake County, Illinois, EPA Facility Id: ILD984840140, Illinois Department of Public Health and the Agency for Toxic Substances and Disease Registry.
- Bannon-Nilles, 2003. Phyllis L. Bannon-Nilles, A Park in the Making: the History of the Development of Illinois Beach State Park, Open File Series 2003-8, Illinois State Geological Survey, Champaign, Illinois, 2003.
- Berg and Kempton, 1988. Richard C. Berg and John P. Kempton, Stack-Unit Mapping of Geologic Materials in Illinois to a Depth of 15 Meters, Circular 542, Illinois State Geological Survey, Champaign, Illinois.
- Chrzastowski and Frankie 2000. Michael J. Chrzastowski and Wayne T. Frankie, Guide to the Geology of Illinois Beach State Park and the Zion Beach-Ridge Plain, Lake County, Illinois, Illinois State Geological Survey, 2000.
- City of Zion, 2004. 04-O-9, An Ordinance Amending Sections 94-47 and 94-48 of the City of Zion Code Relative to the Provision of Water Service, City of Zion, Lake County, Illinois, passed on March 2, 2004.
- City of Zion, 2006. Annual Water Quality Report, Water Testing Performed in 2005, City of Zion, Zion Public Works Department, June 23, 2006.
- ComEd, 1967. Drawing B-1A, Location of Borings, Zion Station, Commonwealth Edison Co., Chicago, Illinois.
- ComEd, 1971. Zion Station Final Safety Analysis Report, Amendment 17, Commonwealth Edison Company, December 1971.
- ComEd, 1999. Zion Station Historical Site Assessment, ComEd Decommissioning Projects & Zion Station.
- ComEd, November 1968. Drawings B-10 through B-14, Log of Borings, Zion Station, Commonwealth Edison Co., Chicago, Illinois.
- CRA, May 2006. Hydrogeologic Investigation Work Plan, Fleetwide Tritium Assessment, Zion Generating Station, Zion, Illinois, prepared for Exelon Generation Company, LLC by Conestoga-Rovers & Associates, Inc.
- Dames and Moore, 1967. Report: Foundation Investigation, Proposed Nuclear Power Plant, Zion, Illinois (Rough Draft), prepared for the Commonwealth Edison Company by Dames and Moore, October 9, 1967.
- Environmental Inc., 2005. Final Monthly Progress Report to Exelon Nuclear, Radiological Environmental Monitoring Program (REMP), for Zion Station, Zion, Illinois, Environmental Incorporated Midwest Laboratory, Northbrook, Illinois.

- Exelon, 2005. Quad Cities Nuclear Power Station, 2004 Annual Radiological Environmental Operating Report.
- Exelon, 2006. Offsite Dose Calculation Manual, Revision 15, Dockets 50-295 and 50-304 (Zion), Exelon Nuclear, February 2006.
- Exelon, October 2004. Zion Station Defueled Safety Analysis Report (DSAR) and DSAR Update, Revision 3, Exelon Generation, Warrenville, Illinois.
- Foote, 1982. Gary Ray Foote, Fracture Analysis in Northeastern Illinois and Northern Indiana, University of Illinois, Urbana, Illinois, 1982.
- Fraser and Hester 1974. Gordon S. Fraser and Norman C. Hester, Sediment Distribution in a Beach Ridge Complex and its Application to Artificial Beach Replenishment, Environmental Geology Notes #67, Illinois State Geological Survey, 1974.
- Hansel, 1983. Ardith K. Hansel, The Wadsworth Till Member of Illinois and the Equivalent Oak Creek Formation of Wisconsin, in Geoscience Wisconsin, Vol. 7, July 1983.
- International Joint Commission, August 1997. 1995-97 Priorities and Progress Under the Great Lakes Water Quality Agreement, <u>http://www.ijc.org/php/publications/html/pr9597.html</u>, International Joint Commission.
- Larson and Schaetzl, 2001. Grahame Larson and Randall Schaetzl, Origin and Evolution of the Great Lakes, in the Journal of Great Lakes Research, Vol. 27, No. 4, pp. 518-546, 2001.
- Nicholas and Healy, 1988. J.R. Nicholas and R.W. Healy, Tritium Migration From a Low-Level Radioactive-Waste Disposal Site Near Chicago, Illinois, USGS Water Supply Paper 2333, U.S. Geological Survey, Denver Colorado, 1988.
- NOAA, June 2006. NOAA Tides & Currents: Great Lakes Water Level Data, <u>http://tidesandcurrents.noaa.gov/</u>, U.S. National Oceanic and Atmospheric Administration, Center for Operational Oceanographic Products and Services (CO-OPS), Silver Spring, Maryland.
- NRC, 2006. Facility Information Finder, Operating Nuclear Power Reactors, <u>http://www.nrc.gov/info-finder.html</u>, U.S. Nuclear Regulatory Commission, accessed June 29, 2006.
- NRCS, June 2005. Soil Survey of Lake County, Illinois, U.S. Department of Agriculture, Natural Resources Conservation Service.
- Puls and Barcelona, April 1996. Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures, EPA Ground Water Issue, EPA/540/S-95/504, R.S. Kerr Environmental Research Center, Ada, Oklahoma.

045136 (22) Zion Station

- SEWRPC and WGNHS, 2002. Groundwater Resources of Southeastern Wisconsin, Technical Report No. 37, Southeastern Wisconsin Regional Planning Commission and Wisconsin Geological and Natural History Survey, June 2002.
- Underwood et al., 2003. Chad A. Underwood, Michele L. Cooke, J.A. Simo and Maureen A. Muldoon, Stratigraphic Controls on Vertical Fracture Patterns in Silurian Dolomite, Northeastern Wisconsin, AAPG Bulletin v. 87, no. 1, American Association of Petroleum Geologists, January 2003.
- University of Wisconsin, 1970. Pleistocene Geology of Southern Wisconsin, Information Circular Number 15, Geological and Natural History Survey, University of Wisconsin, 1970.
- US AEC, 1972. Final Environmental Statement Related to Operation of Zion Nuclear Power Station Units 1 and 2, Commonwealth Edison Company, Docket Nos. 50-295 and 50-304, U.S. Atomic Energy Commission, December 1972.
- USEPA and Environment Canada, 1995. "The Great Lakes: An Environmental Atlas and Resource Book", Chicago, Illinois.
- USEPA, 1996. Soil Screening Guidance: Technical Background Document, EPA/540/R-95/128, Office of Solid Waste and Emergency Response, United States Environmental Protection Agency, Washington, DC.
- USEPA, May 1996. "Soil Screening Guidance Technical Background Document", Office of Solid Waste and Emergency Response, Washington, DC EPA/540/R95/128.
- USGS, 1996. Robert T. Kay, Richard F. Duwelius, Timothy A. Brown, Frederick A. Micke, and Carol A. Witt-Smith, Geohydrology, Water Levels and Directions of Flow, and Occurrence of Light-Nonaqueous-Phase Liquids on Ground Water in Northwestern Indiana and the Lake Calumet Area of Northeastern Illinois, U.S. Geological Survey, De Kalb, Illinois.
- Visocky et al., 1985. Adrian P. Visocky, Marvin G. Sherrill, and Keros Cartwright, Geology, Hydrology, and Water Quality of the Cambrian and Ordovlclan Systems In Northern Illinois, Cooperative Groundwater Report 10, Illinois State Geological Survey, Illinois State Water Survey, Champaign, Illinois.
- Willman, 1971. H.B. Willman, Summary of the Geology of the Chicago Area, Circular 460, Illinois State Geological Survey, Urbana, Illinois.
- Zeizel et al., 1962. Arthur J. Zeizel, William C. Walton, Robert T. Sasman, and Thomas A. Prickett, Ground-Water Resources of DuPage County, Illinois, Cooperative Report No. 2, Illinois State Water Survey, Illinois State Geological Survey, Urbana, Illinois, 1962.

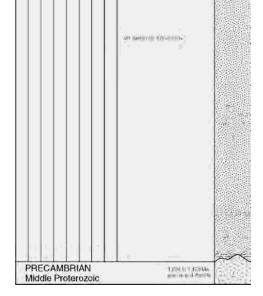
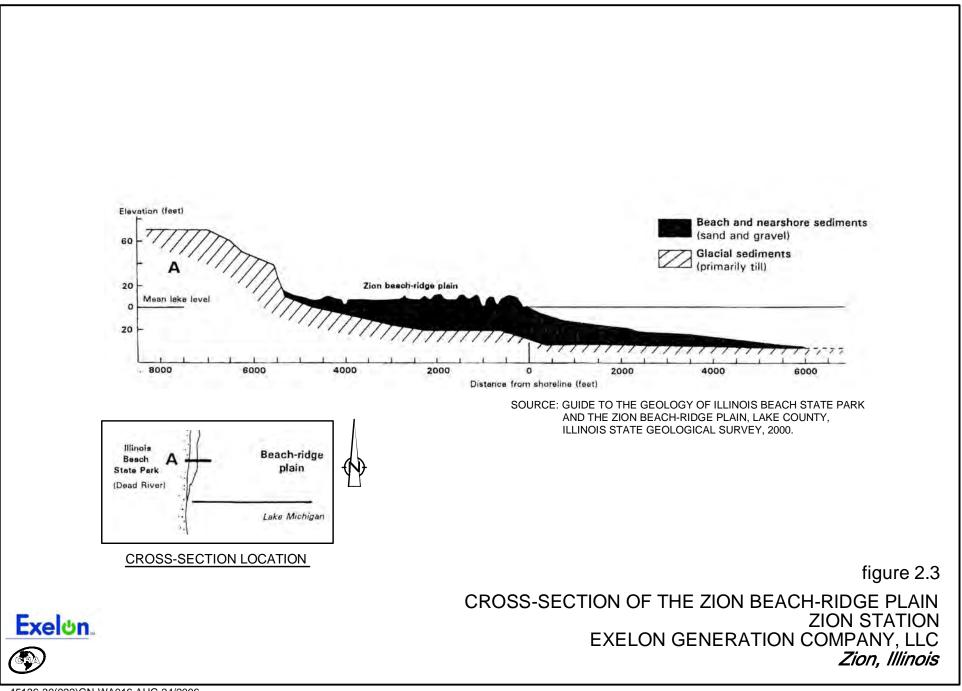

45136-30(022)GN-WA001 AUG 24/2006

FIGURE 1.2 STATION BOUNDARIES AND FEATURES

45136-30(022)GN-WA024 SEP 07/2006 REVISION 1

ORDOVICIAN SILURIAN SILURIAN	LUDLOW .			CANIGAN				12	が行いた
	100			?		5	(Etronia Del (4.390)	いた
	11		SILURIAN	2		Hippecanon II			國
	WENI OCK		SILU	NIAGARAN		Tupper	Ŀ.	- 	
	WEN		1	2			1	Sayun Ruin Del (r. 201	777 777 777
	1						1	Joner Guktretz Kankinike Edi (0-53	L.
	NERT	U.M. U.M. SUER	٦	LALEXAMORIAN	B HIGMORDAN		laquestats	Nearthold is	P
	LLAPAGE							(ration at loving)	Ê
	L						Maqu	PE Alvanese E.S. Gald [®] Waltimen VPE So (0)	
	ABABA		1	NUM	NAV D	c.	ľ.	Some St 0-(18)	0000
				MOLIVINSIAM CINCENNATION	ED.94MN	1 Ippearoot	Galares Trentian	Digitize For (44)	-
			ORDOVICIAN		-			Wae Low Print (1907)	$\frac{I_{1}I_{1}I_{2}I_{1}I_{2}I_{2}I_{2}I_{2}I_{2}I_{2}I_{2}I_{2$
	C000000				UNAME DOMN			Saletine 8-05	理
OR								Contending 157 Decembring 159 All All States	Lucy
)a -					-WHREE.		Ancell Plettavite	Deproduction of the second sec	- COURANC
								Gien (Delcar Film) (B)	
								Minter Fra 10 -311	101
								Percentration FM 0.801 Joint Doi 10.901 Demonstre 0.75	J
				VANCOUNT -					
		100						ST Finite Str. 5-5000	
		LAWIER						14	~
	3	L		L		L	neit	Ness Mor	A
		THERAGOO - A - AN AND -	I I					STIRODIEESE O EOU	
								n H	(+7=) fundari
	Ц,		Ľ)				9 du Cl	New Followerd Sig # 150.	
						1	Prairie du Chien		扫
								Decent Del 1992	14
								Gunter Es 0-28-	-
CAMBHIAN	11		H	NAXANA STATE	DIRESPACE AND TREMESALEAUNIN	Sauk.		Emimerical Oct -0.000	
	()(E8 FB							Environ france	13/1
									14
			CAMBRIAN					FRANCISCO PERSONNEL	
								Classer 20	
								ALONIA 58 59-100	
								G ((50)) (6 () (0 () () (
								Stavled Sat	
								Levendo Politica de Levendo (De	1911 - J
								Languado Da	1797
								Ennius/Sc	
							1		
									6
CAMBRIAN								4	
									1.78
				1	1	1 C C			1003161363

SOURCE: ILLINOIS STATE GEOLOGICAL SURVEY, INTRODUCTION TO 3-D VISUALIZATION OF BEDROCK IN LAKE COUNTY, ILLINOIS


figure 2.2

REGIONAL STRATIGRAPHIC CROSS-SECTION ZION STATION EXELON GENERATION COMPANY, LLC *Zion, Illinois*

45136-30(022)GN-WA007 AUG 24/2006

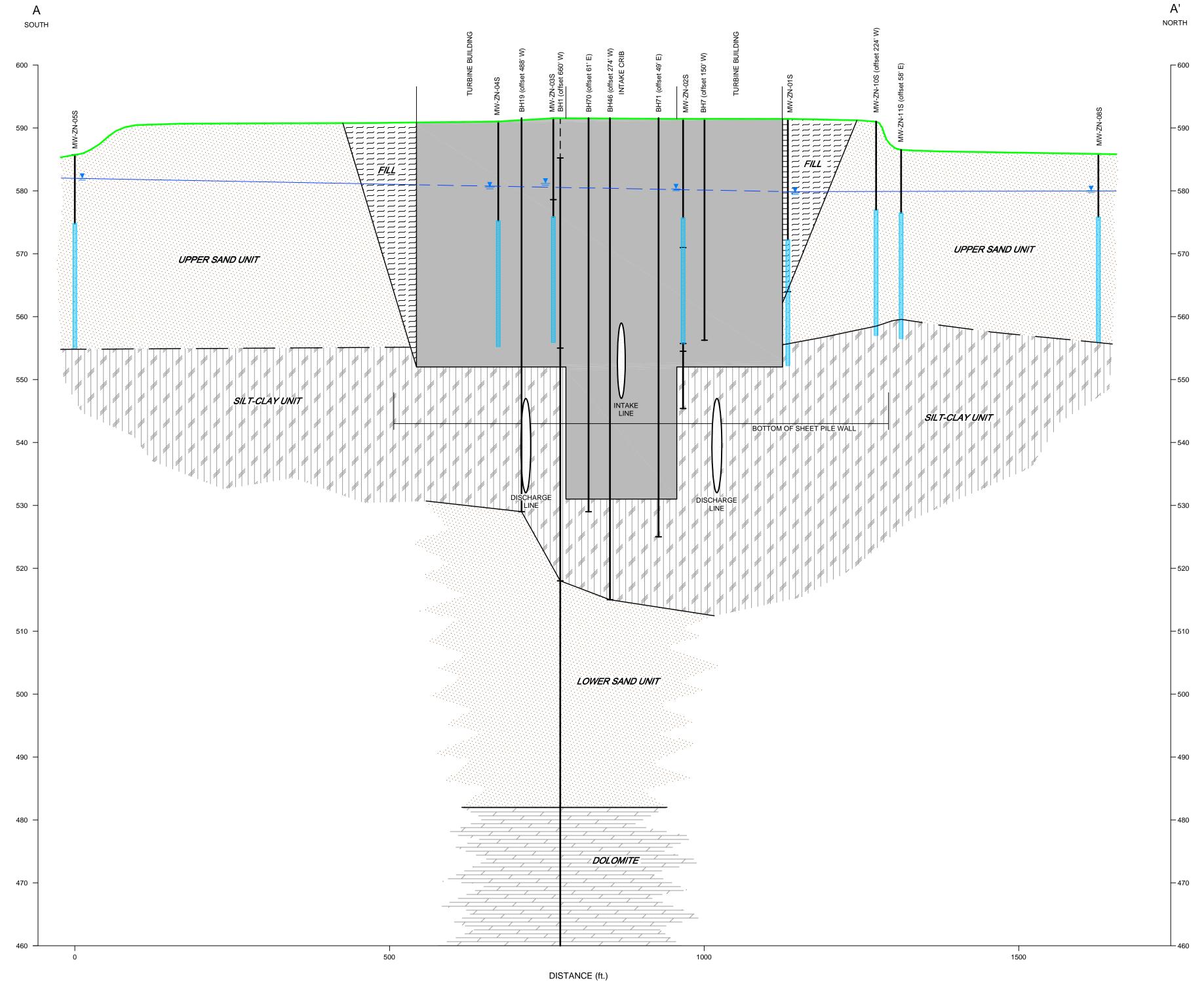

45136-30(022)GN-WA016 AUG 24/2006

FIGURE 2.4 PRIVATE/PUBLIC WATER SUPPLY WELL LOCATIONS

FIGURE 3.1 AREAS FOR FURTHER EVALUATION

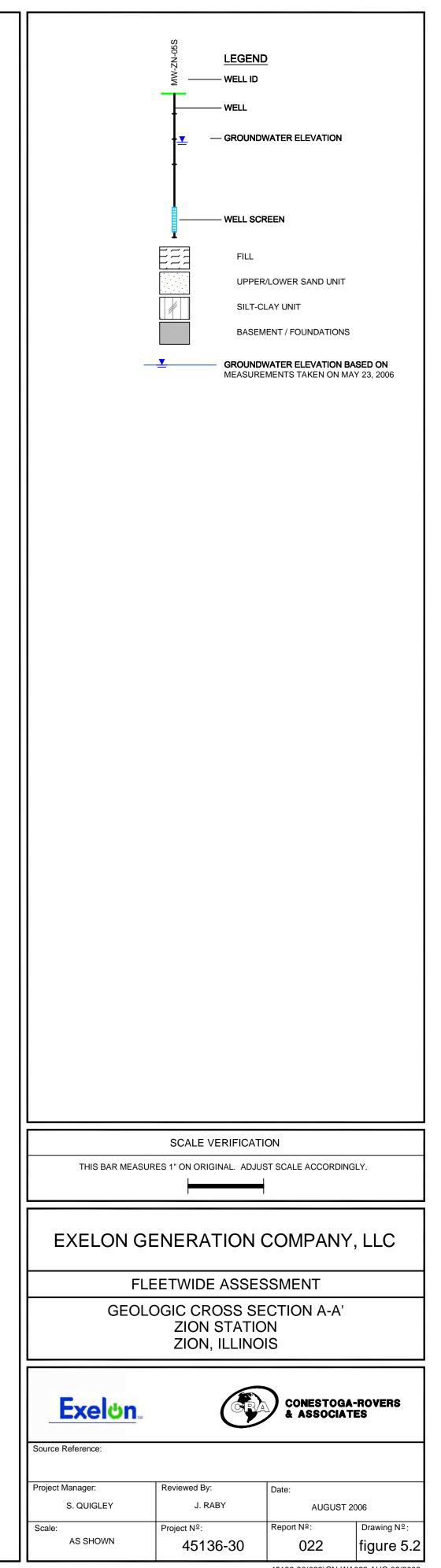
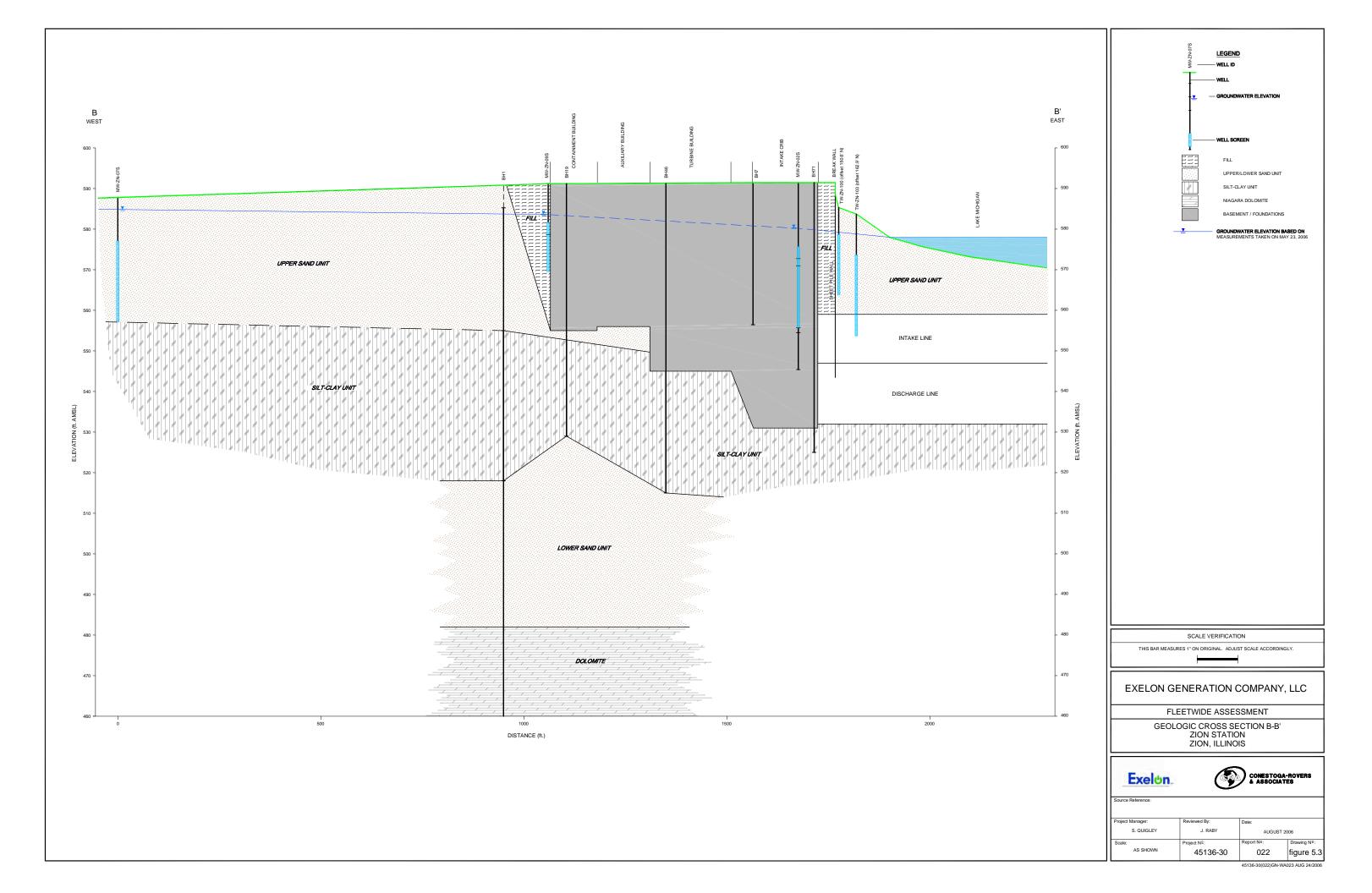

FIGURE 4.1 GROUNDWATER AND SURFACE WATER MONITORING LOCATIONS

FIGURE 5.1 STATION GEOLOGIC CROSS–SECTION LOCATION MAP



VATION (ft. AMSL)

VATION (ft. AMSL)

45136-30(022)GN-WA023 AUG 09/2006

FIGURE 5.4 POTENTIOMETRIC SURFACE CONTOURS . MAY 2006 . SHALLOW GROUNDWATER ZONE

FIGURE 5.5 POTENTIOMETRIC SURFACE CONTOURS . JULY 2006 . SHALLOW GROUNDWATER ZONE

FIGURE 5.6 TRITIUM CONCENTRATIONS . GROUNDWATER AND SURFACE WATER

FIGURE 5.7 RADIONUCLIDE CONCENTRATIONS . GROUNDWATER AND SURFACE WATER

SUMMARY OF MONITORING WELL INSTALLATION DETAILS FLEETWIDE ASSESSMENT ZION STATION ZION, ILLINOIS

Well			Surface	Reference	Installation	Boring	Screened Interval				Well	Well
Location	X-coord.	Y-coord.	Elevation	Elevation	Date	Total Depth	Тор	Bottom	Тор	Bottom	Diameter	Construction
	(Site-Specific	Coordinates)	(NGVD)	(NGVD)		(ft bgs)	(ft l	ngs)	(ft NC	GVD)	(inches)	
MW-ZN-01S	1424319.58	15418801.80	591.43	594.10	5/1/2006	39	19	39	572.43	552.43	2	2-inch PVC Screen
MW-ZN-02S	1424278.62	15418640.44	591.21	593.78	5/2/2006	45	15	35	576.21	556.21	2	2-inch PVC Screen
MW-ZN-03S	1424216.30	15418443.87	591.54	594.02	5/2/2006	35.3	15.3	35.3	576.24	556.24	2	2-inch PVC Screen
MW-ZN-04S	1424212.26	15418356.60	591.01	593.82	5/3/2006	35	15	35	576.01	556.01	2	2-inch PVC Screen
MW-ZN-05S	1423805.72	15417820.38	585.72	588.64	5/4/2006	30	10	30	575.72	555.72	2	2-inch PVC Screen
MW-ZN-06S	1422629.16	15418474.29	589.78	592.66	5/5/2006	30	10	30	579.78	559.78	2	2-inch PVC Screen
MW-ZN-07S	1422858.29	15419254.58	587.08	589.82	5/6/2006	30	10	30	577.08	557.08	2	2-inch PVC Screen
MW-ZN-08S	1424335.21	15419294.95	585.85	588.73	5/5/2006	30	10	30	575.85	555.85	2	2-inch PVC Screen
MW-ZN-09S	1423689.57	15418596.56	591.18	593.84	5/5/2006	19	9	19	582.18	572.18	2	2-inch PVC Screen
MW-ZN-10S	1424100.31	15418949.08	591.00	593.70	7/13/2006	34	14	34	577.00	557.00	2	2-inch PVC Screen
MW-ZN-11S	1424383.37	15418979.86	586.50	589.50	7/14/2006	30	10	30	576.50	556.50	2	2-inch PVC Screen
TW-ZN-100	1424390.02	15418713.68	585.30	590.00	7/7/2006	22	6.5	21.5	578.80	563.80	1	1-inch PVC Screen
TW-ZN-101	1424414.23	15418779.65	584.30	588.70	7/7/2006	19	4	19	580.30	565.30	1	1-inch PVC Screen
TW-ZN-102	1424432.51	15418865.75	584.30	588.60	7/7/2006	21	6	21	578.30	563.30	1	1-inch PVC Screen
TW-ZN-103	1424431.73	15418705.47	583.70	587.50	7/7/2006	30	10	30	573.70	553.70	1	1-inch PVC Screen

Notes:

NGVD - National Geodetic Vertical datum

.

ft bgs - feet below ground surface

PVC - polyvinyl chloride

Sample Location	Date	Well Volume (gallons)	Gallons Purged	Water Level	pH (Std. Units)	Conductivity (μS/cm) ¹	Temperature (°C)	Turbidity (ntu) ²	Observations	Ритр Туре
MW-ZN-01S	5/3/2006	5.0	5	13.3	NA	NA	NA	NA	brown, turbid, silty	Peristaltic
			10		7.46	757	17.0	> 1000	brown, turbid, silty	
			15		NA	NA	NA	NA	brown, turbid, silty	
			20		7.38	699	17.0	> 1000	brown, turbid, silty	
			25		7.20	662	15.7	> 1000	brown, turbid, silty	
			30		7.31	640	16.1	> 1000	brown, turbid, silty	
			35		7.33	633	17.1	> 1000	brown, turbid, silty	
			40			622	16.5	> 1000	brown, turbid, silty	
			45		7.48	607	19.2	> 1000	brown, turbid, silty	
			50		7.43	599	16.6	> 1000	brown, turbid, silty	
			55		7.41	591	16.5	340	brown, turbid, silty	
			60		7.41	593	16.3	164	brown, turbid, silty	
			65		7.43	593	16.3	164	brown, turbid, silty	
			70		7.44	580	17.4	99.6	brown, turbid, silty	
			75		7.45	589	15.9	95.3	brown, turbid, silty	
			80		7.43	586	16.1	82	brown, turbid, silty	
MW-ZN-02S	5/4/2006	3.5	4	13.6	7.97	653	12.5	> 1000	silty, gray	Peristaltic
			8		7.80	614	14.6	> 1000	silty, gray	
			12		7.74	605	14.5	> 1000	silty, gray	
			18		7.83	595	14	> 1000	silty, gray	
			22		7.63	582	13.3	> 1000	silty, gray	
			26		7.64	577	13	> 1000	silty, gray	
			30		7.62	199.5	12.6	> 1000	silty, gray	
			34		7.58	95.6	13.3	> 1000	silty, gray	
			40		7.57	196.3	12.6	> 1000	silty, gray	
			44		7.61	195.1	12.9	896	getting less cloudy	
			48		7.60	96.3	12.8	702	getting less cloudy	

Sample Location	Date	Well Volume (gallons)	Gallons Purged	Water Level	pH (Std. Units)	Conductivity (μS/cm) ¹	Temperature (°C)	Turbidity (ntu) ²	Observations	Pump Type
MW-ZN-03S	5/5/2006	3.72	4	13.12	7.44	666	11.3	> 1000	cloudy, brown	Peristaltic
	0, 0, 2000	0112	8	10112	7.41	628	11.3	> 1000	cloudy, brown	1 of ibitalitie
			12		7.46	608	10.9	> 1000	cloudy, brown	
			16		7.43	604	10.5	> 1000	cloudy, brown	
			20		7.47	200	10.7	> 1000	cloudy, brown	
			24		7.43	192.2	10.4	> 1000	cloudy, brown	
			28		7.43	188.8	10.7	> 1000	cloudy, brown	
			32		7.40	188.0	10.9	834	cloudy, brown	
			36		7.42	186.1	10.6	838	cloudy, brown	
			40		7.40	181.3	10.5	> 1000	cloudy, brown	
			44		7.40	181.7	10.9	> 1000	cloudy, brown	
			48		7.40	178.9	10.4	> 1000	cloudy, brown	
			52		7.41	177.0	10.4	1000	cloudy, brown	
MW-ZN-04S	5/5/2006		8	14.27	7.24	188.9	12.9	> 1000	cloudy, brown	Peristaltic
			12		7.50	185.5	12.6	> 1000	cloudy, brown	
			16		7.51	553	12.8	> 1000	cloudy, brown	
			20		7.50	179.0	12.8	> 1000	cloudy, brown	
			24		7.49	177.6	12.8	689	cloudy, brown	
			28		7.50	176.5	12.8	508	cloudy, brown	
			32		7.48	175.2	12.8	312	slightly cloudy, brown	
			36		7.48	176.0	12.6	267	slightly cloudy, brown	
			40		7.47	173.4	12.6	180	slightly cloudy, brown	
			44		7.47	173.4	12.6	114	slightly cloudy, brown	
			48		7.46	172.2	12.6	85.1	slightly cloudy, brown	
			52		7.46	171.7	12.6	52.8	slightly cloudy, brown	

Sample Location	Date	Well Volume (gallons)	Gallons Purged	Water Level	pH (Std. Units)	Conductivity (µS/cm) ¹	Temperature (°C)	Turbidity (ntu) ²	Observations	Ритр Туре
MW-ZN-05S	5/8/2006	4.1	5	25.63	7.28	140.0	12.4	> 1000	cloudy, brown	Peristaltic
			10		7.21	141.5	12.6	879	cloudy, brown	
			15		7.22	142.3	12.8	> 1000	cloudy, brown	
			20		7.25	140.7	12.5	588.0	cloudy, brown	
			25		7.25	142.2	12.5	228.00	slightly cloudy, brown	
			30		7.25	144.3	12.3	482.00	slightly cloudy, brown	
			35		7.22	147.1	12.5	60.00	clear	
			40		7.24	145.2	12.6	32.6	clear	
			45		7.23	144.5	12.7	19.7	clear	
			50		7.23	144.6	12.7	16	clear	
			55		7.25	144.0	12.7	16.2	clear	
			60		7.25	144.0	12.6	10.2	clear	
MW-ZN-06S	5/8/2006	3.52	3.5	3.52	7.12	135.2	12.8	> 1000	silty, gray	Peristaltic
			7.0		7.09	133.7	10.3	> 1000	silty, gray	
			10.5		7.08	137.6	11.0	> 1000	silty, gray	
			14.0		7.05	137.6	10.3	> 1000	silty, gray	
			17.5		7.04	139.0	10.7	> 1000	silty, gray	
			21.0		7.35	122.5	10.8	1000	silty, gray	
			24.5		7.24	124.7	10.5	232	clearer	
			28.0		7.13	126.8	10.0	> 1000	clear	
			31.5		7.07	128.3	10.3	520	clear	
			35.0		7.08	128.5	10.2	148	silty	
			38.5		7.03	128.8	10.0	> 1000	silty	
			41.0		6.99	132.0	10.5	458	clear	
			44.5		7.10	129.1	10.4	143	clear	
			48		7.01	131.4	10.5	137.8	clear	

Sample Location	Date	Well Volume (gallons)	Gallons Purged	Water Level	pH (Std. Units)	Conductivity (µS/cm) ¹	Temperature (°C)	Turbidity (ntu) ²	Observations	Ритр Туре
MW-ZN-07S	5/8/2006	4.3	4.3	5.20	7.15	139.5	10.5	> 1000	silty, gray	Peristaltic
			8.6		7.11	141.3	10.7	> 1000	silty, gray	
			12.9		7.11	137.6	10.8	> 1000	silty, gray	
			16.2		7.13	136.1	10.6	> 1000	silty, gray	
			20.5		7.13	139.0	10.7	> 1000	silty, gray	
			24.8		7.05	138.6	10.3	> 1000	silty, gray	
			29.1		7.05	137.6	10.5	872	silty, gray	
			33.4		7.07	138.2	10.3	569	silty, gray	
			37.7		7.07	113.7	10.7	> 1000	silty, gray	
			42.0		7.06	140.1	10.4	520	silty, gray	
			45.3		7.06	138.5	10.8	213	silty, gray	
			49.6		7.04	139.3	10.4	89.7	silty, gray	
MW-ZN-08S	5/8/2006	3.86	3.9	8.17	7.45	143.6	13.0	> 1000	NA	Peristaltic
			9.8		7.47	136.8	12.8	1000	NA	
			11.7		7.40	138.5	12.9	628	NA	
			15.6		7.42	139.4	13.3	> 1000	NA	
			19.5		7.42	138.4	12.6	898	NA	
			23.4		7.41	138.1	12.6	898	NA	
			27.3		7.41	141.5	13.3	898	NA	
			31.2		7.42	138.1	13.0	387	NA	
			35.1		7.33	138.1	12.6	198	NA	
			39.0		7.41	138.4	13.0	101	NA	
			42.9		7.39	139.3	12.4	75.2	NA	
			46.8		7.42	138.7	12.6	50.9	NA	
MW-ZN-09S	5/8/2006	1.58	2	9.89	8.97	158.7	11.9	> 1000	cloudy, gray	Peristaltic
			4		9.13	159.7	11.7	> 1000	septic odor	
			6		9.18	158.6	11.7	> 1000	septic odor	
			8		9.15	156.3	11.7	484	septic odor	
			10		9.13	155.3	11.7	245	slightly cloudy, gray	
			12		9.00	152.1	11.8	> 1000	slightly cloudy, gray	
			14		9.10	151.1	11.8	277	slightly cloudy, gray	
			16		9.07	150.2	11.8	44.7	slightly cloudy, gray	
			18		9.09	148.6	11.8	13.10	clear, septic odor	
			20		9.09	147.7	11.7	9.93	clear, septic odor	
			22		9.04	147.2	11.7	8.67	clear, septic odor	

SUMMARY OF MONITORING WELL DEVELOPMENT PARAMATERS FLEETWIDE ASSESSMENT ZION STATION ZION, ILLINOIS

Sample			Gallons	Water						
Location	Date	Well Volume	Purged	Level	pН	Conductivity	Temperature	Turbidity	Observations	Ритр Туре
		(gallons)	-		(Std. Units)	(µS/cm) ¹	(°C)	(ntu) ²		
MW-ZN-10S	7/14/2006	4	90*	13.58	6.89	913.0	16.7	151.00	cloudy	Peristaltic
			94		7.18	776.0	15.0	132.00	cloudy	
			98		7.26	738.0	14.0	281.00	cloudy	
			102		7.34	748.0	13.8	112	clear	
			106		7.37	738.0	13.8	75.5	clear	
MW-ZN-11S	7/14/2006	3	3	10.5	7.47	863.0	17.3	>1000	cloudy, brown	Peristaltic
			6		7.31	842.0	16.8	>1000	cloudy, brown	
			9		7.35	839.0	16.1	>1000	cloudy, brown	
			12		7.36	832.0	16.2	243	clear	
			15		7.31	828.0	16.0	162	clear	
			18		7.31	806.0	16.0	88.80	clear	
			24		7.28	654.0	16.7	>1000	clear	
			27		7.28	827.0	15.9	258.00	clear	
			30		7.33	503.0	16.7	83.7	clear	
			33		7.33	791.0	16.4	52	clear	
			36		7.27	802	16.2	105	clear	
			45		7.27	799	15.6	50	clear	
			51		7.36	792	15.6	23.6	clear	
			56		7.27	798	15.7	22	clear	

Notes:

 1 µS/cm - microSiemens per centimeter 2 ntu - nephelometric turbidity units

purged 90 gallons from well before taking readings

SUMMARY OF GROUNDWATER AND SURFACE WATER ELEVATIONS FLEETWIDE ASSESSMENT ZION STATION ZION, ILLINOIS

Sample Location Reference Elevation (NGVD) Depth to Water (ft Below Reference) Groundwater Elevation (NGVD) MW-ZN-01S 594.10 14.41 579.69 MW-ZN-02S 593.78 13.48 580.30 MW-ZN-03S 594.02 12.84 581.18 MW-ZN-04S 593.82 13.23 580.59 MW-ZN-05S 588.64 6.67 581.97 MW-ZN-06S 592.66 7.71 584.95 MW-ZN-07S 589.82 5.02 584.80 MW-ZN-08S 588.73 8.73 580.00 MW-ZN-09S 593.84 9.99 583.85 Lake Michigan (average) 577.97 - - Sample Reference Location Depth to Water Groundwater MW-ZN-01S 594.10 14.80 579.30 MW-ZN-02S 593.78 13.76 580.00 MW-ZN-02S 593.78 13.23 580.59 MW-ZN-02S 593.78 13.75 580.00 MW-ZN-02S 593.82 <td< th=""><th></th><th></th><th>May 23,</th><th>2006</th></td<>			May 23,	2006
(NGVD) Reference) (NGVD) MW-ZN-01S 594.10 14.41 579.69 MW-ZN-02S 593.78 13.48 580.30 MW-ZN-03S 594.02 12.84 581.18 MW-ZN-04S 593.82 13.23 580.59 MW-ZN-04S 593.82 13.23 580.59 MW-ZN-05S 588.64 6.67 581.97 MW-ZN-06S 592.66 7.71 584.95 MW-ZN-06S 593.84 9.09 583.85 Lake Michigan (average) 577.97 - - Sample Reference Depth to Water Groundwater (NGVD) FBelow Elevation (NGVD) MW-ZN-01S 594.10 14.80 579.30 MW-ZN-02S 593.78 13.78 580.00 MW-ZN-03S 594.02 13.37 580.65 MW-ZN-04S 593.82 13.23 580.59 MW-ZN-05S 588.64 8.01 580.63 MW-ZN-06S 592.66	Sample	Reference	Depth to Water	Groundwater
MW-ZN-01S 594.10 14.41 579.69 MW-ZN-02S 593.78 13.48 580.30 MW-ZN-03S 594.02 12.84 581.18 MW-ZN-04S 593.82 13.23 580.59 MW-ZN-05S 588.64 6.67 581.97 MW-ZN-06S 592.66 7.71 584.95 MW-ZN-07S 589.82 5.02 584.80 MW-ZN-08S 588.73 8.73 580.00 MW-ZN-09S 593.84 9.99 583.85 Lake Michigan (average) 577.97 - - Sample Reference Depth to Water Groundwater Location [(NGVD) Reference) (NGVD) MW-ZN-01S 594.10 14.80 579.30 MW-ZN-02S 593.78 13.78 580.00 MW-ZN-03S 594.02 13.37 580.65 MW-ZN-04S 593.82 13.23 580.59 MW-ZN-05S 588.64 8.01 580.63 MW-ZN-05S	Location	Elevation	(ft Below	Elevation
MW-ZN-02S 593.78 13.48 580.30 MW-ZN-02S 593.78 13.48 580.30 MW-ZN-03S 594.02 12.84 581.18 MW-ZN-04S 593.82 13.23 580.59 MW-ZN-04S 593.82 13.23 580.59 MW-ZN-04S 592.66 7.71 584.95 MW-ZN-06S 592.66 7.71 584.95 MW-ZN-07S 589.82 5.02 584.80 MW-ZN-08S 588.73 8.73 580.00 MW-ZN-09S 593.84 9.99 583.85 Lake Michigan (average) 577.97 - - Sample Reference Depth to Water Groundwater Icocation Elevation (If Below Elevation (NGVD) MW-ZN-01S 594.02 13.37 580.65 MW-ZN-02S 593.78 13.78 580.00 MW-ZN-03S 594.02 13.37 580.65 MW-ZN-04S 593.82 13.23 580.59 MW-ZN-05S 588.64 8.01 583.35 MW-ZN-05		(NGVD)	Reference)	(NGVD)
MW-ZN-03S 594.02 12.84 581.18 MW-ZN-04S 593.82 13.23 580.59 MW-ZN-05S 588.64 6.67 581.97 MW-ZN-06S 592.66 7.71 584.95 MW-ZN-07S 589.82 5.02 584.80 MW-ZN-08S 588.73 8.73 580.00 MW-ZN-09S 593.84 9.99 583.85 Lake Michigan (average) 577.97 Sample Reference Depth to Water Groundwater MW-ZN-01S 594.10 14.80 579.30 MW-ZN-02S 593.78 13.78 580.00 MW-ZN-02S 593.78 13.23 580.59 MW-ZN-03S 594.02 13.37 580.65 MW-ZN-04S 593.82 13.23 580.59 MW-ZN-05S 588.64 8.01 580.63 MW-ZN-06S 592.66 9.47 583.35 MW-ZN-07S 589.82 6.47 583.35 MW-ZN-08S	MW-ZN-01S	594.10	14.41	579.69
MW-ZN-04S 593.82 13.23 580.59 MW-ZN-05S 588.64 6.67 581.97 MW-ZN-05S 588.64 6.67 581.97 MW-ZN-06S 592.66 7.71 584.95 MW-ZN-07S 589.82 5.02 584.80 MW-ZN-08S 588.73 8.73 580.00 MW-ZN-09S 593.84 9.99 583.85 Lake Michigan (average) 577.97 - - Sample Reference Depth to Water Groundwater Image: Note that the set of the s	MW-ZN-02S	593.78	13.48	580.30
MW-ZN-05S 588.64 6.67 581.97 MW-ZN-05S 588.64 6.67 581.97 MW-ZN-06S 592.66 7.71 584.95 MW-ZN-07S 589.82 5.02 584.80 MW-ZN-08S 588.73 8.73 580.00 MW-ZN-09S 593.84 9.99 583.85 Lake Michigan (average) 577.97 Sample Reference Depth to Water Groundwater Location Elevation (ft Below Elevation MW-ZN-01S 594.10 14.80 579.30 MW-ZN-02S 593.78 13.78 580.00 MW-ZN-03S 594.02 13.37 580.65 MW-ZN-04S 593.82 13.23 580.59 MW-ZN-05S 588.64 8.01 583.35 MW-ZN-06S 592.66 9.47 583.35 MW-ZN-07S 589.82 6.47 583.35 MW-ZN-08S 588.73 9.30 579.43 MW-ZN-08S	MW-ZN-03S	594.02	1 2.84	581.18
MW-ZN-06S 592.66 7.71 584.95 MW-ZN-07S 589.82 5.02 584.80 MW-ZN-08S 588.73 8.73 580.00 MW-ZN-09S 593.84 9.99 583.85 Lake Michigan (average) 577.97 Sample Reference Depth to Water Groundwater Location Elevation (ft Below Elevation MW-ZN-01S 594.10 14.80 579.30 MW-ZN-02S 593.78 13.78 580.00 MW-ZN-03S 594.02 13.37 580.65 MW-ZN-04S 593.82 13.23 580.59 MW-ZN-05S 588.64 8.01 580.63 MW-ZN-04S 592.66 9.47 583.19 MW-ZN-05S 588.64 8.01 580.63 MW-ZN-06S 592.66 9.47 583.35 MW-ZN-07S 589.82 6.47 583.35 MW-ZN-08S 588.73 9.30 579.43 MW-ZN-08S	MW-ZN-04S	593.82	13.23	580.59
MW-ZN-07S 589.82 5.02 584.80 MW-ZN-08S 588.73 8.73 580.00 MW-ZN-09S 593.84 9.99 583.85 Lake Michigan (average) 577.97 Sample Reference Depth to Water Groundwater Location Elevation (ft Below Elevation MW-ZN-01S 594.10 14.80 579.30 MW-ZN-02S 593.78 13.78 580.00 MW-ZN-03S 594.02 13.37 580.65 MW-ZN-04S 593.82 13.23 580.59 MW-ZN-05S 588.64 8.01 580.63 MW-ZN-04S 592.66 9.47 583.19 MW-ZN-05S 588.64 8.01 580.63 MW-ZN-06S 592.66 9.47 583.35 MW-ZN-07S 589.82 6.47 583.35 MW-ZN-08S 588.73 9.30 579.43 MW-ZN-09S 593.84 11.13 582.71 MW-ZN-10S <td>MW-ZN-05S</td> <td>588.64</td> <td>6.67</td> <td>581.97</td>	MW-ZN-05S	588.64	6.67	581.97
Init Zit of 5 568.73 8.73 580.00 MW-ZN-08S 588.73 8.73 580.00 MW-ZN-09S 593.84 9.99 583.85 Lake Michigan (average) 577.97 - - Sample Reference Depth to Water Groundwater Location Elevation (ft Below Elevation MW-ZN-01S 594.10 14.80 579.30 MW-ZN-02S 593.78 13.78 580.00 MW-ZN-02S 593.78 13.78 580.00 MW-ZN-02S 593.78 13.78 580.65 MW-ZN-03S 594.02 13.37 580.65 MW-ZN-04S 593.82 13.23 580.59 MW-ZN-05S 588.64 8.01 580.63 MW-ZN-06S 592.66 9.47 583.19 MW-ZN-07S 589.82 6.47 583.35 MW-ZN-08S 588.73 9.30 579.43 MW-ZN-09S 593.67 13.72 579.95 MW-ZN-10S	MW-ZN-06S	592.66	7.71	584.95
MW-ZN-09S 593.84 9.99 583.85 Lake Michigan (average) 577.97 Sample Reference Depth to Water Groundwater Location Elevation (ft Below Elevation MW-ZN-01S 594.10 14.80 579.30 MW-ZN-02S 593.78 13.78 580.00 MW-ZN-03S 594.02 13.37 580.65 MW-ZN-04S 593.82 13.23 580.59 MW-ZN-05S 588.64 8.01 580.63 MW-ZN-06S 592.66 9.47 583.35 MW-ZN-07S 589.82 6.47 583.35 MW-ZN-08S 588.73 9.30 579.43 MW-ZN-09S 593.84 11.13 582.71 MW-ZN-10S 593.67 13.72 579.95 MW-ZN-10S 593.67 13.72 579.95 MW-ZN-10S 593.67 13.72 579.95 MW-ZN-10S 593.67 13.72 579.39	MW-ZN-07S	589.82	5.02	584.80
Lake Michigan (average) 577.97 Sample Reference Depth to Water Groundwater Location Elevation (ft Below Elevation MW-ZN-01S 594.10 14.80 579.30 MW-ZN-02S 593.78 13.78 580.00 MW-ZN-03S 594.02 13.37 580.65 MW-ZN-04S 593.82 13.23 580.59 MW-ZN-05S 588.64 8.01 580.63 MW-ZN-05S 588.64 8.01 580.63 MW-ZN-05S 588.64 8.01 580.63 MW-ZN-06S 592.66 9.47 583.19 MW-ZN-07S 589.82 6.47 583.35 MW-ZN-08S 588.73 9.30 579.43 MW-ZN-09S 593.67 13.72 579.95 MW-ZN-10S 593.67 13.72 579.95 MW-ZN-10S 593.67 13.72 579.39 TW-ZN-10S 593.67 13.72 579.39 MW-ZN-10S 590.01 10.62 579.39 TW-ZN-101 588.	MW-ZN-08S	588.73	8.73	580.00
Sample Reference Depth to Water Groundwater Location Elevation (ft Below Elevation (NGVD) MW-ZN-01S 594.10 14.80 579.30 MW-ZN-02S 593.78 13.78 580.00 MW-ZN-03S 594.02 13.37 580.65 MW-ZN-04S 593.82 13.23 580.59 MW-ZN-05S 588.64 8.01 580.63 MW-ZN-05S 588.64 8.01 580.63 MW-ZN-05S 588.64 8.01 580.63 MW-ZN-06S 592.66 9.47 583.19 MW-ZN-07S 589.82 6.47 583.35 MW-ZN-08S 588.73 9.30 579.43 MW-ZN-08S 593.67 13.72 579.95 MW-ZN-10S 593.67 13.72 579.95 MW-ZN-10S 590.01 10.65 578.82 TW-ZN-100 590.01 10.62 579.39 TW-ZN-101 588.68 10.27 578.41	MW-ZN-09S	593.84	9.99	583.85
Sample Reference Depth to Water Groundwater Location Elevation (ft Below Elevation (NGVD) MW-ZN-01S 594.10 14.80 579.30 MW-ZN-02S 593.78 13.78 580.00 MW-ZN-03S 594.02 13.37 580.65 MW-ZN-04S 593.82 13.23 580.59 MW-ZN-05S 588.64 8.01 580.63 MW-ZN-05S 588.64 8.01 580.63 MW-ZN-05S 588.64 8.01 580.63 MW-ZN-06S 592.66 9.47 583.19 MW-ZN-07S 589.82 6.47 583.35 MW-ZN-08S 588.73 9.30 579.43 MW-ZN-08S 593.67 13.72 579.95 MW-ZN-10S 593.67 13.72 579.95 MW-ZN-10S 590.01 10.65 578.82 TW-ZN-100 590.01 10.62 579.39 TW-ZN-101 588.68 10.27 578.41	Lake Michigan (average)	577 97		
Sample LocationReference Elevation (NGVD)Depth to Water (ft Below Reference)Groundwater Elevation (NGVD)MW-ZN-01S594.1014.80579.30MW-ZN-02S593.7813.78580.00MW-ZN-03S594.0213.37580.65MW-ZN-04S593.8213.23580.59MW-ZN-05S588.648.01580.63MW-ZN-05S588.648.01580.63MW-ZN-05S588.648.01580.63MW-ZN-05S589.826.47583.35MW-ZN-07S589.826.47583.35MW-ZN-07S589.6713.72579.95MW-ZN-09S593.6713.72579.95MW-ZN-10S593.6713.72579.95MW-ZN-10S593.6713.72579.95MW-ZN-10S593.6713.72579.95MW-ZN-10S593.6713.72579.95MW-ZN-10S593.6810.27578.41TW-ZN-101588.6810.27578.41TW-ZN-102588.5810.33578.25	Luite Michigan (average)	0	Iuly 27.	2006
LocationElevation (NGVD)(ft Below Reference)Elevation (NGVD)MW-ZN-01S594.1014.80579.30MW-ZN-02S593.7813.78580.00MW-ZN-03S594.0213.37580.65MW-ZN-04S593.8213.23580.59MW-ZN-04S593.8213.23580.63MW-ZN-05S588.648.01580.63MW-ZN-06S592.669.47583.19MW-ZN-07S589.826.47583.35MW-ZN-08S588.739.30579.43MW-ZN-09S593.6713.72579.95MW-ZN-10S593.6713.72579.95MW-ZN-10S593.6710.65578.82TW-ZN-101588.6810.27578.41TW-ZN-102588.5810.33578.25	Sample	Reference		
MW-ZN-01S594.1014.80579.30MW-ZN-02S593.7813.78580.00MW-ZN-03S594.0213.37580.65MW-ZN-04S593.8213.23580.59MW-ZN-05S588.648.01580.63MW-ZN-06S592.669.47583.19MW-ZN-07S589.826.47583.35MW-ZN-08S588.739.30579.43MW-ZN-09S593.8411.13582.71MW-ZN-10S593.6713.72579.95MW-ZN-10S593.6713.72579.95MW-ZN-11S589.4710.65578.82TW-ZN-100590.0110.62579.39TW-ZN-101588.6810.27578.41TW-ZN-102588.5810.33578.25	•	•		Elevation
MW-ZN-02S593.7813.78580.00MW-ZN-03S594.0213.37580.65MW-ZN-04S593.8213.23580.59MW-ZN-04S593.8213.23580.63MW-ZN-05S588.648.01580.63MW-ZN-06S592.669.47583.19MW-ZN-07S589.826.47583.35MW-ZN-08S588.739.30579.43MW-ZN-09S593.8411.13582.71MW-ZN-10S593.6713.72579.95MW-ZN-11S589.4710.65578.82TW-ZN-100590.0110.62579.39TW-ZN-101588.6810.27578.41TW-ZN-102588.5810.33578.25		(NGVD)	Reference)	(NGVD)
MW-ZN-02S593.7813.78580.00MW-ZN-03S594.0213.37580.65MW-ZN-04S593.8213.23580.59MW-ZN-04S593.8213.23580.63MW-ZN-05S588.648.01580.63MW-ZN-06S592.669.47583.19MW-ZN-07S589.826.47583.35MW-ZN-08S588.739.30579.43MW-ZN-09S593.8411.13582.71MW-ZN-10S593.6713.72579.95MW-ZN-11S589.4710.65578.82TW-ZN-100590.0110.62579.39TW-ZN-101588.6810.27578.41TW-ZN-102588.5810.33578.25	MM/_ZNL01S	594 10	14.80	579 30
MW-ZN-03S594.0213.37580.65MW-ZN-04S593.8213.23580.59MW-ZN-05S588.648.01580.63MW-ZN-06S592.669.47583.19MW-ZN-07S589.826.47583.35MW-ZN-08S588.739.30579.43MW-ZN-09S593.8411.13582.71MW-ZN-10S593.6713.72579.95MW-ZN-10S593.6713.72579.95MW-ZN-11S589.4710.65578.82TW-ZN-101588.6810.27578.41TW-ZN-102588.5810.33578.25		-		
MW-ZN-04S593.8213.23580.59MW-ZN-05S588.648.01580.63MW-ZN-06S592.669.47583.19MW-ZN-07S589.826.47583.35MW-ZN-08S588.739.30579.43MW-ZN-09S593.8411.13582.71MW-ZN-10S593.6713.72579.95MW-ZN-11S589.4710.65578.82TW-ZN-100590.0110.62579.39TW-ZN-101588.6810.27578.41TW-ZN-102588.5810.33578.25				
MW-ZN-05S588.648.01580.63MW-ZN-06S592.669.47583.19MW-ZN-07S589.826.47583.35MW-ZN-08S588.739.30579.43MW-ZN-09S593.8411.13582.71MW-ZN-10S593.6713.72579.95MW-ZN-11S589.4710.65578.82TW-ZN-100590.0110.62579.39TW-ZN-101588.6810.27578.41TW-ZN-102588.5810.33578.25				
MW-ZN-06S592.669.47583.19MW-ZN-07S589.826.47583.35MW-ZN-08S588.739.30579.43MW-ZN-09S593.8411.13582.71MW-ZN-10S593.6713.72579.95MW-ZN-11S589.4710.65578.82TW-ZN-100590.0110.62579.39TW-ZN-101588.6810.27578.41TW-ZN-102588.5810.33578.25				
MW-ZN-07S589.826.47583.35MW-ZN-08S588.739.30579.43MW-ZN-09S593.8411.13582.71MW-ZN-10S593.6713.72579.95MW-ZN-11S589.4710.65578.82TW-ZN-100590.0110.62579.39TW-ZN-101588.6810.27578.41TW-ZN-102588.5810.33578.25				
MW-ZN-08S588.739.30579.43MW-ZN-09S593.8411.13582.71MW-ZN-10S593.6713.72579.95MW-ZN-11S589.4710.65578.82TW-ZN-100590.0110.62579.39TW-ZN-101588.6810.27578.41TW-ZN-102588.5810.33578.25				
MW-ZN-09S593.8411.13582.71MW-ZN-10S593.6713.72579.95MW-ZN-11S589.4710.65578.82TW-ZN-100590.0110.62579.39TW-ZN-101588.6810.27578.41TW-ZN-102588.5810.33578.25				
MW-ZN-10S593.6713.72579.95MW-ZN-11S589.4710.65578.82TW-ZN-100590.0110.62579.39TW-ZN-101588.6810.27578.41TW-ZN-102588.5810.33578.25				-
MW-ZN-11S589.4710.65578.82TW-ZN-100590.0110.62579.39TW-ZN-101588.6810.27578.41TW-ZN-102588.5810.33578.25				
TW-ZN-100590.0110.62579.39TW-ZN-101588.6810.27578.41TW-ZN-102588.5810.33578.25				
TW-ZN-101588.6810.27578.41TW-ZN-102588.5810.33578.25				
TW-ZN-102 588.58 10.33 578.25				
	TW-ZN-102	587.49	9.03	

Lake Michigan (average) 577.93

--

--

Notes:

NGVD - National Geodetic Vertical datum

SAMPLE KEY FLEETWIDE ASSESSMENT ZION STATION ZION , ILLINOIS

Sample Location ⁽¹⁾	Sample Identification	QC Sample	Date	Matrix	Analyses
MW-ZN-08S(L)	WG-Zion-MW-8L-052406-MS-001		5/24/06	Groundwater	Tritium / Target Radionuclides
MW-ZN-04S(U)	WG-Zion-MW-4U-052406-MB-002		5/24/06	Groundwater	Tritium / Target Radionuclides
MW-ZN-08S(U)	WG-Zion-MW-8U-052406-MS-003		5/24/06	Groundwater	Tritium / Target Radionuclides
MW-ZN-04S(L)	WG-Zion-MW-4L-052406-MB-004		5/24/06	Groundwater	Tritium / Target Radionuclides
MW-ZN-07S(U)	WG-Zion-MW-7U-052406-MS-005		5/24/06	Groundwater	Tritium / Target Radionuclides
MW-ZN-07S(L)	WG-Zion-MW-7L-052506-MS-007		5/25/06	Groundwater	Tritium / Target Radionuclides
MW-ZN-06S(L)	WG-Zion-MW-6L-052506-MS-009		5/25/06	Groundwater	Tritium / Target Radionuclides
MW-ZN-03S(U)	WG-ZN-MW-ZN-03U-052506-DS-01		5/25/06	Groundwater	Tritium / Target Radionuclides
MW-ZN-03S(U)	WG-ZN-MW-ZN-03U-052506-DS-02	Duplicate (01)	5/25/06	Groundwater	Tritium / Target Radionuclides
MW-ZN-03S(L)	WG-ZN-MW-ZN-03L-052506-DS-03		5/25/06	Groundwater	Tritium / Target Radionuclides
MW-ZN-02S(U)	WG-ZN-MW-ZN-02U-052606-DS-04		5/26/06	Groundwater	Tritium / Target Radionuclides
MW-ZN-01S(U)	WG-ZN-MW-ZN-01U-052606-DS-05		5/26/06	Groundwater	Tritium / Target Radionuclides
MW-ZN-02S(L)	WG-ZN-MW-ZN-02L-052606-DS-06		5/26/06	Groundwater	Tritium / Target Radionuclides
MW-ZN-01S(L)	WG-ZN-MW-ZN-01L-052606-DS-07		5/26/06	Groundwater	Tritium / Target Radionuclides
MW-ZN-09S	WG-ZN-MW-ZN-09-052606-DS-08		5/26/06	Groundwater	Tritium / Target Radionuclides
MW-ZN-09S	WG-ZN-MW-ZN-09-052606-DS-09	Duplicate (08)	5/26/06	Groundwater	Tritium / Target Radionuclides
MW-ZN-06S(U)	WG-Zion-MW-6U-052606-MS-011		5/26/06	Groundwater	Tritium / Target Radionuclides
MW-ZN-05S(L)	WG-Zion-MW-5L-052606-MS-013		5/26/06	Groundwater	Tritium / Target Radionuclides
SW-ZN-1	WS-Zion-Lake-052606-MS-015		5/26/06	Surface Water	Tritium / Target Radionuclides
MW-ZN-05S(U)	WG-Zion-MW-5U-052606-MS-017		5/26/06	Groundwater	Tritium / Target Radionuclides
MW-ZN-10S(L)	WG-ZN-MW-ZN-10L-072806-MS-005		7/28/2006	Groundwater	Tritium / Target Radionuclides
MW-ZN-10S(U)	WG-ZN-MW-ZN-10U-072806-MS-003		7/28/2006	Groundwater	Tritium / Target Radionuclides
MW-ZN-10S(U)	WG-ZN-MW-ZN-10U-072806-MS-004		7/28/2006	Groundwater	Tritium / Target Radionuclides
MW-ZN-11S(L)	WG-ZN-MW-ZN-11L-072806-TL-002		7/28/2006	Groundwater	Tritium / Target Radionuclides
MW-ZN-11S(U)	WG-ZN-MW-ZN-11U-072806-TL-001		7/28/2006	Groundwater	Tritium / Target Radionuclides
TW-ZN-100	GW-071706-JL-TW-ZN-100		7/17/2006	Groundwater	Tritium / Target Radionuclides

Page 2 of 2

SAMPLE KEY FLEETWIDE ASSESSMENT ZION STATION ZION , ILLINOIS

Sample Location (1)	Sample Identification	QC Sample	Date	Matrix	Analyses
TW-ZN-101	GW-071706-JL-TW-ZN-101		7/17/2006	Groundwater	Tritium / Target Radionuclides
TW-ZN-102	GW-071706-JL-TW-ZN-102		7/17/2006	Groundwater	Tritium / Target Radionuclides
TW-ZN-103	GW-071706-JL-TW-ZN-103		7/17/2006	Groundwater	Tritium / Target Radionuclides

Notes:

QC - Quality Control

Target Radionuclides: Sr-89/90, Mn-54, Co-58, Fe-59, Co-60, Zn-65, Nb-95, Zr-95, Cs-134, Cs-137, Ba-140, and La-140

Duplicate (08) - Duplicate of sample number in parenthesis

SUMMARY OF MONITORING WELL PURGING PARAMATERS FLEETWIDE ASSESSMENT ZION STATION ZION, ILLINOIS

Sample		Minutes	Water	Flow Rate	pН	Conductivity	Temperature	Turbidity	DO	ORP	Pump Type
Location ¹	Date	Purged	Level	(mL/min)	(Std. Units)	(µS/cm) ²	(°C)	(ntu) ³	(mg/L)		
MW-ZN-01S(U)	5/26/2006	5	14.67	200	6.33	822	15.01	NM	0.71	333.10	Peristaltic
		10	14.67	200	6.62	812	14.45	5.38	0.54	114.3	
		15	14.67	200	7.03	810	14.42	5.36	0.46	-11.2	
		20	14.67	200	7.08	822	14.81	5.13	0.55	-100.0	
		25	14.67	200	7.07	821	14.85	5.44	0.53	-101.6	
		30	14.67	200	7.12	814	14.78	5.36	0.51	-104.4	
MW-ZN-01S(U)	6/28/2006	5	14.57	305	7.53	877	15.61	4.51	0.71	NM	Peristaltic
		10	14.57	305	7.54	889	15.56	4.25	0.60	NM	
		15	14.57	305	7.56	896	15.58	3.80	0.50	NM	
		20	14.57	305	7.58	901	15.65	3.81	0.47	NM	
		25	14.57	305	7.60	905	15.59	4.23	0.44	NM	
		30	14.58	305	7.59	908	15.55	4.45	0.41	NM	
		35	14.57	305	7.59	910	15.55	4.65	0.36	NM	
		40	14.58	305	7.60	910	15.65	11.45	0.39	NM	
		45	14.58	305	7.60	910	15.54	11.67	0.38	NM	
		50	14.58	305	7.61	912	15.66	11.83	0.39	NM	
		55	14.59	305	7.63	911	15.67	12.03	0.39	NM	
MW-ZN-01S(L)	5/26/2006	5	14.65	310	6.92	847	14.71	3.01	0.46	-81.0	Peristaltic
	0, 20, 2000	10	14.65	310	6.98	843	14.64	1.67	0.42	-85.1	
		15	14.65	310	7.00	841	14.62	0.36	0.43	-88.1	
MW-ZN-01S(L)	6/28/2006	5	14.57	310	7.46	1550	15.94	48.0	0.59	NM	Peristaltic
14144-214-013(L)	072072000	10	14.58	310	7.45	1490	15.94	32.1	0.49	NM	renstance
		15	14.50	310	7.48	1239	15.67	16.1	0.49	NM	
		20	14.57	310	7.53	1152	15.57	9.90	0.39	NM	
		25	14.50	310	7.54	1096	15.76	8.00	0.35	NM	
		23 30	14.57	310	7.54	1065	15.81	5.61	0.33	NM	
		35	14.56	310	7.54	1085	15.64	4.63	0.33	NM	
		33 40	14.58	310	7.54	1038	15.64	4.63 4.52	0.33	NM	
		40 45	14.57	310 310	7.54	1032	15.7	4.52 2.31	0.31	NM	
		43 50	14.56 14.56	310	7.54	1030	15.75	1.78	0.31	NM	
			14.56 14.56		7.55						
		55	14.30	310	7.54	1028	15.89	1.71	0.30	NM	

.

Sample Location ¹	Date	Minutes Purged	Water Level	Flow Rate (mL/min)	pH (Std. Units)	Conductivity (µS/cm) ²	Temperature (°C)	Turbidity (ntu) ³	DO (mg/L)	ORP	Ритр Туре
MAL ZAL ODC/(D)	5 (0/ (000/	-	12.00	250	7 0/	505	10.40		5.2	264.5	D. S. M.
MW-ZN-02S(U)	5/26/2006	5	13.89	250	7.36	585	10.43	NM	7.3	264.5	Peristaltic
		10	13.89	250	7.40	582	10.55	NM	5.6	223.4	
		15	13.89	250	7.10	583	10.87	NM	0.54	240.9	
		20	13.89	250	6.68	585	10.96	5.43	0.45	369.8	
		25	13.89	250	6.39	587	10.99	NM	0.43	437.8	
		30	13.89	250	6.21	585	10.92	NM	0.42	477.7	
		35	13.89	250	6.36	583	10.93	NM	0.39	491.1	
		40	13.89	250	5.89	585	11.12	5.52	0.4	537.1	
		45	13.89	250	5.82	585	11.11	5.28	0.4	541.3	
		50	13.89	250	5.72	585	11.05	6.03	0.39	545.4	
MW-ZN-02S(L)	5/26/2006	5	13.61	220	6.57	596	11.24	NM	0.78	400.1	Peristaltic
		10	13.61	220	6.51	598	11.42	NM	0.74	402.2	
		15	13.61	220	6.27	600	11.51	NM	0.71	427.1	
		20	13.61	220	5.95	601	11.60	4.99	0.67	461.7	
		25	13.61	220	5.84	601	11.63	7.73	0.65	484.5	
		30	13.61	220	6.47	597	11.39	0.00	0.59	467.5	
		35	13.61	220	6.69	594	11.23	2.19	0.57	439.7	
		40	13.61	220	6.69	599	11.33	0.00	0.57	412.6	
		45	13.61	220	6.67	599	11.32	0.00	0.56	413.0	

Sample		Minutes	Water	Flow Rate	pН	Conductivity	Temperature	Turbidity	DO	ORP	Ритр Туре
Location ¹	Date	Purged	Level	(mL/min)	(Std. Units)	$(\mu S/cm)^{-2}$	(°C)	(ntu) ³	(mg/L)		
MW-ZN-03S(U)	5/25/2006	5	13.55	280	6.94	740	10.56	28.1	5.91	222.9	Peristaltic
		10	13.55	280	6.34	749	10.37	0.20	1.99	400.6	
		15	13.55	280	6.10	745	10.50	0.26	2.18	467.4	
		20	13.55	280	5.96	741	10.39	0.0	1.99	506.1	
		25	13.55	280	5.83	738	10.45	0.78	1.85	579.3	
		30	13.55	280	5.79	738	10.47	1.24	1.87	527.4	
		35	13.55	280	5.74	738	10.55	1.51	1.86	536.0	
		40	13.55	280	5.72	740	10.61	1.93	1.81	540.2	
		45	13.55	290	5.46	744	10.57	1.50	0.55	571.4	
		50	13.55	290	5.58	741	10.48	1.17	0.48	569.4	
		55	13.55	290	5.51	738	10.48	1.62	0.48	571.7	
MW-ZN-03S(L)	5/25/2006	5	13.45	370	5.77	733	10.72	349	0.37	613.7	Peristaltic
		10	13.45	370	5.75	737	10.72	321	0.37	617.7	
		15	13.45	370	5.93	730	10.55	250	0.36	610.2	
		20	13.45	370	5.67	750	10.63	50.6	0.37	630.7	
		25	13.45	370	5.89	759	10.71	26.7	0.35	621.6	
		30	13.45	370	5.79	762	10.56	11.1	0.33	632.8	
		35	13.45	370	5.82	766	10.75	7.42	0.33	631.2	
		40	13.45	370	5.73	769	10.64	7.99	0.33	636.8	
		45	13.45	370	5.79	764	10.60	7.88	0.32	635.9	
		50	13.45	370	5.80	766	10.55	8.07	0.31	636.0	
MW-ZN-04S(U)	5/24/2006	5	NM	NM	6.60	812	12.9	40.60	NM	NM	Peristaltic
		10	NM	NM	7.04	689	13.0	29.60	NM	NM	
		15	NM	NM	7.15	670	12.9	23.60	NM	NM	
		20	NM	NM	7.20	643	13.1	21.30	NM	NM	
		25	NM	NM	7.26	642	13.0	21.5	NM	NM	
		30	NM	NM	7.27	640	12.8	19.3	NM	NM	

Location ¹ Date Purged Level (mL/min) (Std. Units) (µS/cm) ² (°C) (ntu) ³ (mg/L) MW-ZN-04S(L) 5/24/2006 5 NM NM 7.14 769 14.5 > 1000 NM NM 10 NM NM 7.11 774 14.2 > 1000 NM NM 15 NM NM 7.10 789 13.6 > 1000 NM NM 20 NM NM 7.13 785 13.8 > 1000 NM NM 25 NM NM 7.17 787 13.4 > 1000 NM NM 30 NM NM 7.13 780 13.0 979 NM NM 40 NM NM 7.13 780 12.8 980 NM NM	2
10 NM NM 7.11 774 14.2 > 1000 NM NM 15 NM NM 7.10 789 13.6 > 1000 NM NM 20 NM NM 7.13 785 13.8 > 1000 NM NM 25 NM NM 7.16 781 13.8 > 1000 NM NM 30 NM NM 7.17 787 13.4 > 1000 NM NM 35 NM NM 7.14 774 13.0 979 NM NM	
10 NM NM 7.11 774 14.2 > 1000 NM NM 15 NM NM 7.10 789 13.6 > 1000 NM NM 20 NM NM 7.13 785 13.8 > 1000 NM NM 25 NM NM 7.16 781 13.8 > 1000 NM NM 30 NM NM 7.17 787 13.4 > 1000 NM NM 35 NM NM 7.14 774 13.0 979 NM NM	
15NMNM7.1078913.6> 1000NMNM20NMNM7.1378513.8> 1000NMNM25NMNM7.1678113.8> 1000NMNM30NMNM7.1778713.4> 1000NMNM35NMNM7.1477413.0979NMNM	
20NMNM7.1378513.8> 1000NMNM25NMNM7.1678113.8> 1000NMNM30NMNM7.1778713.4> 1000NMNM35NMNM7.1477413.0979NMNM	
25NMNM7.1678113.8> 1000NMNM30NMNM7.1778713.4> 1000NMNM35NMNM7.1477413.0979NMNM	
30NMNM7.1778713.4> 1000NMNM35NMNM7.1477413.0979NMNM	
35 NM NM 7.14 774 13.0 979 NM NM	
40 NM NM 7.13 780 12.8 980 NM NM	
MW-ZN-05S(L) 5/26/2006 5 NM 175 9.08 902 12.99 900 4.21 41.2 Peristaltic	
10 NM 175 9.38 902 13.07 750 1.36 39.1	
15 NM 175 9.75 903 13.15 650 1.01 35.0	
20 NM 175 9.97 902 13.09 500 0.84 31.9	
25 NM 175 10.11 899 13.23 400 0.75 28.3	
30 NM 175 10.22 899 13.47 350 0.72 26.3	
35 NM 175 10.35 899 13.67 280 0.66 22.2	
40 NM 175 10.39 898 13.68 240 0.70 19.1	
45 NM 175 10.37 897 13.83 190 0.62 16.9	
50 NM 175 10.35 896 13.77 170 0.61 15.2	
55 NM 175 10.34 894 13.54 140 0.58 13.3	
60 NM 175 10.34 893 13.36 130 0.56 11.2	
65 NM 175 10.31 893 13.78 110 0.54 10.6	
70 NM 175 10.33 894 13.91 90 0.53 3.0	
75 NM 175 10.33 892 13.66 75 0.53 3.4	
80 NM 175 10.26 893 13.82 70 0.51 4.5	
85 NM 175 10.27 892 13.53 60 0.50 0.1	
90 NM 175 10.16 890 13.92 55 0.74 1.7	
95 NM 175 10.15 893 14.03 55 0.62 1.6	
100 NM 175 10.15 893 14.13 45 0.56 2.6	
105 NM 175 10.18 893 14.13 40 0.54 3.1	
110 NM 175 10.20 893 14.15 36 0.53 4.4	
115 NM 175 10.23 895 14.11 36 0.53 6.3	

Sample		Minutes	Water	Flow Rate	pН	Conductivity	Temperature	Turbidity	DO	ORP	Ритр Туре
Location ¹	Date	Purged	Level	(mL/min)	(Std. Units)	$(\mu S/cm)^{-2}$	(°C)	(ntu) ³	(mg/L)		
MW-ZN-05S(U)	5/26/2006	15	NM	175	9.40	924	12.71	32	1.34	81.6	Peristaltic
		20	NM	175	9.49	906	12.83	140	1.0	67.5	
		25	NM	175	9.53	901	13.23	250	0.85	52.6	
		30	NM	175	9.58	897	13.44	230	0.76	42.9	
		35	NM	175	9.63	896	13.58	190	0.70	28.7	
		40	NM	175	9.66	901	13.45	170	0.68	23.6	
		45	NM	175	9.69	901	13.61	130	0.63	17.1	
		50	NM	175	9.72 #	901	13.49	120	0.62	9.4	
		55	NM	175	9.75	900	13.78	85	0.56	8.0	
		60	NM	175	9.86	900	13.29	65	0.53	1.8	
		65	NM	175	9.84	901	13.22	60	NA	NA	
		70	NM	175	9.90	899	13.09	55	0.81	3.0	
		75	NM	175	9.95	898	13.24	55	0.60	1.2	
		80	NM	175	10.00	897	13.16	45	0.56	-4.3	
		85	NM	175	10.06	896	13.13	45	0.52	-6.8	
		90	NM	175	10.04	896	13.15	39	0.51	-10.8	
		95	NM	175	10.23	897	13.22	40	0.50	-12.7	
		100	NM	175	10.37	899	13.18	30	0.51	-12.6	
		105	NM	175	10.42	894	13.33	30	0.49	-14.9	
MW-ZN-06S(L)	5/25/2006	5	NM	175	7.11	1073	12.51	180	2.20	99.6	Peristaltic
		10	NM	175	6.95	955	12.04	130	1.42	105.3	
		15	NM	175	6.61	876	11.82	90	1.25	114.8	
		20	NM	175	6.46	864	11.75	13	1.03	105.8	
		25	NM	175	6.44	869	11.84	180	0.94	96.8	
		30	NM	175	6.16	871	11.92	130	0.84	91.6	
		35	NM	175	6.24	870	11.76	90	0.79	82.9	
		40	NM	175	6.05	867	11.56	39	0.76	82.9	
		45 50	NM	175	6.04	865	11.67	7.4	0.73	78.5	
		50	NM	175	5.98	868	11.83	22	0.70	69.5	
		55	NM	175	5.83	868	11.86	29	0.73	66.6 E0 E	
		60	NM	175	6.08	868	11.90	21	0.69	59.5	

Sample		Minutes	Water	Flow Rate	pН	Conductivity	Temperature	Turbidity	DO	ORP	Pump Type
Location ¹	Date	Purged	Level	(mL/min)	(Std. Units)	$(\mu S/cm)^{-2}$	(°C)	(ntu) ³	(mg/L)		
	- /0- /000/	_			0.40	020	11.15	374	1.0	04.1	D 1 1 1 1
MW-ZN-06S(U)	5/25/2006	5	NM	200	9.12	839	11.42	NA	1.62	84.1	Peristaltic
		10	NM	200	9.19	835	11.13	NA	1.14	81.2	
		15	NM	200	9.15	837	11.15	NA	1.17	78.4	
		20	NM	200	9.24	836	11.20	1100	0.97	67.9	
		25	NM	200	9.25	835	11.32	850	0.86	54.3	
		30	NM	200	9.30	836	11.33	650	0.80	41.6	
		35	NM	200	9.34	835	11.23	600	0.75	35.6	
		40	NM	200	9.36	833	11.15	550	1.12	30.3	
		45	NM	200	9.50	831	11.25	550	0.84	26.8	
		50	NM	200	9.41	831	10.99	450	0.76	25.4	
		55	NM	200	9.38	828	11.04	450	0.72	24.1	
		60	NM	200	9.38	828	11.06	450	0.68	22.9	
		65	NM	200	9.41	827	10.97	390	0.67	22.4	
		70	NM	200	9.53	823	11.09	340	0.63	21.1	
		75	NM	200	9.66	822	11.02	300	0.61	17.6	
		80	NM	200	9.52	823	11.09	240	0.61	15.7	
		85	NM	200	9.39	821	11.13	170	0.59	15.8	
		90	NM	200	9.38	819	11.20	160	0.56	14.5	
		95	NM	200	9.08	820	11.0 2	140	0.60	16.2	
		100	NM	200	9.39	820	10.82	110	0.71	15.3	
		105	NM	200	9.42	819	10.87	95	0.65	16.4	
		110	NM	200	9.44	818	10.93	95	0.61	17.1	
		115	NM	200	9.47	820	10.69	90	0.58	18.1	
MW-ZN-06S(U)	5/26/2006	5	NM	175	8.47	816	10.05	40	2.79	123.5	Peristaltic
		10	NM	175	8.58	814	9.71	26	1.99	121.4	
		15	NM	175	8.58	816	9.73	28	1.56	125.9	
		20	NM	175	8.51	820	9.66	27	1.26	131.1	
		25	NM	175	8.53	820	9.78	65	1.11	127.4	
		30	NM	175	8.58	818	10.04	140	1.02	120.2	
		35	NM	175	8.64	817	9.94	200	0.93	118.3	
		40	NM	175	8.66	818	9.93	190	0.93	117.5	
		45	NM	175	8.68	818	10.00	180	0.91	116.5	
		50	NM	175	8.67	817	10.00	190	0.86	116.2	
		55	NM	175	8.68	818	10.05	170	0.86	115.2	
		60	NM	175	8.63	818	10.10	150	0.88	113.2	
		00	INIVI	175	0.03	010	10.15	150	0.97	114.1	

Sample		Minutes	Water	Flow Rate	pН	Conductivity	Temperature	Turbidity	DO	ORP	Pump Type
Location ¹	Date	Purged	Level	(mL/min)	(Std. Units)	$(\mu S/cm)^2$	(°C)	(ntu) ³	(mg/L)		
MW-ZN-07S(U)	5/24/2006	5	NM	200	8.37	872.0	10.40	95	3.18	144.0	Peristaltic
		10	NM	200	8.74	871.0	9.96	85	1.49	130.4	
		15	NM	200	8.78	873.0	9.79	60	1.22	129.6	
		20	NM	200	8.81	876.0	9.74	70	1.10	129.0	
		25	NM	200	8.80	880.0	9.64	110	1.04	128.2	
		30	NM	200	8.79	874.0	9.78	210	0.91	124.7	
		35	NM	200	8.85	873.0	10.17	200	0.93	121.4	
		40	NM	200	9.00	875.0	10.72	200	0.78	106.8	
MW-ZN-07S(L)	5/25/2006	5	NM	200	7.58	878	11.34	550	1.48	149.5	Peristaltic
10100-210-073(L)	57 257 2000	10	NM	200	7.67	878	11.34	700	1.18	130.6	renstance
		15	NM	200	8.05	879	11.35	750	1.02	121.8	
		13 20	NM	200	8.45	879	11.40	650	0.96	109.5	
								650		109.5	
		25	NM	200	8.60	881	11.93		0.88	104.1	
		30 25	NM	200	8.70	888	11.90	250	0.84		
		35	NM	200	8.77	900	11.89	130	0.79	98.2	
		40	NM	200	8.79	905	11.85	85	0.75	96.8	
		45	NM	200	8.84	908	11.91	55	0.74	95.3	
		50	NM	200	9.11	907	12.16	50	0.70	84.4	
		55	NM	200	8.65	907	12.05	50	2.42	78.0	
		60	NM	200	9.36	906	11.95	40	1.07	69.7	
		65	NM	200	9.49	906	11.86	36	0.84	66.1	
		70	NM	200	9.56	907	12.27	40	0.72	61.0	
		75	NM	200	9.67	910	12.21	35	0.70	55.8	
MW-ZN-08S(L)	5/24/2006	5	NM	250	7.23	771	11.55	4.8	2.84	244.9	Peristaltic
		10	NM	250	7.50	773	11.15	5.1	1.57	238.2	
		15	NM	250	7.55	771	11.13	3.0	1.42	247.8	
		20	NM	250	7.61	771	11.16	2.9	1.24	242.1	
		25	NM	250	7.64	774	11.29	2.3	1.20	227.9	
		30	NM	250	7.69	775	11.38	1.8	1.06	222.9	
		35	NM	250	7.76	775	11.55	1.6	0.96	225.7	
		40	NM	250	7.81	777	11.63	1.1	0.91	220.9	
		45	NM	250	7.80	778	11.70	1.4	0.86	225.4	
										*	

Sample		Minutes	Water	Flow Rate	pН	Conductivity	Temperature	Turbidity	DO	ORP	Pump Type
Location ¹	Date	Purged	Level	(mL/min)	(Std. Units)	$(\mu S/cm)^{-2}$	(°C)	(ntu) ³	(mg/L)		
		_									.
MW-ZN-08S(U)	5/24/2006	5	NM	250	7.83	737	11.65	6.6	2.17	218.7	Peristaltic
		10	NM	250	7.49	744	11.60	4.1	1.40	221.0	
		15	NM	250	7.88	755	11.38	3.3	1.12	214.2	
		20	NM	250	8.05	759	11.67	3.0	0.90	214.1	
		25	NM	250	8.02	762	12.06	2.4	0.82	217.5	
		30	NM	250	8.16	774	11.92	2.9	0.75	208.4	
		35	NM	250	8.07	775	11.84	2.7	0.71	213.6	
MW-ZN-09S	5/26/2006	5	10.73	350	8.23	358	12.32	0.80	2.21	366.6	Peristaltic
		10	10.73	350	8.35	357	12.34	0.56	0.03	388.3	
		15	10.73	350	8.36	357	12.36	0.52	0.00	393.1	
		20	10.73	350	8.35	358	12.34	0.54	0.00	398.7	
MW-ZN-10U	7/28/2006	5	13.72	200	7.22	0.577	13.10	10.50	1.68	-73.9	
	772072000	10	13.72	200	7.16	0.555	12.85	4.04	0.95	-78.5	
		15	13.72	200	7.16	0.543	12.76	7.11	0.94	-77.1	
		20	13.72	200	7.17	0.544	12.81	13.30	0.86	-84.4	
		20 25	13.72	200	7.18	0.550	12.91	17.00	0.79	-85.9	
		30	13.72	200	7.20	0.553	13.07	13.10	0.83	-82.5	
		35	13.72	200	7.23	0.553	13.08	11.10	0.84	-85.5	
		40	13.72	200	7.26	0.548	12.93	11.50	1.21	-88.8	
		45	13.72	200	7.28	0.549	12.95	7.55	0.66	-92.7	
		49 50	13.72	200	7.29	0.546	13.01	7.04	0.46	-94.1	
		55	13.72	200	7.29	0.548	13.01	6.44	0.40	-93.2	
		60	13.72	200	7.29	0.548	13.13	6.34	0.45	-93.2	
		65	13.72	200	7.30	0.551	13.18	4.34	0.43	-94.9	
		85 70	13.72	200	7.30	0.551	13.18	4.34 4.12	0.48	-96.1 -96	
		70	13.72	200	1.27	0.551	13.19	4.14	0.47	-90	

Sample		Minutes	Water	Flow Rate	pН	Conductivity	Temperature	Turbidity	DO	ORP	Pump Type
Location ¹	Date	Purged	Level	(mL/min)	(Std. Units)	$(\mu S/cm)^{-2}$	(°C)	(ntu) ³	(mg/L)		
	- / /	_				0.440	45.05	15 (0	4.07	110.0	
MW-ZN-10L	7/28/2006	5	13.72	200	7.51	0.660	15.02	15.60	4.07	-112.2	
		10	13.72	200	7.36	0.617	14.39	7.56	1.91	-107.3	
		15	13.72	200	7.39	0.608	14.38	19.10	0.86	-103.5	
		20	13.72	200	7.36	0.607	14.55	17.90	0.67	-104.6	
		25	13.72	200	7.35	0.603	14.68	15.20	0.51	-101.6	
		30	13.72	200	7.33	0.600	14.76	15.50	0.45	-103.3	
		35	13.72	200	7.36	0.595	14.66	13.80	0.39	-103.9	
		40	13.72	200	7.35	0.594	14.70	13.10	0.38	-103.6	
		45	13.72	200	7.36	0.592	14.81	11.10	0.36	-103.9	
		50	13.72	200	7.38	0.590	14.78	11.00	0.34	-105.0	
		55	13.72	200	7.35	0.585	14.74	9.40	0.34	-103.1	
		60	13.72	200	7.35	0.583	14.74	9.33	0.31	-104.3	
		65	13.72	200	7.37	0.581	14.79	8.21	0.33	-104.9	
										••••	
MW-ZN-11U	7/28/2006	15	10.65	250	8.02	NM	15.7	2.6	9.4	-29.8	
		20	10.65	250	7.86	NM	15.8	34.1	7.4	-30.5	
		25	10.65	250	7.80	NM	16.0	32.0	6.4	-39.80	
		30	10.65	250	7.71	NM	16.0	23.0	5.7	-35.7	
		35	10.65	250	7.66	NM	15.5	15.8	5.2	-38.7	
		40	10.65	250	7.63	NM	15.3	10.3	5.0	-40.1	
		45	10.65	250	7.60	NM	15.3	6.1	4.8	-43.1	
		50	10.65	250	7.58	NM	15.2	4.4	4.6	-43.1	
	E (80 (800)	•	10.65	050			14.02	10.0	12.0	1.0	
MW-ZN-11L	7/28/2006	20	10.65	250	7.78	NM	14.93	19.0	13.9	-1.6	
		25	10.65	250	7.84	NM	14.78	10.7	11.9	-3.4	
		30	10.65	250	7.87	NM	14.93	7.4	9.7	-10.9	
		35	10.65	250	7.85	NM	14.96	5.3	8.9	-12.8	
		40	10.65	250	7.80	NM	14.86	4.1	8.2	-23.4	
		45	10.65	250	7.75	NM	14.97	3.7	7.5	-27.8	
		50	10.65	250	7.72	NM	14.97	3.1	36.5	-36.8	
		55	10.65	250	7.67	NM	14.99	2.0	9.4	-37.0	
		60	10.65	250	7.65	NM	14.88	1.7	7.8	-41.2	
		65	10.65	250	7.61	NM	15.02	1.2	66.6	-43.9	
		70	10.65	250	7.60	NM	16.08	1.0	6.3	-44.7	
		75	10.65	250	7.5 9	NM	15.10	1.0	6.1	-46.1	

SUMMARY OF MONITORING WELL PURGING PARAMATERS FLEETWIDE ASSESSMENT ZION STATION ZION, ILLINOIS

Sample Location ¹	Date	Minutes Purged	Water Level	Flow Rate (mL/min)	pH (Std. Units)	Conductivity (µS/cm) ²	Temperature (°C)	Turbidity (ntu) ³	DO (mg/L)	ORP	Pump Type
TW-ZN-100	7/17/2006	5	10.62		7.89	187.5	20.7	NM	NM	NM	
		10	10.62		7.69	163.7	20.3	NM	NM	NM	
		15	10.62		7.64	163.3	10.7	NM	NM	NM	
TW-ZN-101	7/17/2006	5	10.27		7.70	179.9	21.0	NM	NM	NM	
		10	10.27		7.68	179.8	20.8	NM	NM	NM	
		15	10.27		7.50	181.1	20.3	NM	NM	NM	
TW-ZN-102	7/17/2006	5	10.33		7.75	143.4	20.9	NM	NM	NM	
		10	10.33		7.85	135.9	20.6	NM	NM	NM	
		15	10.33		7.87	138.3	20.7	NM	NM	NM	
TW-ZN-103	7/17/2006	5	9.03		7.93	186.1	20.9	NM	NM	NM	
	, , ,	10	9.03		7.73	182.5	20.2	NM	NM	NM	
		15	9.03		7.59	180.5	19.8	NM	NM	NM	

Notes:

¹ Sample locations include the well identifier followed by a sample depth indicator of 'U' for the upper portion of

the screen or 'L' for the lower portion of the screen. ² µS/cm - microSiemens per centimeter

³ ntu - nephelometric turbidity units

NM = Not Measured

ANALYTICAL RESULTS SUMMARY - TRITIUM IN GROUNDWATER AND SURFACE WATER FLEETWIDE ASSESSMENT ZION STATION ZION, ILLINOIS

Sample Location ⁽¹⁾	Sample Identification	QC Sample	Sample Date	Tritium (pCi/L)	Result Error
MW-ZN-01S(L)	WG-ZN-MW-ZN-01L-052606-DS-07		5/26/2006	586	+/-141
MW-ZN-01S(L)	GW-062806-PG-02		6/28/2006	ND (200)	-
MW-ZN-01S(U)	WG-ZN-MW-ZN-01U-052606-DS-05		5/26/2006	261	+/-124
MW-ZN-01S(U)	GW-062806-PG-01		6/28/2006	220	+/-123
MW-ZN-02S(L)	WG-ZN-MW-ZN-02L-052606-DS-06		5/26/2006	ND (200)	-
MW-ZN-02S(U)	WG-ZN-MW-ZN-02U-052606-DS-04		5/26/2006	ND (200)	-
MW-ZN-03S(L)	WG-ZN-MW-ZN-03L-052506-DS-03		5/25/2006	ND (200)	-
MW-ZN-03S(U)	WG-ZN-MW-ZN-03U-052506-DS-01		5/25/2006	ND (200)	-
MW-ZN-03S(U)	WG-ZN-MW-ZN-03U-052506-DS-02	Duplicate (01)	5/25/2006	ND (200)	-
MW-ZN-04S(L)	WG-ZION-MW-4L-052406-MB-004		5/24/2006	ND (200)	-
MW-ZN-04S(U)	WG-ZION-MW-4U-052406-MB-002		5/24/2006	ND (200)	-
MW-ZN-05S(L)	WG-ZION-MW-5L-052606-MS-013		5/26/2006	ND (200)	-
MW-ZN-05S(U)	WG-ZION-MW-5U-052606-MS-017		5/26/2006	ND (200)	-
MW-ZN-06S(L)	WG-ZION-MW-6L-052506-MS-009		5/25/2006	ND (200)	-
MW-ZN-06S(U)	WG-ZION-MW-6U-052606-MS-011		5/26/2006	ND (200)	-
MW-ZN-07S(L)	WG-ZION-MW-7L-052506-MS-007		5/25/2006	ND (200)	-
MW-ZN-07S(U)	WG-ZION-MW-7U-052406-MS-005		5/24/2006	ND (200)	-
MW-ZN-08S(L)	WG-ZION-MW-8L-052406-MS-001		5/24/2006	ND (200)	-
MW-ZN-08S(U)	WG-ZION-MW-8U-052406-MS-003		5/24/2006	ND (200)	-
MW-ZN-09S	WG-ZN-MW-ZN-09-052606-DS-08		5/26/2006	ND (200)	-
MW-ZN-09S	WG-ZN-MW-ZN-09-052606-DS-09	Duplicate (08)	5/26/2006	ND (200)	-
MW-ZN-10S(L)	WG-ZN-MW-ZN-10L-072806-MS-005		7/28/2006	ND (200)	-
MW-ZN-10S(U)	WG-ZN-MW-ZN-10U-072806-MS-003		7/28/2006	ND (200)	-
MW-ZN-10S(U)	WG-ZN-MW-ZN-10U-072806-MS-004		7/28/2006	ND (200)	-
MW-ZN-11S(L)	WG-ZN-MW-ZN-11L-072806-TL-002		7/28/2006	ND (200)	-
MW-ZN-11S(U)	WG-ZN-MW-ZN-11U-072806-TL-001		7/28/2006	ND (200)	-
SW-ZN-1	WS-ZION-LAKE-052606-MS-015		5/26/2006	ND (200)	-
TW-ZN-100	GW-071706-JL-TW-ZN-100		7/17/2006	ND (200)	-
TW-ZN-101	GW-071706-JL-TW-ZN-101		7/17/2006	ND (200)	-
TW-ZN-102	GW-071706-JL-TW-ZN-102		7/17/2006	ND (200)	-
TW-ZN-103	GW-071706-JL-TW-ZN-103		7/17/2006	ND (200)	-

Notes:

Samples analyzed by: Teledyne Brown Engineering, Inc.

(1) Sample locations include the well identifier followed by a sample depth indicator of 'U' for the upper portion of

the screen or 'L' for the lower portion of the screen.

ND () - Not detected at a concentration above the LLD. Value in parentheses is the LLD.

LLD - Lower limit of detection.

- - Non-detect value, +/- value not reported.

ANALYTICAL RESULTS SUMMARY - RADIONUCLIDES IN GROUNDWATER AND SURFACE WATER FLEETWIDE ASSESSMENT ZION STATION ZION, ILLINOIS

Sample Location ⁽¹⁾ : Sample Identification: Sample Date:		MW-ZN-01S(L) WG-ZN-MW-ZN-01L-052606-DS-07 5/26/2006	MW-ZN-01S(L) Result Error	MW-ZN-01S(U) WG-ZN-MW-ZN-01U-052606-DS-05 5/26/2006	MW-ZN-01S(U) Result Error	MW-ZN-02S(L) WG-ZN-MW-ZN-02L-052606-DS-06 5/26/2006	MW-ZN-02S(L) Result Error
Target Radionuclides	Units						
Barium-140 Cesium-134 Cesium-137 Cobalt-58 Cobalt-60 Iron-59 Lanthanum-140 Manganese-54 Niobium-95 Strontium-89/90 (Total) Zinc-65 Zirconium-95	pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L	ND (60) ND (10) ND (18) ND (15) ND (15) ND (15) ND (15) ND (15) ND (15) ND (10) ND (2) ND (30) ND (10)		ND (60) ND (10) ND (18) ND (15) ND (15) ND (30) ND (15) ND (15) ND (10) ND (2) ND (30) ND (10)		ND (60) ND (10) ND (18) ND (15) ND (15) ND (30) ND (15) ND (15) ND (10) ND (2) ND (30) ND (10)	
Non-Target Radionuclides ⁽²⁾							
Actinium-228 Potassium-40	pCi/L pCi/L	35.23 53.04	+/-10.3 +/-34.2	RNI RNI	-	RNI 81.03	+/-42.45

Notes:

Samples analyzed by: Teledyne Brown

(1) - Sample locations include the well

identifier followed by a depth indicator

of 'U' for the upper portion of the screen

or 'L' for the lower portion of the screen.

(2) - Radionuclide is naturally occurring.

(P) - Nationalized in Marting Occurring. RNI- Radionuclide Not learning during analysis. ND () - Not detected at a concentration above the LLD. Value in parentheses is the LLD.

LLD - Lower limit of detection.

U* - Compound/Analyte not detected.

Peak not identified, but forced activity

concentration exceeds Minimum

Detectable Concentration and 3 sigma.

- - Non-detect value, +/- value not reported.

Page 1 of 10

ANALYTICAL RESULTS SUMMARY - RADIONUCLIDES IN GROUNDWATER AND SURFACE WATER FLEETWIDE ASSESSMENT ZION STATION ZION, ILLINOIS

Sample Location ⁽¹⁾ : Sample Identification: Sample Date:		MW-ZN-02S(U) WG-ZN-MW-ZN-02U-052606-DS-04 5/26/2006	MW-ZN-02S(U) Result Error	MW-ZN-03S(L) WG-ZN-MW-ZN-03L-052506-DS-03 5/25/2006	MW-ZN-03S(L) Result Error	MW-ZN-03S(U) WG-ZN-MW-ZN-03U-052506-DS-01 5/25/2006	MW-ZN-03S(U) Result Error
Target Radionuclides	Units						
Barium-140	pCi/L	ND (60)	-	ND (60)	-	ND (60)	-
Cesium-134	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Cesium-137	pCi/L	ND (18)	-	ND (18)	-	ND (18)	-
Cobalt-58	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Cobalt-60	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Iron-59	pCi/L	ND (30)	-	ND (30)	-	ND (30)	-
Lanthanum-140	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Manganese-54	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Niobium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Strontium-89/90 (Total)	pCi/L	ND (2)	-	ND (2)	-	ND (2)	-
Zinc-65	pCi/L	ND (30)	-	ND (30)	-	ND (30)	-
Zirconium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Non-Target Radionuclides ⁽²⁾							
Actinium-228	pCi/L	RNI	-	RNI	-	RNI	-
Potassium-40	pCi/L	73.65	+/-44.47	RNI	-	RNI	-

Notes:

Samples analyzed by: Teledyne Brown (1) - Sample locations include the well identifier followed by a depth indicator of 'U' for the upper portion of the screen or 'L' for the lower portion of the screen. (2) - Radionuclide is naturally occurring. RNI- Radionuclide Not Identified during analysis. ND () - Not detected at a concentration above the LLD. Valı

LLD - Lower limit of detection.

U* - Compound/Analyte not detected.

Peak not identified, but forced activity

concentration exceeds Minimum Detectable Concentration and 3 sigma.

- - Non-detect value, +/- value not reported.

Page 2 of 10

ANALYTICAL RESULTS SUMMARY - RADIONUCLIDES IN GROUNDWATER AND SURFACE WATER FLEETWIDE ASSESSMENT ZION STATION ZION, ILLINOIS

Sample Location ⁽¹⁾ : Sample Identification: Sample Date:		MW-ZN-03S(U) WG-ZN-MW-ZN-03U-052506-DS-02 5/25/2006 Duplicate	MW-ZN-03S(U) Result Error	MW-ZN-04S(L) WG-ZION-MW-4L-052406-MB-004 5/24/2006	MW-ZN-04S(L) Result Error	MW-ZN-04S(U) WG-ZION-MW-4U-052406-MB-002 5/24/2006	MW-ZN-04S(U) Result Error
Target Radionuclides	Units						
Turger Turnerines							
Barium-140	pCi/L	ND (60)	-	ND (60)	-	ND (60)	-
Cesium-134	pCi/L	ND (10) U*	-	ND (10)	-	ND (10)	-
Cesium-137	pCi/L	ND (18)	-	ND (18)	-	ND (18)	-
Cobalt-58	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Cobalt-60	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Iron-59	pCi/L	ND (30)	-	ND (30)	-	ND (30)	-
Lanthanum-140	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Manganese-54	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Niobium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Strontium-89/90 (Total)	pCi/L	ND (2)	-	ND (2)	-	ND (2)	-
Zinc-65	pCi/L	ND (30) U*	-	ND (30)	-	ND (30)	-
Zirconium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Non-Target Radionuclides ⁽²⁾							
Actinium-228	pCi/L	RNI	-	RNI	-	RNI	-
Potassium-40	pCi/L	RNI	-	85.89	+/-44.24	RNI	-

Notes:

Samples analyzed by: Teledyne Brown (1) - Sample locations include the well identifier followed by a depth indicator of 'U' for the upper portion of the screen or 'L' for the lower portion of the screen. (2) - Radionuclide is naturally occurring. RNI- Radionuclide Not Identified during analysis. ND () - Not detected at a concentration above the LLD. Valı LLD - Lower limit of detection. U* - Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds Minimum Detectable Concentration and 3 sigma. - Non-detect value, +/- value not reported.

ANALYTICAL RESULTS SUMMARY - RADIONUCLIDES IN GROUNDWATER AND SURFACE WATER FLEETWIDE ASSESSMENT ZION STATION ZION, ILLINOIS

Sample Location ⁽¹⁾ : Sample Identification: Sample Date:		MW-ZN-05S(L) WG-ZION-MW-5L-052606-MS-013 5/26/2006	MW-ZN-05S(L) Result Error	MW-ZN-05S(U) WG-ZION-MW-5U-052606-MS-017 5/26/2006	MW-ZN-05S(U) Result Error	MW-ZN-06S(L) WG-ZION-MW-6L-052506-MS-009 5/25/2006	MW-ZN-06S(L) Result Error
Target Radionuclides	Units						
Barium-140	pCi/L	ND (60)	-	ND (60)	-	ND (60)	-
Cesium-134	pCi/L	ND (10)	-	ND (10)	-	ND (10) U*	-
Cesium-137	pCi/L	ND (18)	-	ND (18)	-	ND (18)	-
Cobalt-58	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Cobalt-60	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Iron-59	pCi/L	ND (30)	-	ND (30)	-	ND (30)	-
Lanthanum-140	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Manganese-54	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Niobium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10) U*	-
Strontium-89/90 (Total)	pCi/L	ND (2)	-	ND (2)	-	ND (2)	-
Zinc-65	pCi/L	ND (30)	-	ND (30)	-	ND (30) U*	-
Zirconium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Non-Target Radionuclides ⁽²⁾							
Actinium-228	pCi/L	RNI	-	RNI	-	RNI	-
Potassium-40	pCi/L	RNI	-	RNI	-	RNI	-

Notes:

Samples analyzed by: Teledyne Brown (1) - Sample locations include the well identifier followed by a depth indicator of 'U' for the upper portion of the screen or 'L' for the lower portion of the screen. (2) - Radionuclide Not Identified during analysis. ND () - Not detected at a concentration above the LLD. Valı LLD - Lower limit of detection. U* - Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds Minimum Detectable Concentration and 3 sigma. - - Non-detect value, +/- value not reported.

ANALYTICAL RESULTS SUMMARY - RADIONUCLIDES IN GROUNDWATER AND SURFACE WATER FLEETWIDE ASSESSMENT ZION STATION ZION, ILLINOIS

Sample Location ⁽¹⁾ : Sample Identification: Sample Date:		MW-ZN-06S(U) WG-ZION-MW-6U-052606-MS-011 5/26/2006	MW-ZN-06S(U) Result Error	MW-ZN-07S(L) WG-ZION-MW-7L-052506-MS-007 5/25/2006	MW-ZN-07S(L) Result Error	MW-ZN-07S(U) WG-ZION-MW-7U-052406-MS-005 5/24/2006	MW-ZN-07S(U) Result Error
	Units						
Target Radionuclides							
Barium-140	pCi/L	ND (60)	-	ND (60)	-	ND (60)	-
Cesium-134	pCi/L	ND (10)	-	ND (10) U*	-	ND (10) U*	-
Cesium-137	pCi/L	ND (18)	-	ND (18)	-	ND (18)	-
Cobalt-58	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Cobalt-60	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Iron-59	pCi/L	ND (30)	-	ND (30)	-	ND (30)	-
Lanthanum-140	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Manganese-54	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Niobium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Strontium-89/90 (Total)	pCi/L	ND (2)	-	ND (2)	-	ND (2)	-
Zinc-65	pCi/L	ND (30)	-	ND (30)	-	ND (30) U*	-
Zirconium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Non-Target Radionuclides ⁽²⁾							
Actinium-228	pCi/L	RNI	-	RNI	-	RNI	-
Potassium-40	pCi/L	RNI	-	RNI	-	RNI	-

Notes:

Samples analyzed by: Teledyne Brown (1) - Sample locations include the well identifier followed by a depth indicator of 'U' for the upper portion of the screen or 'L' for the lower portion of the screen. (2) - Radionuclide is naturally occurring. RNI- Radionuclide Not Identified during analysis. ND () - Not detected at a concentration above the LLD. Valı LLD - Lower limit of detection. U* - Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds Minimum Detectable Concentration and 3 sigma.

- - Non-detect value, +/- value not reported.

ANALYTICAL RESULTS SUMMARY - RADIONUCLIDES IN GROUNDWATER AND SURFACE WATER FLEETWIDE ASSESSMENT ZION STATION ZION, ILLINOIS

Sample Location ⁽¹⁾ : Sample Identification: Sample Date:	MW-ZN-08S(L) WG-ZION-MW-8L-052406-MS-001 5/24/2006	MW-ZN-08S(L) Result Error	MW-ZN-08S(U) WG-ZION-MW-8U-052406-MS-003 5/24/2006	MW-ZN-08S(U) Result Error	MW-ZN-095 WG-ZN-MW-ZN-09-052606-DS-08 5/26/2006	MW-ZN-09S Result Error
Units Target Radionuclides						
Barium-140 pCi/L	ND (60)	-	ND (60)	-	ND (60)	-
Cesium-134 pCi/L	ND (10) U*	-	ND (10)	-	ND (10)	-
Cesium-137 pCi/L		-	ND (18)	-	ND (18)	-
Cobalt-58 pCi/I	ND (15)	-	ND (15)	-	ND (15)	-
Cobalt-60 pCi/I	ND (15)	-	ND (15)	-	ND (15)	-
Iron-59 pCi/I	ND (30)	-	ND (30)	-	ND (30)	-
Lanthanum-140 pCi/I	ND (15)	-	ND (15)	-	ND (15)	-
Manganese-54 pCi/I	ND (15)	-	ND (15)	-	ND (15)	-
Niobium-95 pCi/I	ND (10)	-	ND (10)	-	ND (10)	-
Strontium-89/90 (Total) pCi/L	ND (2)	-	ND (2)	-	ND (2)	-
Zinc-65 pCi/I	ND (30)	-	ND (30)	-	ND (30)	-
Zirconium-95 pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Non-Target Radionuclides ⁽²⁾						
Actinium-228 pCi/I	RNI	-	RNI	-	RNI	-
Potassium-40 pCi/L		-	69.37	+/-45.71	RNI	-

Notes:

Samples analyzed by: Teledyne Brown (1) - Sample locations include the well identifier followed by a depth indicator of 'U' for the upper portion of the screen or 'L' for the lower portion of the screen. (2) - Radionuclide is naturally occurring. RNI- Radionuclide Not Identified during analysis. ND () - Not detected at a concentration above the LLD. Valı LLD - Lower limit of detection. U* - Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds Minimum Detectable Concentration and 3 sigma.

- - Non-detect value, +/- value not reported.

Page 6 of 10

ANALYTICAL RESULTS SUMMARY - RADIONUCLIDES IN GROUNDWATER AND SURFACE WATER FLEETWIDE ASSESSMENT ZION STATION ZION, ILLINOIS

Sample Location ⁽¹⁾ : Sample Identification: Sample Date:		MW-ZN-09S WG-ZN-MW-ZN-09-052606-DS-09 5/26/2006 Duplicate	MW-ZN-09S Result Error	MW-ZN-10S(L) WG-ZN-MW-ZN-10L-072806-MS-005 7/28/2006	MW-ZN-10S(L) Result Error	MW-ZN-105(U) WG-ZN-MW-ZN-10U-072806-MS-003 7/28/2006	MW-ZN-10S(U) Result Error
Target Radionuclides	Units						
Barium-140	pCi/L	ND (60)	-	ND (60)	-	ND (60)	-
Cesium-134	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Cesium-137	pCi/L	ND (18)	-	ND (18)	-	ND (18)	-
Cobalt-58	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Cobalt-60	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Iron-59	pCi/L	ND (30)	-	ND (30)	-	ND (30)	-
Lanthanum-140	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Manganese-54	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Niobium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Strontium-89/90 (Total)	pCi/L	ND (2)	-	ND (2)	-	ND (2)	-
Zinc-65	pCi/L	ND (30)	-	ND (30)	-	ND (30)	-
Zirconium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Non-Target Radionuclides ⁽²⁾							
Actinium-228	pCi/L	RNI	-	RNI	-	RNI	-
Potassium-40	pCi/L	RNI	-	RNI	-	83.66	+/-42.25

Notes:

Samples analyzed by: Teledyne Brown (1) - Sample locations include the well identifier followed by a depth indicator of 'U' for the upper portion of the screen or 'L' for the lower portion of the screen. (2) - Radionuclide is naturally occurring. RNI- Radionuclide Not Identified during analysis. ND () - Not detected at a concentration above the LLD. Valı

LLD - Lower limit of detection.

U* - Compound/Analyte not detected.

Peak not identified, but forced activity

concentration exceeds Minimum

Detectable Concentration and 3 sigma. - - Non-detect value, +/- value not reported.

ANALYTICAL RESULTS SUMMARY - RADIONUCLIDES IN GROUNDWATER AND SURFACE WATER FLEETWIDE ASSESSMENT ZION STATION ZION, ILLINOIS

Sample Location ⁽¹⁾ : Sample Identification: Sample Date:		MW-ZN-10S(U) WG-ZN-MW-ZN-10U-072806-MS-004 7/28/2006	MW-ZN-10S(U) Result Error	MW-ZN-11S(L) WG-ZN-MW-ZN-11L-072806-TL-002 7/28/2006	MW-ZN-11S(L) Result Error	MW-ZN-11S(U) WG-ZN-MW-ZN-11U-072806-TL-001 7/28/2006	MW-ZN-11S(U) Result Error
Target Radionuclides	Units						
Turget Kuutonuchues							
Barium-140	pCi/L	ND (60)	-	ND (60)	-	ND (60)	-
Cesium-134	pCi/L	ND (10) U*	-	ND (10) U*	-	ND (10) U*	-
Cesium-137	pCi/L	ND (18)	-	ND (18)	-	ND (18)	-
Cobalt-58	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Cobalt-60	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Iron-59	pCi/L	ND (30)	-	ND (30)	-	ND (30)	-
Lanthanum-140	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Manganese-54	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Niobium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Strontium-89/90 (Total)	pCi/L	ND (2)	-	ND (2)	-	ND (2)	-
Zinc-65	pCi/L	ND (30) U*	-	ND (30)	-	ND (30) U*	-
Zirconium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Non-Target Radionuclides ⁽²⁾							
Actinium-228	pCi/L	RNI	-	RNI	-	RNI	-
Potassium-40	pCi/L	RNI	-	RNI	-	RNI	-

Notes:

Samples analyzed by: Teledyne Brown (1) - Sample locations include the well identifier followed by a depth indicator of 'U' for the upper portion of the screen or 'L' for the lower portion of the screen. (2) - Radionuclide is naturally occurring. RNI- Radionuclide Not Identified during analysis. ND () - Not detected at a concentration above the LLD. Valı LLD - Lower limit of detection. U* - Compound/Analyte not detected. Peak not identified, but forced activity

concentration exceeds Minimum

Detectable Concentration and 3 sigma.

- - Non-detect value, +/- value not reported.

Page 8 of 10

ANALYTICAL RESULTS SUMMARY - RADIONUCLIDES IN GROUNDWATER AND SURFACE WATER FLEETWIDE ASSESSMENT ZION STATION ZION, ILLINOIS

Sample Location ⁽¹⁾ : Sample Identification: Sample Date:		SW-ZN-1 WS-ZION-LAKE-052606-MS-015 5/26/2006	SW-ZN-1 Result Error	TW-ZN-100 GW-071706-JL-TW-ZN-100 7/17/2006	TW-ZN-100 Result Error	TW-ZN-101 GW-071706-JL-TW-ZN-101 7/17/2006	TW-ZN-101 Result Error	TW-ZN-101 GW-071706-JL-TW-ZN-101 7/17/2006 Re-run	TW-ZN-101 Result Error
	Units								
Target Radionuclides									
Barium-140	pCi/L	ND (60)	-	ND (60)	-	ND (60)	-	ND (60)	-
Cesium-134	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-	ND (10) U*	-
Cesium-137	pCi/L	ND (18)	-	ND (18)	-	ND (18)	-	ND (18)	-
Cobalt-58	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-
Cobalt-60	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-
Iron-59	pCi/L	ND (30)	-	ND (30)	-	ND (30)	-	ND (30)	-
Lanthanum-140	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-
Manganese-54	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-
Niobium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-	ND (10)	-
Strontium-89/90 (Total)	pCi/L	ND (2)	-	ND (2)	-	ND (2)	-	-	-
Zinc-65	pCi/L	ND (30)	-	ND (30)	-	ND (30)	-	ND (30) U*	-
Zirconium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-	ND (10)	-
Non-Target Radionuclides ⁽²⁾									
Actinium-228	pCi/L	RNI	-	RNI		RNI	-	RNI	-
Potassium-40	pCi/L	106.8	+/-48.41	RNI		RNI	-	RNI	-

Notes:

Samples analyzed by: Teledyne Brown (1) - Sample locations include the well

identifier followed by a depth indicator

of 'U' for the upper portion of the screen or 'L' for the lower portion of the screen.

(2) - Radionuclide is naturally occurring.

RNI- Radionuclide Not Identified during analysis. ND () - Not detected at a concentration above the LLD. Valı

LLD - Lower limit of detection.

U* - Compound/Analyte not detected.

Peak not identified, but forced activity

concentration exceeds Minimum

Detectable Concentration and 3 sigma. - - Non-detect value, +/- value not reported.

ANALYTICAL RESULTS SUMMARY - RADIONUCLIDES IN GROUNDWATER AND SURFACE WATER FLEETWIDE ASSESSMENT ZION STATION ZION, ILLINOIS

Sample Location ⁽¹⁾ : Sample Identification: Sample Date:		TW-ZN-102 GW-071706-JL-TW-ZN-102 7/17/2006	TW-ZN-102 Result Error	TW-ZN-103 GW-071706-JL-TW-ZN-103 7/17/2006	TW-ZN-103 Result Error
	Units				
Target Radionuclides					
Barium-140	pCi/L	ND (60)	-	ND (60)	-
Cesium-134	pCi/L	ND (10)	-	ND (10)	-
Cesium-137	pCi/L	ND (18)	-	ND (18)	-
Cobalt-58	pCi/L	ND (15)	-	ND (15)	-
Cobalt-60	pCi/L	ND (15)	-	ND (15)	-
Iron-59	pCi/L	ND (30)	-	ND (30)	-
Lanthanum-140	pCi/L	ND (15)	-	ND (15)	-
Manganese-54	pCi/L	ND (15)	-	ND (15)	-
Niobium-95	pCi/L	ND (10)	-	ND (10)	-
Strontium-89/90 (Total)	pCi/L	ND (2)	-	ND (2)	-
Zinc-65	pCi/L	ND (30)	-	ND (30)	-
Zirconium-95	pCi/L	ND (10)	-	ND (10)	-
Non-Target Radionuclides ⁽²⁾					
Actinium-228	pCi/L	RNI	-	RNI	-
Potassium-40	pCi/L	RNI	-	RNI	-

Notes:

Samples analyzed by: Teledyne Brown (1) - Sample locations include the well identifier followed by a depth indicator of 'U' for the upper portion of the screen or 'L' for the lower portion of the screen. (2) - Radionuclide Not Identified during analysis. ND () - Not detected at a concentration above the LLD. Valı LLD - Lower limit of detection. U* - Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds Minimum Detectable Concentration and 3 sigma. - - Non-detect value, +/- value not reported.

Revision 0

APPENDIX A

WATER WELL INVENTORY RECORDS

- A.1 BANKS 2006 WATER WELL REPORT
- A.2 ISWS LOGS

Revision 0

A.1 BANKS 2006 WATER WELL REPORT

Solutions, Inc.

June 7, 2006

Conestoga-Rovers & Associates

8615 W Bryn Mawr Avenue

Chicago, IL 60631

SITE

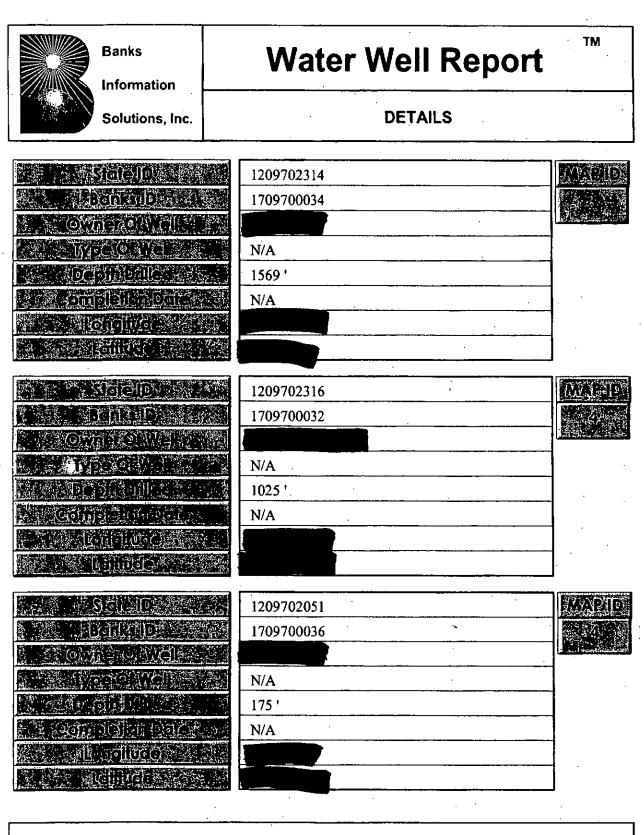
Zion Generating Station

Zion, IL

Lake County

060706-001

P.O. Box 12851, Capitol Station, Austin, TX 78711 700 N. Lamar, Suite 200 Austin, TX 78703 512.478.0059 FAX 512.478.1433 e-mail banks@banksinfo.com Copyright 1998 by Banks Information Solutions, Inc.


тм

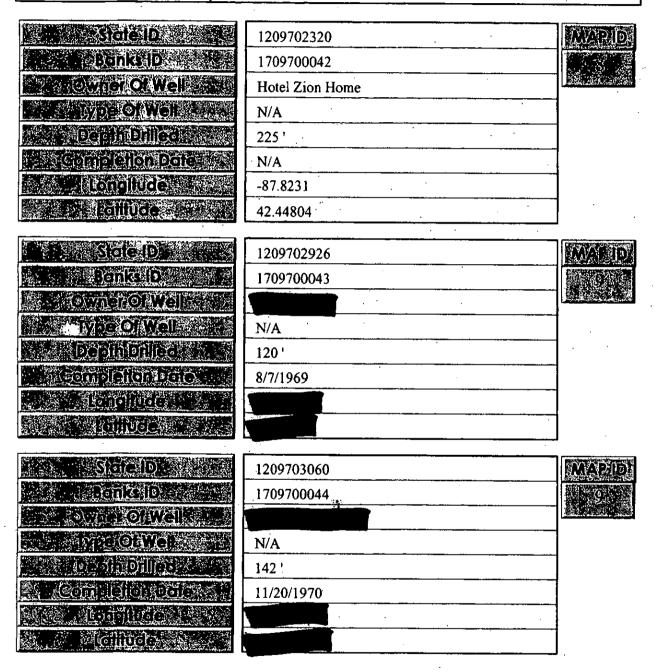
Water Well Report Map of Wells within 1 Mile

(Withheld)

		. •
Banks Information	Water Well R	eport [™]
Solutions, Inc.	DETAILS	· · · · · · · · · · · · · · · · · · ·
	1209702313	
	1709700030	
CWASACIANCI		
	N/A	
<u>E Competende</u> E Competende de la competencia	62'	
Sels[•]III[0] = 2	1/1/1950	<u> </u>
	1209702312	AV2210
Belillago	1709700033	
A P. MANDAVIA		
Conpie ion por	200 ' N/A	· · · · · · · · · · · · · · · · · · ·
and the first of the second		······
Source House and Source States	1209702317	IC ANALO
	1709700031	
<u>Selection of the selection of the selec</u>		
ANNA ZOCACINICILA	N/A	
CENSELIM Deles		
C PURC	1/1/1952	
and the state of t		

. **.** .

Banks	Water Well Report	TM
Solutions, I	ic. DETAILS	
	1209737424	
1 Conte II.	1709700039	
CONDEROINE		
Wet of Wet	N/A	· .
Hall Stream Dilles	. 180 '	
	N/A	
- Initution]
Releides	1209726844	MAPID
	1709700040	
MAN 20 Miner Of Well	City of Zion	
A STADOM AND	N/A	- ·
er de la participation de	15'	
Come Clore	11/1/1972	
	-87.81565	- - ,
and A Statisticity of	42.44982	
Service Services	1209702319	
A LISTE	1709700041	
A NOW E OIWEI		
Montel Mich	N/A	-
A DE DEILE		1
	N/A	
		· ·



Information Solutions, Inc.

Banks

DETAILS

ТΜ

Information

Banks

Solutions, Inc.

DETAILS

ណាក់ 1209702322 **Onkiele** 1709700045 (Centre) Zion Estates N/A **a** 73 138 ' N/A -87.80146 42.44612 1209702292 1709700065 N/A 266'

 1209702292

 1709700065

 N/A

 266 '

 9/1/1940

Í	MAPIO

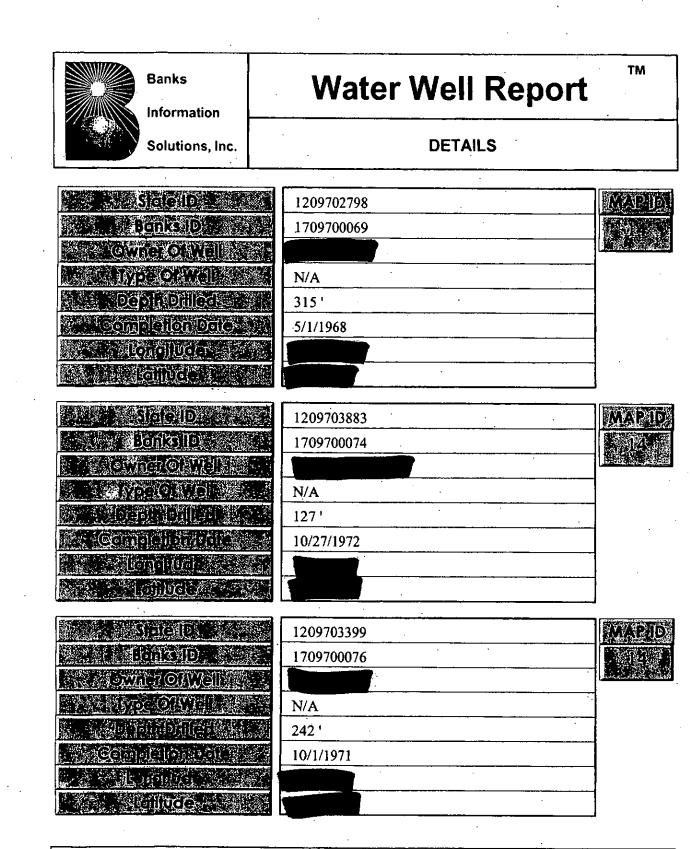
TM

Signalia Signalia Source of Well Control Signal Source of Well Control Signal S

IMAR
· · · · · · · · · · · · · · · · · · ·

Information

Banks


Solutions, Inc.

DETAILS

Side De Cu	1209725155	MARIO
BenkellD	1709700071	
Swiner Of Well	Busch & Larson	
	N/A]
A Standard Contraction	195 ']
Campletten Dele	1/24/1977	
	-87.82865	
Leindige	42.46128	
Stofe ID	1209733751	MARIN
Benks ID	1709700088	1000
Ownersol Well		
en avze of Kell	N/A	
AL AS A DE PHADIII DE	160 '	
Completing and	9/30/1977]
].
as illuent		
No 2015 SteitOILE MEETER	1209703280	MARID
Banks IE	1709700075	
Cowner of Wells		
Makaking Cawol and	N/A	
Decil stilles	322 '	1
Server annelion Peles M	7/1/1971]
]
Le la Loijiner .]

P.O. Box 12851, Capitol Station, Austin, TX 78711 700 N. Lamar, Suite 200 Austin, TX 78703 512.478.0059 FAX 512.478.1433 e-mail banks@banksinfo.com Copyright 1998 by Banks Information Solutions, Inc. ТМ

Banks Information	Water Well Report	тм
Solutions, Inc.	DETAILS	
State ID AbinKsilb Monte Of Well Monte Of Well Monte Of Well Monte Of Well	1209702617 1709700066 N/A 146 '	
	1/1/1963 1/1/1963 1209702618	
	1709700067 N/A 160 '	
	1/1/1963	
	1709700068 N/A 137 '	
sille recompletion trate (1/1/1963	

Information

Banks

Water Well Report

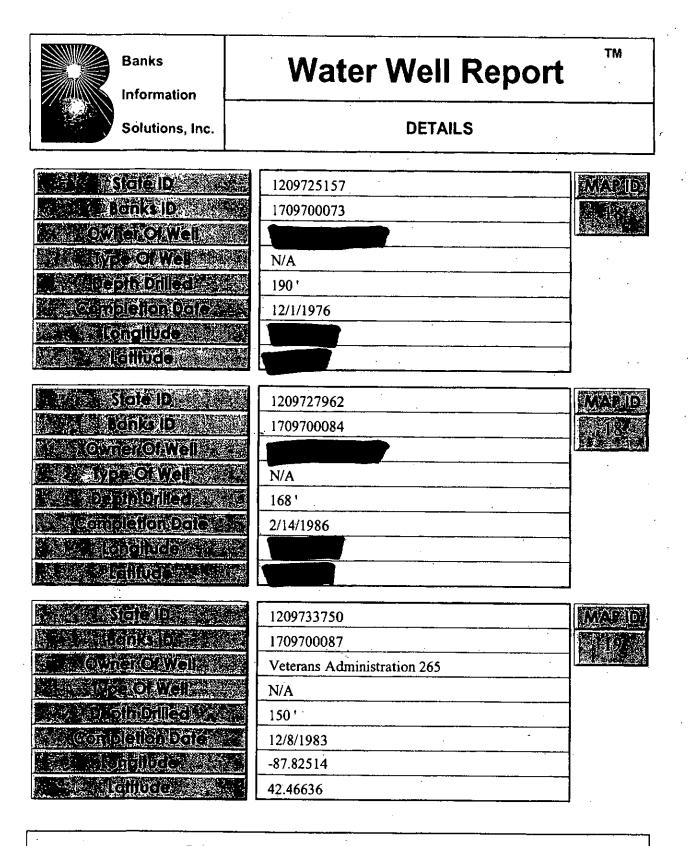
Solutions, Inc.

DETAILS

State ID State ID State ID State ID State Of Well Depth Drilled Depth Drilled State Completion Date State Completion Date

1209724153		
1709700077		
Si Henarichs Agency		
N/A		1
138 '		1
11/12/1973		
-87.82705	· · · · · · · · · · · · · · · · · · ·	-
42.4684	· · · ·	1 .

Bonksilo Bon

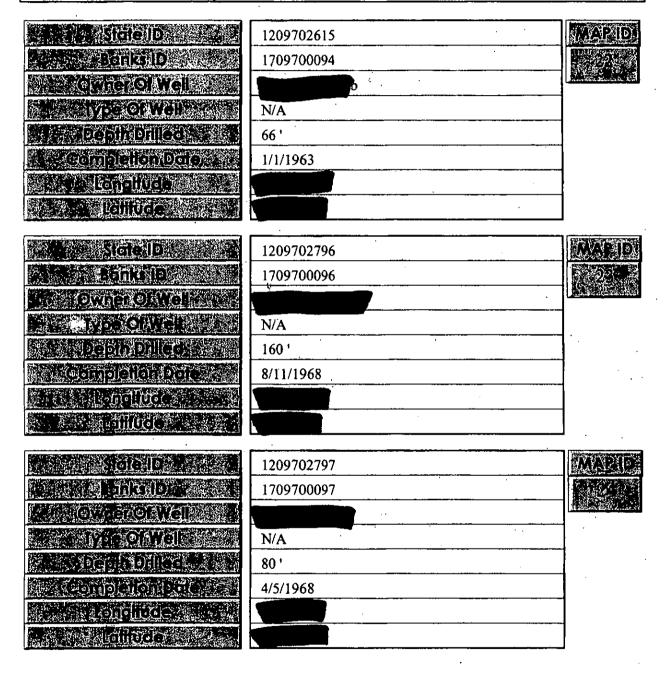

1209726697	
1709700080	
N/A	
145'	· · · · · · · · · · · · · · · · · · ·
9/21/1978	
	· · · · · · · · ·

MAEID 1.16

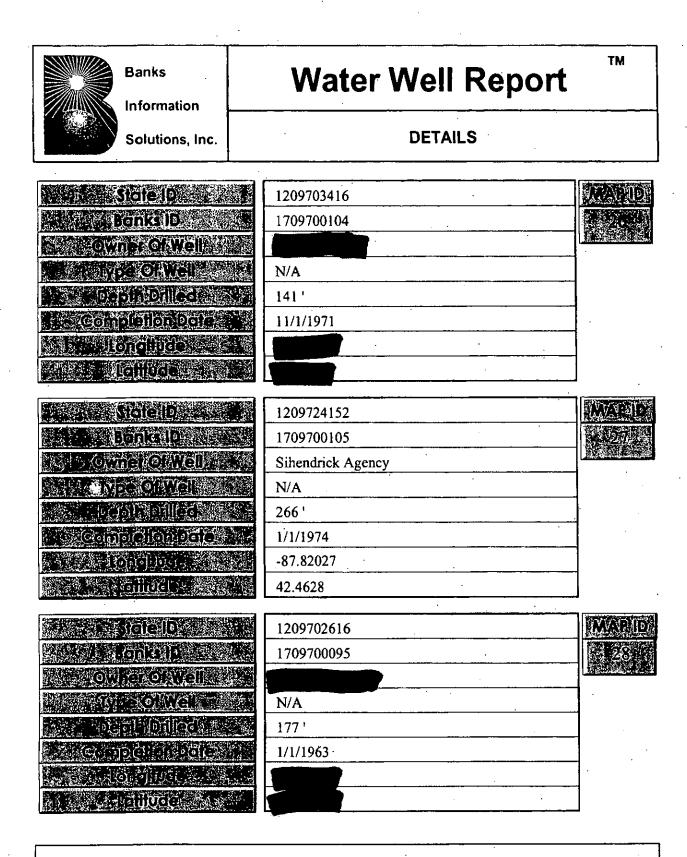
ТΜ

Sicile in And Boink file Signature S

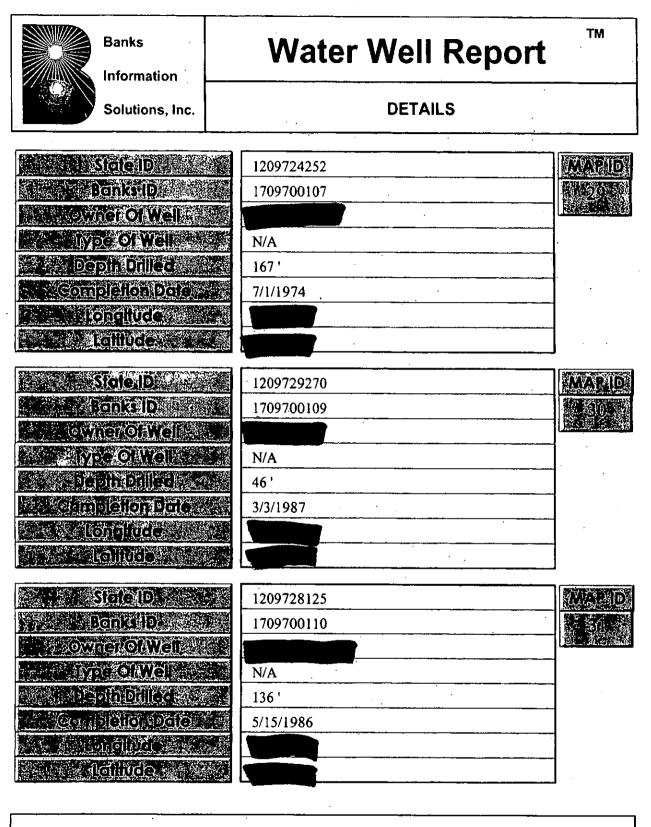
1209726818	TAVAPNID
1709700081	
N/A	······
274 '	· · · · · · · · · · · · · · · · · · ·
12/1/1977	



	Banks Information	Water Well Report	ТМ
	Solutions, Inc.	DETAILS	
added in the second second	State ID	1209702287	A VALETON
	BonkelD	1709700090	1920
	voer of well		
	pe of Well	N/A	
and a state of the second	oth Driffed	119'	
and the second sec	<u>. Sourofele</u> r	1/1/1940	· ·
det de la companya d	onolune es er		
	State ID	1209727833	MAPID
and and an an an and an and an	Bonks ID	1709700108	20
CI.			
No. N	SIE CIWCIE	N/A	
	FULLERING	55'	
a con	lelenenee	11/30/1985	
	entellinio		
	Leillone		
	States dis		
	an is the second	1209702288	MARIE
in the second second second		1709700091 Camp Logan	
	SEX ORYCE	N/A	
	alounice	110'	
	DEIDNECIC	1/1/1941	
a familia de la companya de la compa	ongituleen	-87.80954	
references and shall be a set of		42.46519	


DETAILS

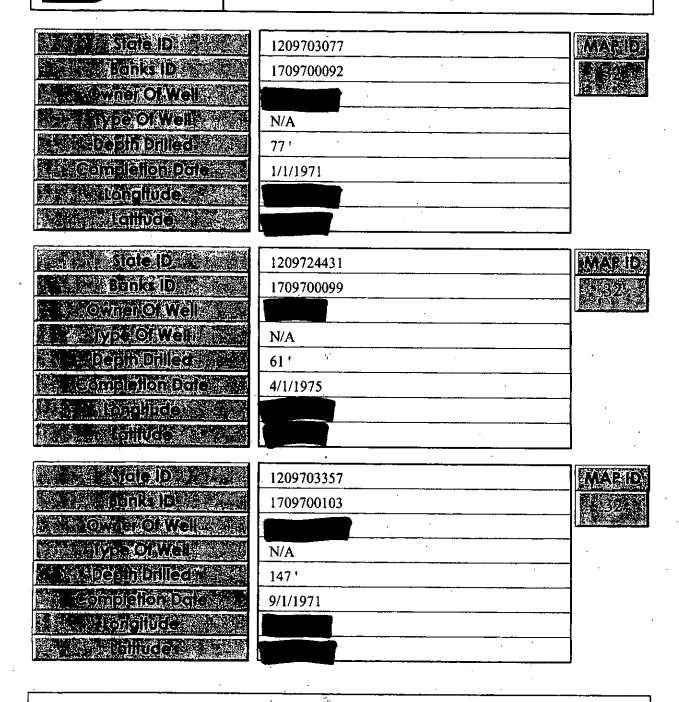
ТΜ

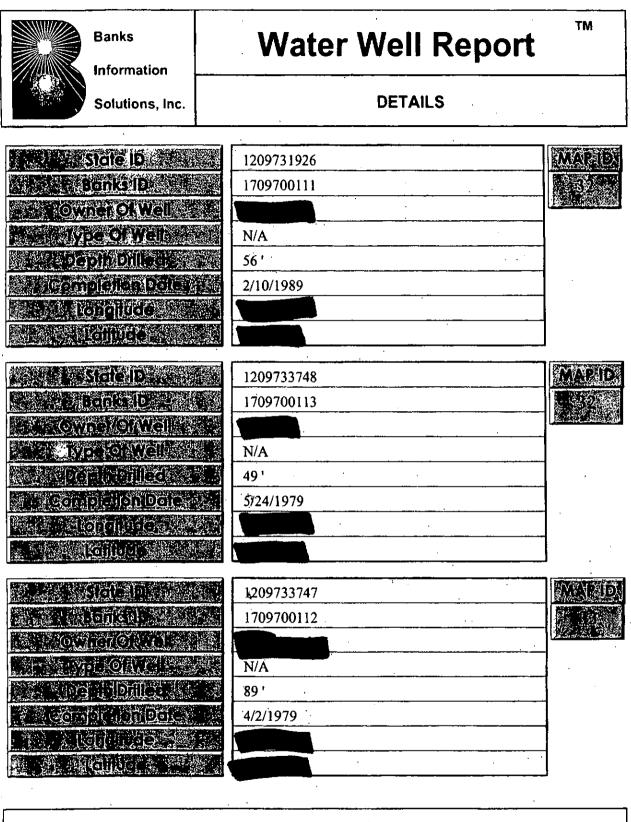


	————·		
в	anks	Water Well Report	TM
lr Ir	nformation	•	·····
s	olutions, Inc.	DETAILS	
		1209725066	WAR TO
. Ic	nks ID	1709700098	
Owne	Conwell		
AND AND AND AND AND AND AND AND AND AND 	Of Well The	N/A	-
Depi	hidrille	127 '	-
	<u>MonPole</u>	11/18/1976	-
S. S. S. S. Born	-hitco		
्राज	imed see		
		1209702614	MAP ID
A REAL PROPERTY AND A REAL		1709700093	28-275 N
والأسيبي بريد ومحمد من ومشتقي ومشتقي والم	CIAXEL	N/A	
	NAME OF A	130 '	.
	unden (1/1/1963	
			-
	INCO AND		J
৯৯৯ জন প্রাত	ic I	1209703882	AVAL 10
		1709700101	
State	ZOTAXCTIC -	Pitcher Construction Co.	
	CHIQUE	N/A	· ·
	Monilloci	138 ']
	inom Dan	4/3/1973	
ka konj		-87.81686	ļ
	ive 🗠 🔬	42.47065	

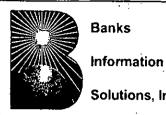
· ,

Banks	Water Well Report	TM
Solutions, Inc.	DETAILS	
	1209703881	MARID
Boinks ID	1709700100	
Winer Of Well		
A MARY DE OF Well	N/A	
The Pepin Drilled	134 '	1
Completion Date	6/2/1972	
Constitutes		
Cathude &		
Sicte ID	1209703921	MAYED
and Jointo Ib	1709700102	
Market Of Well		
Second Second Second	N/A	
Teethonie:	143 '	
Completion Dates	5/1/1973	
Staticon eliude		
State Leffinie		
Selene Selene	1209724846	MARID
Bonkalo	1709700106	122283
MAN CANNEL CHINE	Busch & Larson	
H PRODUCT NO.	· N/A	
A MARINE PURCHA	199 '	
et Compailondaic	6/12/1976	
	-87.81931	
	42.46291	


ТМ


Information

Banks


Solutions, Inc.

DETAILS

	Banks Information	Water Well Report	тм
	Solutions, Inc.	DETAILS	
	State ID	1209733749	MARID
	Bonks ID	1709700114	
	nei Of Well		
	DECAWEI	N/A	-
()	philphilico, at	116'	1
Con	plettonDole	4/5/1977	
	On DUGO IS A		
	Letite Contract		
	Scielle 22	1209702911	ANAP ID
		1709700115	355
e lott	neielweis		
	PRI CIAWOIL	N/A .	-
	MODILES -	123 '	
Real Com	pellentelek	7/3/1969	
	<u>Gualinates ()</u>		
	Compart as a second]
		1209702795	ENV. DID
- MERICAL STREET	Horika ID	1709700117	
	ACTONVIELS		
	- GERUGINE		
	Parente aller		
	onoliudes and		1
T TIME I - II	ontred as a		-

Banks

Water Well Report

Solutions, Inc.

DETAILS

SicielD	1209702993
DOM: DOM: DOM: NO.	1709700116
Cowner of Well	
Man Myzeron Weits and	N/A
Street De automile d'an sa	125 '
A COMPRIME C	11/21/1969
Loc-Illusion as a	
A Structure A State	
	· · · · · · · · · · · · · · · · · · ·
Sicie ID was	1209733746
Bankali Dan Mari	1709700118
DAY DYNETONYALL	Progressive Builders
Service Concerns	N/A
stephen and a state of the stat	104.'
Competion polese	9/27/1979

 <u></u>
 MARID
37.4
 and and a second states of the second se

OFOTOF

1209702454	MARIE
1709700123	
N/A	
225 '	
2/1/1968	

. .

P.O. Box 12851, Capitol Station, Austin, TX 78711 700 N. Lamar, Suite 200 Austin, TX 78703 512.478.0059 FAX 512.478.1433 e-mail banks@banksinfo.com Copyright 1998 by Banks Information Solutions, Inc.

-87.80505

42.46026

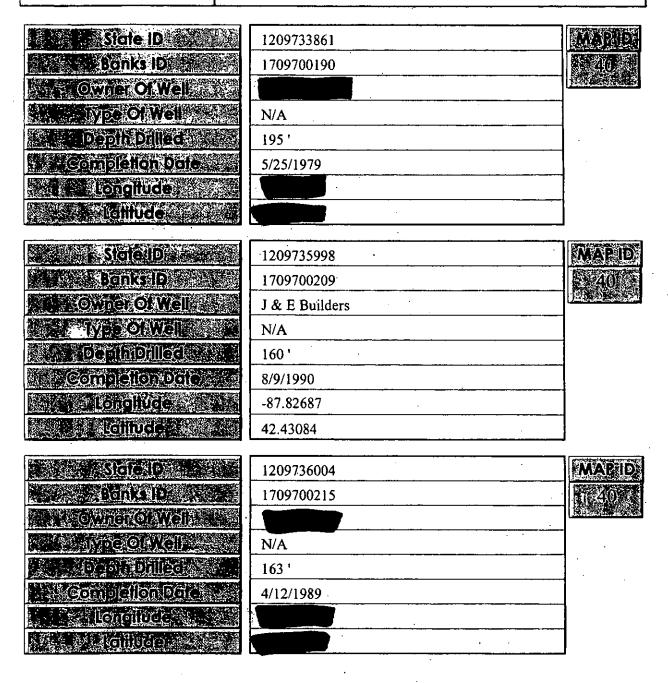
TM

Banks
Information
Solutions, Inc

C.

DETAILS

тм


State ID	1209702802	MARID
Stand Bonks ID	1709700128	50
Winer Of Well		
M Mype Of Wells	N/A	
	147 '	
Completion pale	11/1/1968	
Conghuaer .		
Contuce the		
		and the second second second
	1209733862	MAP ID
Bunka IDa	1709700191	5.002S
		- 6 26 2, 68
	N/A	
ADEON DILLEA	156 '	
Completion Poice	10/5/1979	
Constitutes a		
A REAL FROM DE COMPANY		
		-
State In State	1209702803	WYAPID
Demkol Demkol Demkol	1709700129	
CONTRACTOR AND INSTALLA		
MOLECOLANCE	N/A	
Selection Drilles	146.'	
S S S S S S S S S S S S S S S S S S S	12/1/1968	1
]

Solutions, Inc.

DETAILS

TM

Banks
Information
Solutions, Ir

ons, Inc.

DETAILS

1209736295 Sankalid 1709700218 N/A o alla 187' 811 7/19/1991 1209725067 1709700130 Busch & Larson 144-1 N/A 198 ' 11/1/1976 -87.83021 42.43512 1209724432 1709700131 N/A 220' 12/5/1975

> P.O. Box 12851, Capitol Station, Austin, TX 78711 700 N. Lamar, Suite 200 Austin, TX 78703 512.478.0059 FAX 512.478.1433 e-mail banks@banksinfo.com Copyright 1998 by Banks Information Solutions, Inc.

ТΜ

Banks	Water Well Report	TM
Solutions, Inc.	DETAILS	
State ID Banki ID Banki ID Owner Of Well Type Of Well Depth Dilled Completion Date & State of Director	1209738419 1709700231 N/A 165 ' 7/20/1994	
ILonfude ILonfude ILongitude ILongitude ILongitude ILongitude ILongitude	1209737098 1709700237 N/A 159 ' 8/10/1992	
Bonts ID Bonts ID Bon	1209745167 1709700240 Extra Value Liquors Public Supply 0' N/A -87.82689 42.42902	

TM

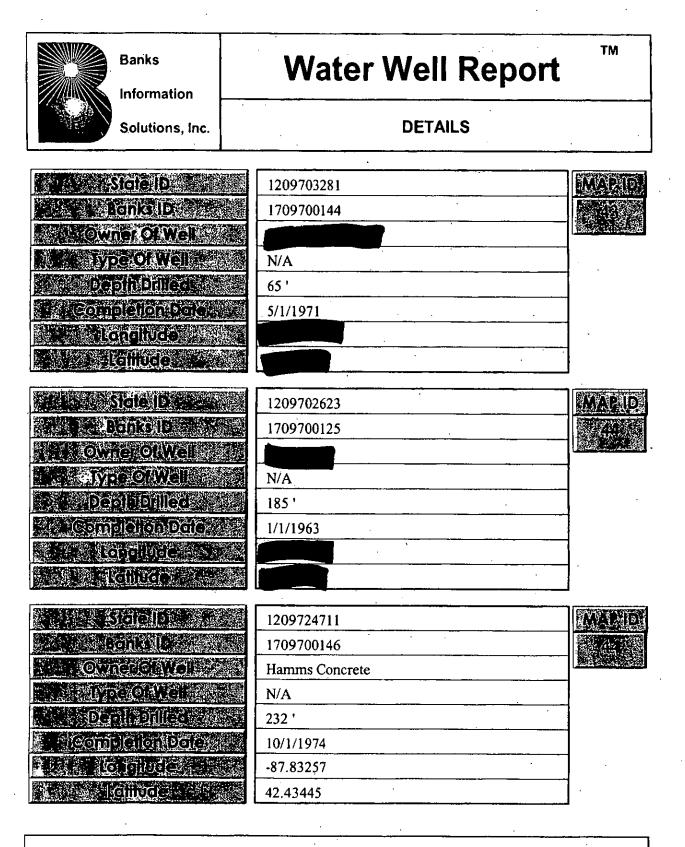
Information

Banks

Solutions, Inc.

DETAILS

State D. inks ID vner Of Well 51120 Dr on Da


1209745166		NY.
1709700241		
Al's Tap		
Public Supply		
0'		
N/A		
-87.82684	<u> </u>	
42.42902		

1209725159 1709700133 N/A 152' 2/1/1977

MAPHON
42

2 ាហេ

1209703079	MAP
1709700138	
N/A	
165 '	
1/1/1971	

Banks Information	Water Well Report	ТМ
Solutions, Inc.	DETAILS	
Stole D	1209729070	MAPID
Bonkalpisso	1709700164	
Mine Owner Ol Welling		
Market Mype Of Well	N/A	
Sa leech Eriled	215 !	· ·
SasCompletion Date:	2/9/1987	
].
State ID	1209738345	MAPID
Bonic ID	1709700227	SS/2005
M. CANTERCLAVEI		
Wre of Well	N/A	1
De la Dille de	190 '	
Some Cion Daile	7/6/1994	
Lengiluce		
Sidicilization	1209737096	MARID
Speed Contracto	1709700235	
NAME OWNER OTATEL		
Me Overe Meles	N/A	
eepin onliego	269'	
Str Consellen Dole	6/25/1992	
Les Penclince		
Relinder C		

Banks Information	Water Well Report	ТМ
Solutions, Inc.	DETAILS	
State (D Banks (D C Where Of Well State Dyree Of Well	1209702625 1709700127	- <u> </u>
Depth Dilled	176 ' 1/1/1963	
State ID Banks ID SOwner Of Well SOwner Of Well Depth Drilled Conciletion pate State Longitude	1209727858 1709700168 N/A 174 ' 3/13/1986	
Siche ID Beriki ID Owner Of Well IV/De Of Well IDepth Dilled Completion Date as	1209737741 1709700229 N/A 180 ' 8/5/1993	
Marken Leninderser		

ТМ

Solutions, Inc.

Information

Banks

DETAILS

State ID
 State ID
 State ID
 State Banks ID
 Ownet Of Well
 Ocepity Drilled
 Ocepi

1209701450	ANA N
1709700119	
Lotz Construction	
N/A	
144 '	· · · · · · · · · · · · · · · · · · ·
6/1/1970	
-87.82746	
42.43267	

State ID Banks (D Banks (D Depin Or Well Depin Orlied Completion Date State LongilUde 1209729422 1709700172 N/A 150' 6/16/1987

MAPID ACCESS

Statevio Banksilp Cowner Of Well Depthipriled Depthipriled Completion Dater A Longitude

1209733854				
1709700183				
		_		
N/A			 -	
142 '				
3/12/1980				
	·		 	

1. A.	

Information

Banks

Water Well Report

Solutions, Inc.

DETAILS

Stole ID A Ponks ID A Ponks

1209735994	·. ·	
1709700205		
C & S Builders		200
N/A		
157'		
1/10/1991		
-87.82925		•
42.43267		

Stete ID Stete ID Stete ID Strikestores Stete ID Strikestores Stete ID Stete ID

1209735996	MA
1709700207	
N/A	•
43 '	
9/20/1990	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·
	·

1209736294	MAPID
1709700217	
N/A	
180 '	
6/1/1991	

P.O. Box 12851, Capitol Station, Austin, TX 78711 700 N. Lamar, Suite 200 Austin, TX 78703 512.478.0059 FAX 512.478.1433 e-mail banks@banksinfo.com Copyright 1998 by Banks Information Solutions, Inc. ТΜ

Banks	Water Well Report	ТМ
Solutions, Inc.	DETAILS	
	1209728546 1709700153 N/A 225 ' 10/7/1986	
Stote ID Additional Stote ID Additional Stote ID Stote ID	1209730365 1709700165 N/A 153 ' 4/25/1988	
	R.L. Humphres N/A 155 ' 6/28/1976 -87.83052	

Information	Water Well Rep	
Solutions, Inc.	DETAILS	
NA CONSIGNATION OF	1209733860	IMARIE
Benka Dang	1709700189	
Cwner Of Well		
ter siny deconvelor	N/A	
	170 '	
s a completion of the	11/15/1980	
and the latitude		
Sigte ID	1209733865	MAED
Senkelle a	1709700194	47
	Pitcher Construction	
lype of Well	N/A	
	166 '	
Recentration and the	2/24/1975	
the sear poncilure can be see	87.83052	
	42.43177	
Stolello and	1209733866	
e denkolitik en se	1709700195	
Man Owner Of Welson	Pitcher Construction	
MELENTEON MARKEL	N/A	
Sector and the sector of the s	166 '	
E Come Clen Doile	6/16/1975	
tonellice set	-87.83052	
	42.43177	
		· · ·

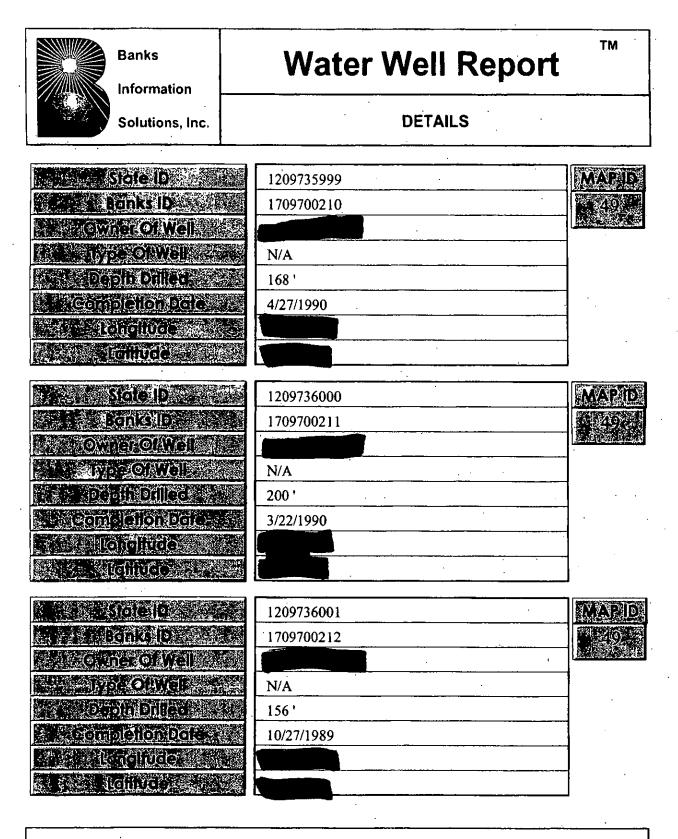
512.478.0059 FAX 512.478.1433 e-mail banks@banksinfo.com Copyright 1998 by Banks Information Solutions, Inc.

TM

Solutions, Inc.

Information

Banks

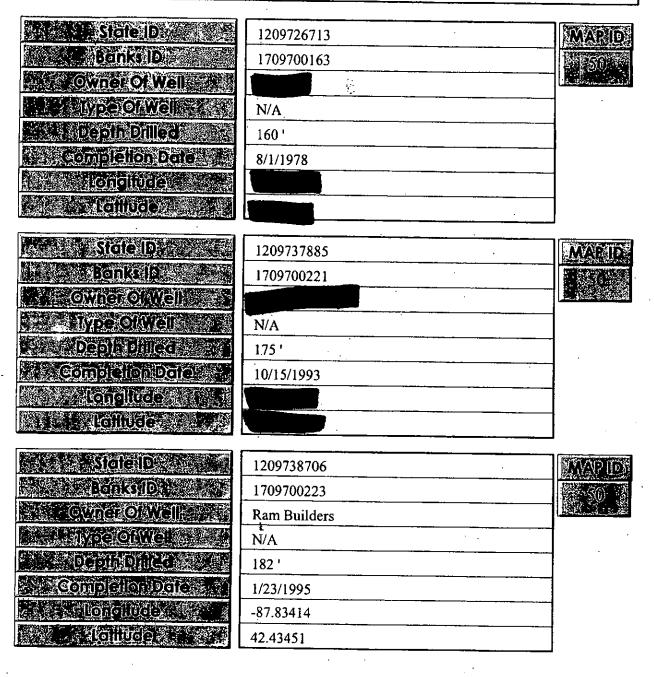

DETAILS

We have been and the standing of the standing of the standing of the stand of the stand of the standard of the		
C State 1	1209733867	MACHION
A Stankelp	1709700196	
	Pitcher Construction Co.	
A STREET ON THE STREET	N/A	
A STATION OF THE STATE	169 '	
A set a some le fier d'are	10/11/1976	
Contring Contring	-87.83047	
Licity - Alicity	42.43177	
THE TARK TO STATE AND A TARK TO THE OWNER AND THE ADDRESS OF THE A		
Spice Spice D	1209736002	MAEID
	1709700213	
GATATI CANAL	Lucy's Appliances	
Real and the second second second	N/A	
The standard and the second seco	155 '	
	11/9/1990	· · · · · · · · · · · · · · · · · · ·
Chi-Internet	-87.83052	
	42.43177	
	1209736005	
	1709700216	
SAME CONTRACTORY HIS SAME		
	N/A	
See Destandinger	166 '	
A Sempolonuo -	9/28/1990	
Ref. Oliver		
		· · · · ·

	Banks	Water Well Report	ТМ
	Solutions, Inc.	DETAILS	
	Stole ID.	1209738700	
	Banks ID	1709700199	
		N/A	-
De	oth Dilled	180 '	
Com	pletionDate	9/15/1983	
le el c			
	Lantude]
		1209724485	MARID
	anks ID	1709700135	49
s: Kom	herofwells		
Т.	Je Of Well	N/A	· ·
	off Driller	186 '	1
	eletion pore	8/1/1975	
國國德國的	an live established		
	Cillusia and] .
	SIGIO DE CAR	1209724592	MARIO
	Innia ID	1709700139	493
n i je dan je	ner en Weller		
	O O AVALES	N/A	
	Shi Dilled	173 '	
	pletion Dates	9/1/1975	
	ગતનામિલ્લે કેટલા		
	cilitudes 2 par		

\$1. 27

Banks	Water Well Repo	ort TM
Solutions, Inc.	DETAILS	·
State (D)	1209703922	MAPID
Banks ID	1709700143	1. Mar 19
ele Owner Oliwelle		
Mar Trype Of Well	N/A	
Depth Dilled	176 '	
Gamalelenade	5/1/1973	
ALDEP INTER		<u> </u>
A laffode		
Stote ID	1209727421	MAPU
Beink In Alexand	1709700156	
Owner Of Well How		
A LEWAS YOU AND A LEWAS	N/A	
Peolin Dillect	175'	
Compeliendeles	7/31/1985	
en dentellivee		
A STREET AND A STREET		
Sale 10 A	1209727949	MAGEI
	1709700171	
	Brooks Builders	
	N/A	
De dia de la company de la c	194 '	•
Contelle Vortelle	4/1/1986	
a longhude as	-87.83044	
	42.42855	

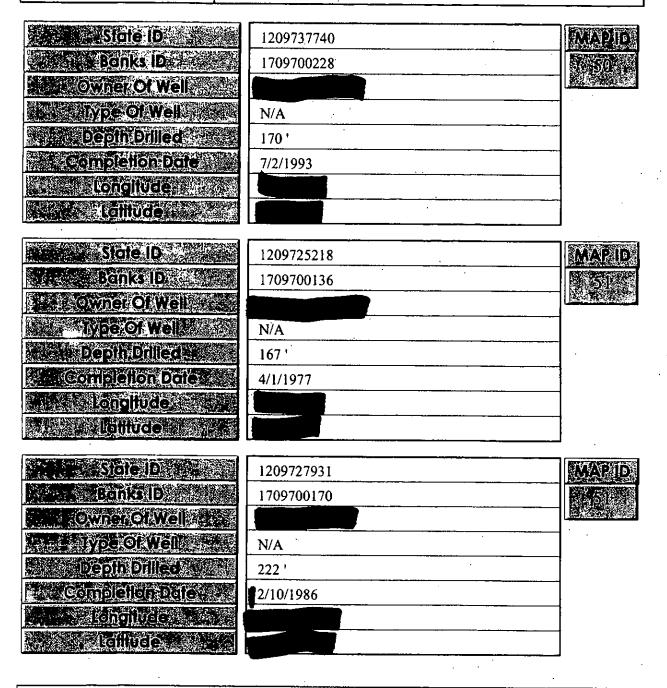

Information

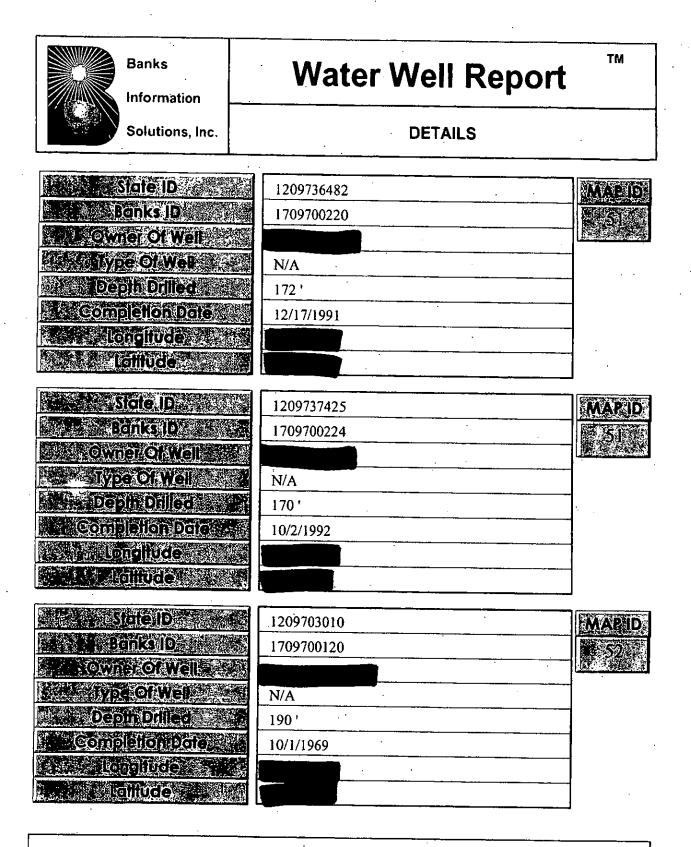
Water Well Report

Solutions, Inc.

DETAILS

TM


Banks Information


Water Well Report

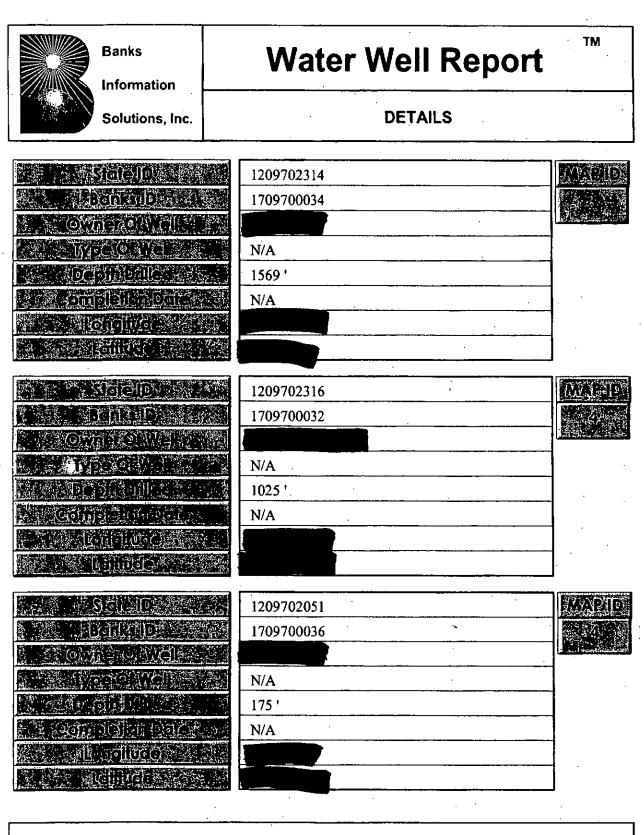
Solutions, Inc.

DETAILS

TM

	Banks Information	Water Well Report	ТМ
	Solutions, Inc.	DETAILS	
	SCOP CAR	1209729906	MAND
	ionia i come	1709700157	
A state of the second se			
		N/A 169 '	-
· ·	pleich Pare.	8/17/1987	
C.t.	MAL MAL		1
	Colling 1 - Sec]
	Sicile (ID)	1209727465	
	ini si ka	1709700158	52.5
	JECOVALE.		
- Mildian and a state of a state of the stat		N/A	
		164 ' 7/20/1985	4
			ł
	Contraction of the second		
	MEL	1209730397	MAARID
		1709700166	
	in the second second		
		N/A	-
		196 ' 11/11/1987	
Provident the state of the second state of the			
	(ail indigrassion)		-
			.

Information

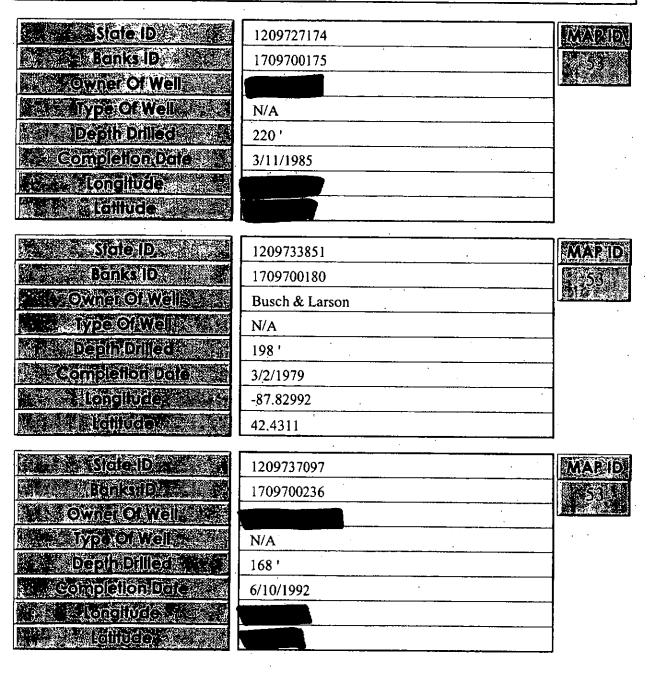

Water Well Report

Solutions, Inc.

DETAILS

TΜ

	· · · · · · · · · · · · · · · · · · ·	
Stole ID	1209733855	MAPID
Banksild	1709700184	1350 S
Will Owner Of Well		
E MIXpe Of Well	N/A	- -
A Depth Drilled	55 ¹	
Completion Date	12/23/1982	· ·
the second second		
		. L
State: D	1209738624	MARID
Banks/ID.	1709700222	52.4
A Covinel Of Well	Ram Builders	
	N/A "	
Depth Dilled	172 '	
Sa Completion Date	9/20/1994	· ·
and a conciliusie	-87.83289	
La A A Latifude	42.4336	•
Stole ID	1209738151	MAPID
Bonks ID	1709700225	52
ewner en Weil	Ram Builders	
A CONTRACT OF	N/A	
Bellinding og av	170 '	
CemplellonDale	3/14/1994	1
	-87.83293	
Contraction of the second s	42.43365	


Banks	Water Well Report	TM
Solutions, Inc.	DETAILS	
Store Jo	1209737424 1709700039	
Weil Weil Dybe of Weil Standbooth Dilled Mail Chapletonioore () Longitude	N/A 180 ' N/A	
	1209726844 1709700040	
	N/A 15 ' 11/1/1972	
	1209702319 1709700041 N/A	
	154 ' N/A	

Water Well Report

DETAILS

TM

	Banks Information	Water Well Report	TM
	Solutions, Inc.	DETAILS	
	State ID	1209727293	NYA P
	Banks ID	1709700239	
	wher Of Well		
al interior contra to an annual to the state	ypelol Well	N/A	1
	eoth Drilled	175 '	
international and the second	neletion Dale	2/19/1990	-{
Street, and the second se			1
			-
Barrentinterrouwertung			
	Stoted Damas	1209747796	MAP
	Benkarlo .	1709700246	1 54
In contract of the second s	NEEL CHAVED	IL Beach Park/Concession	
The Without state of the Without State	THE CIWEIN	N/A	
	erin Oilled	8'	
	<u>nelelleradele</u>	7/18/2002	
function and an and an and	tentellicetes as	-87.80718	- .
		42.43252]
			()759-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
CAN'T MARKED AND AND AND AND AND AND AND AND AND AN		1209747797	MAP
	Bankeid	1709700247	54
Print and the second se		IL Beack Park/Concession	Lever and a second s
		N/A	-
		15'	4
Contraction of the second s	dolchon Dale	7/18/2002	ł
terter at the second second second	ontellinge (* * * *	-87.80718	-
	lanude la la	42.43252	1

D

Water Well Report

ТМ


Information

Solutions, Inc.

DETAILS

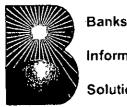
SicielD & A	1209747800	MARID
Bonkein Bonkein	1709700249	50
March Conner On Wellson	IL Beack Park/Concession	
Washington Of Well Man	N/A	
An Destabilied A	8'	
Comdition Polo	7/18/2002	
about a long and a long	-87.80724	
A CALIFICITION	42.43251	
March Mole Drawn	1209747799	MARID
Part Renkold	1709700248	3
	IL Beach Park/Concession	
The second second second	N/A	
Danheilleas	15 '	
Completion pore	7/18/2002	
	-87.80658	
Leinvee	42.43023	
State ID	1209747798	TW DUDY
A STATE AND A S	1709700251	
	IL Beach Park/Concession	
Mer Olwall	N/A	
LEAST ADD SUMPLIED AS A STATE	15 '	
Complation percent	7/18/2002	
	-87.80658	
	42.43023	
	· · · · · · · · · · · · · · · · · · ·	

Banks Information	Water Well Report	TM
Solutions, Inc.	DETAILS	
Sigte ID	1209702324	MARID
Bonks ID	1709700252	
Winer Of Well		
Self - Weichweil	N/A	
Bepth Dilled	149 '	
Stor Completion Date	N/A	1 .
kines stonghude		1
Lattude]
State ID.	1209702325	MARID
Bonks (D	1709700253	
T. Cwner Of Well A.		
Real Manyoe Clawell	Ň/A	
Depth Diller	156 '	- -
key completion pole	N/A	
ton rillucie		
A lottlude		· ·
State Bar	1209702321	MAPID
A A BERGINKUD	1709700254	580
CWSet GIWelles	Beach State Park	
MENERING CONVERSION	N/A]
DesinDilles	510'].
	N/A	
en len illes	-87.80473	
iciliace for	42.43066	

Water Well Report

Information

Solutions, Inc.


DETAILS

	ScielD	
	Banks ID	
	wier of Well	
	DYDDOLAWCILS S	
	Depth Drilled	
C C	mpletonibale	
	Lailluce	

1209747795 1709700255 IL Beach Park/Concession N/A 8 ' 7/18/2002 ¹-87.80472

42.43249

TM

Water Well Report

Information -

Solutions, Inc.

SUMMARY

TM

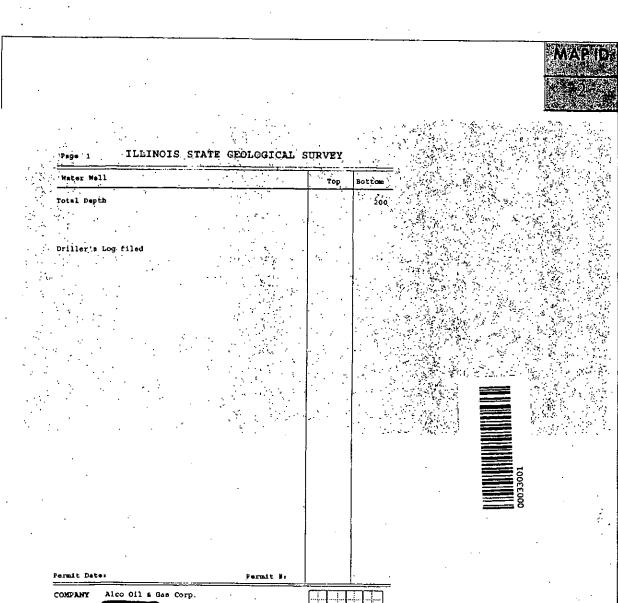
water Welli Report "Research Mepping Fr

The Banks Information Solutions, Inc. Water Well Report is prepared from existing state water well databases and additional file data/records research conducted at Texas' regulatory authorities. Submission of driller's log records upon completion of a drilled water well became mandatory in 1985. The state of Texas has processed these records into several different filing systems within two state regulatory authorities. The water well files, records and map locations are maintained by the Texas Commission on Environmental Quality (TCEQ) and the Texas Water Development Board (TWDB). Actual water well site locations of this report are geocoded and geoplotted directly from the drilling records, drilling schedules, and driller's logs and maps submitted by the water well driller and maintained at these two primary water well regulatory authorities. Below is a description of the four filing systems utilized for well drilling records.

and the second second second second second (TWDB)

Texas Water Development Board maintains a file system of located water well locations. These well files are water well site locations that have been verified with a field inventory inspection by TWDB personnel. The wells are assigned a State Identification Number unique to that well and plotted on county base maps, U.S.G.S. 7.5 minute topographical quadrangle maps, and in-house geographic information system. Records will also include analytical data attached with each drilling record. This is the current protocol for maintaining water well records within the TWDB.

The Texas Commission on Environmental Quality maintains a file system of plotted, partially numbered, and unnumbered water well locations. Plotted water well files are water well site locations that have been determined from map information submitted on water well logs and subsequently plotted on TWDB county highway base maps. This type of mapping and filing procedure ceased in June 1986. Partially numbered water well files are water well site locations processed from 1986 through 1990. These wells are provided a State Identification Number which establishes the well location somewhere within a 2.5 minute quadrant of a 7.5 minute quadrangle map, but the site location has never been precisely mapped or verified by a State of Texas staff member. Un-numbered water well files are water well site locations that have been processed since June 1990. These well records are filed solely on their county location and are not provided a State Identifiation Number nor are they mapped. This is the current protocol for maintaining water well records within the TCEQ.


Disclaimera 🦉 👘 👘

Banks Information Solutions, Inc. has performed a thorough and diligent search of all wells recorded with the Texas Water Development Board and the Texas Commission on Environmental Quality. All mapped locations are based on information obtained from the TWDB and the TCEQ. Although Banks performs quality assurance and quality control on all research projects, we recognize that any inaccuracies of the records and mapped well locations could possibly be traced to the appropriate regulatory authority or the water well driller. Many water well schedules may have never been submitted to the regulatory authority by the water well driller and, thus, may explain the possible unaccountability of private drilled wells. It is uncertain if the above listing provides 100% of the existing well locations within the area of review. Therefore, Banks Information Solutions, Inc. cannot gaurantee the accuracy of the data or well location(s) of those maps and records maintained by Texas' regulatory authorities.

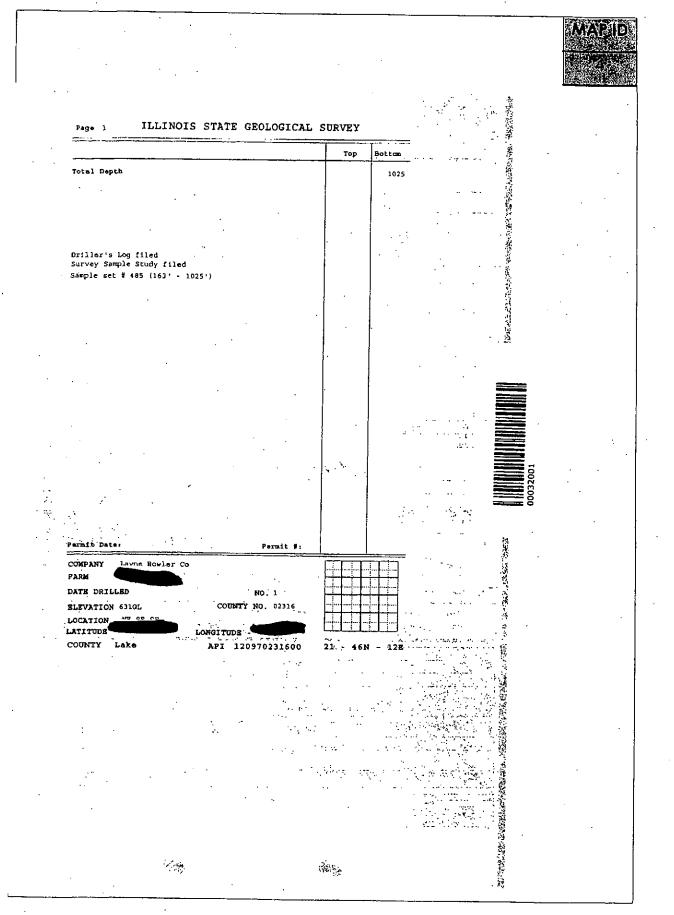
ILLINOIS STATE GEOLOGICAL SURVEY

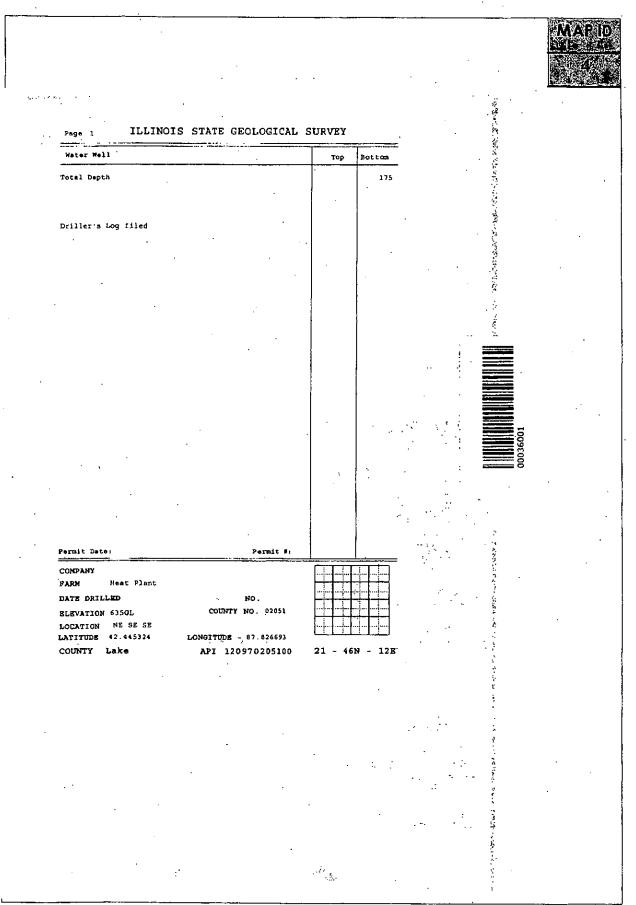
Page 1

Water Woll		Top	Bottom	- `
			·	
silty clay leached			. 5	· · ·
dm 'silty clay Loam' 2.5Y474		. 5	10 .:10	
• *				···· =
dm silty clay loam g downwarda7 calc dark	gravelly,lighter gravish brown 10YR4/2	10	50	
	in very gravelly calc	. 50	\. \\ 155⊁	
grayish borwn 10YR5/2				
	nd,dol,shale & ign lith 🦿	55	60.	
very salt 4 pepper lo	oking cale		N 6	
Total Depth		. •	62	
• • • • •	• • • •	、 -		-
			•	
			an a	
			The property states in the	2
· · · ·	• •		с. ¹ н	
Driller's Log filed	•	7	And Antonio S	
Sample set # 20022 (0)	(g. 60°)			
			· · · · · · · · · · · · · · · · ·	
· · ·	· · · · · · · · · · · · · · · · · · ·		and the second	
		22.12	أ الجُوُّر من المن الم	
(W M + 1		•		
•	وہ			
· · · · · · · · · ·				a a a a a a a a a a a a a a a a a a a
······ ·· · · ·	· - · :			COCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOC
			· · · · · · · · · · · · · · · · · · ·	
	And the second sec			
Permit Date:	Permit'ili	'o		
COMPANY Madsen, Ch	arles			:
PARM		[y.
DATE DRILLED January	1, 1950 NO. 1 COUNTY NO. 02313			•• .
ELEVATION 0	COUNTY NO. 02313			,
LOCATION SH NE	LONGI TUDE		ang papan in the second se	·
COUNTY Lake	1 16		· · · · · · · · · · · · · · · · · · ·	···.
COUNTY LAKS	API 120970231300	21, 461	t - 12B,	-
· · · · · · · · · · · · · · · · · · ·				
			the second s	·
	وه به . برچند به م کند		en e	
		•		•••
and and a second se	·····	ing pang ang sang sang sang sang sang sang sa		•.
••		**# .***** **		
· · · · · · · · · · · · · · · · · · ·		, <u>, , , , , , , , , , , , , , , , , , </u>	میکند. میراند میکند کار میلی کار تاریخ میراند میکند.	
• •		· · · · · · · · ·	ST4	<u>5-</u>
	in the second	• • • • • • •		
State of the second sec	• · · · •			
	, 4. 4. 7			
· · · ·			•	
			÷	
•			,	
. ·				
				•

PARM . . . DATE DRILLED NO. ELEVATION 6450L COUNTY NO. 02312 LOCATION NE SW SE LATITUDE (LONGITUDE COUNTY Lake API 120970231200

21 - 46N - 12E


ILLINOIS STATE GEOLOGICAL SURVEY Page 1 Hater Well Bottom Top Total Depth $\mathbb{C}^{n\times n}$ 82 Driller's Ldg filed Survey Sample Study filed ·. · • Sample set # 22143 (0' - 82') î. . ••• . , . . . į, 0015000 2.1. • • ē.". Permit Dates Painic #: 0 -----1.1 COMPANY Madsen, Charles L Att. PARM 7 ÷., ×.4 DATE DRILLED JANUARY 1, 1952 . NO. 2 ۰. ELEVATION 0 COUNTY NO. 02317 LOCATION LATITUDE . LONGITUDE COUNTY Lake API 120970231700 21 -46N -122 ---. 11-12-04 ne stanes C*7 : . . georgenen in oanderre ۰. 412-14-7 Sin 25 presegue e


ILLINOIS STATE GEOLOGICAL SURVEY Page 1 ----

小道に ちゅうしょう Water Nell Bottom Top Total Depth 1569 Driller's Log filed Permit Date: Permit #; COMPANY Alco Oil & Gas Corp. ł T Shiloh Park FARM DATE DRILLED NO.

COUNTY NO. 02314. ELEVATION 648GL LOCATION LATITUDE 42.449874 LONGITUDE - 87.835149 COUNTY Lake API 120970231400

.21 - 46N - 12B

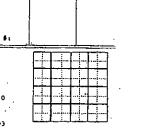
ILLINOIS STATE GEOLOGICAL SURVEY Page 1 --------------Private Water Mell Top Bottom existing well 0 140 rock 140 180 180 Total Dapth Casing: 4" STEEL 11# from 0' to 140' Size hole below casing: 4* Water from rock at 0' to 180'. Static level 110' below casing top which is 1' above GL Pumping level 115' when pumping at D gpm for 2 hours Permanent pump installed at 175' on June 20, 1992, with a capacit of 10 gpm Additionallocation info: Address of well: Beach Park, IL Location source: Location from permit 200 $\sum_{i=1}^{n} |X_i| \leq 1$ Permit Date: June 5, 1992 Permit #: COMPANY Gross, Eugene J. PARM ÷ ۰. ۰ DATE DRILLED NÔ. COUNTY NO. 37424 SLEVATION 0 ... LOCATION SW SW NE LATITUDE LONGITUDE COUNTY Lake 23 46N - 12E API 120973742400 -••• 73

1 ILLINOIS STATE GEOLOGICAL SURVEY

Engineering Test	Тор	Bottom	· .		•
111	. 0	· · · · 2	۰.		
organic rich sand	2	2		•	
nedium sand	3	14			
probably till at	15	15			
coarse sand	14	15			
Total Depth		15	,		
· ·					
		,			
			·. ·	· ·	
	ľ				
				•	
		-			
		4	. ·		
			-		
					,
	}		. ·· ·		•
				0004000	
	•	{			
.	· ·		••••••		
ermit Date: Permit #:					
CMPANY Henter, Norm, I.S.G.S			· · · ·	* * *	
ARM City of Zion					
ATE DRILLED November 1, 1972 NO. 34					
LEVATION 0 COUNTY NO. 26844		·····	. •		
OCATION	· [•	•	
ATITUDE 42.449792 LONGITUDE 87.815605 COUNTY Lake AFI 120972684400	22 - 46				
		- 125			
		• .			
			•		
· · ·	· . ·				
,					
· · ·			:		

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

Nater Hell	<u> </u>		Top	Bottom	
Total Depth	. "]	151	
	· · · ·				
,					
Driller's Log filed					
	*]		·
					÷
					-
	•	· · ·			· · ·
,					
			1	1.	
			ľ		
				. :	
					•
•					•
	•				
Pormit Date:		Permit #:		í ·	
COMPANY Ferguson P. H	·	<u> </u>			1
PARN PERGUBUR P. H					
DATE DRILLED	÷	NO.	·		
ELEVATION 611GL	COUNTY	NO. 02319	;		
LOCATION W2 SW		· · ·			
LATITUDE 42.446210	LONGITUDE -				
COUNTY Lake	API 1209	70231900	22 - 46	N - 12E	
•			• .		
	•				
		· ·	•	. •	
			•		



ILLINOIS STATE GEOLOGICAL SURVEY Page 1 ----

----Water Nell Bottom Тор • . Total Depth 225 Driller's Log filed Э

Permit Date: Permit \$: COMPANY Ferguson F H FARM Hotel Sion Home DATE DRILLED NÒ. COUNTY NO. 02320 ELEVATION 630GL LOCATION NW SH LATITUDE 42.448017 LONGITUDE - 87.823003 COUNTY Lake API 120970232000

£

22 - 46N - 12E

Ξ., 1.

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

Water Well	Top	Bottom
fill; yellow clay	. 0	2
copsoil	z	<u>з</u>
yellow clay	3	5
sand .	5	34
very sandy clay	34	50
blue clay	50	78
sand £ some gravel	78	95
gravel	95	99
limestone	99	121
Total Depth		120
Casing: 5" GALV TWC 14.81 from 0' to 99'		
Size hole below casing: 5-		
Static level 15' below casing top which is 1' above GL Pumping level 50' when pumping at 20 gpm for 0 hours Permanent pump installed at 63' on , with a capacity of Driller's tog filed	5 gpm	
Location source: Location from permit		
	, , , , , , , , , , , , , , , , , , ,	•
· · · ·		
Permit Date: Permit #, 79	a.	
COMPANY Hoover Water Well Servic		
PARM		
DATE DRILLED August 7, 1969 NO.		+++++
BLEVATION 590GL COUNTY NO. 02926		
LOCATION SO'S BOO'E NW/C		

COUNTY Lake

API 120970292600 23 - 46N - 12E

MAPID 9

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

Water Nell	Top	Bottom	
sand .	o	34	
blue clay	34	· 48	
hardpan	48	83	
nand	63	91	
hardpan	91	: 102	
limestone	102	142	
Total Depth		142	
Casing: 4" GALV 74C 10.89 PPF from 0' to 102'			
Size hole below casing: 4"			
Water from limestone at 102' to 142'. Static level 10' below casing top which is 1' above QL Pumping level 142' when pumping at 2 gpm for 0 hours			
Permanent pump installed at 126' on , with a capacity of	e gpm		•
Driller's Log filed Location source: Location from permit			
			• •
			. :
		•	
			,
			÷.
	N		15 C
Permit Date: October 28, 1970 Permit #: 105	71		
COMPANY Hoover Water Well Servic FARM DATE DRILLED November 20, 1970 NO. ELEVATION 590GL COUNTY NO. 03060			: : :

ELEVATION 590GL COUNTY NO. 03060

23 - 46N - 12B

00044001

Water Well	Тор	Bottom		
Total Depth		130		
4	•		· .	
	-			
Driller's Log filed		ł	,	
			•	
			·. ·	
	·		• •	
· ·				
				. .
		•		
	ł			
· · ·		· ·		
		1		1005
				0045
			· · · · ·	ō,
			· : : : ·	
		· ·		
1		:		
: Permit Dete: Permit #:		· ·	:	
COMPANY. Perguson P H			· · · · · · ·	
PARM Zion Estates				
DATE DRILLED NO. BLEVATION 585GL COUNTY NO. 02322				
ELEVATION 585GL COUNTY NO. 02122 LOCATION SN	· · · · · · · · · · · · · · · · · · ·			
LATITUDE 42.446046 LONGITUDE - 87.800889	ل غير المحمد الم		,	
COUNTY Lake API 120970232200	23 - 46	N - 128-	· .	
	•		· · .	
			· '	
· · · ·				
· · · · · · · · · · · · · · · · · · ·			· .	
· · · ·	·			

÷., 5.5 Į., ILLINOIS STATE GEOLOGICAL SURVEY Page 1 Water Well Bottom 11.7 Top .1 Total Dapth 266 • 5 : • Driller's Log filed • `` . -----. . v * 12 ×1. ... : • en distant di 11 -. . .,ı` 1 ł, ·· ·- · • : ••••: 006500 -a⁶ S. Parmit Dates Permit # 0 ŝ \sim 25 $\gamma = 10$:: <u>۱</u>۹. . COMPANY Brackott, B. . • PARM . DATE DRILLED September 1, 1940 NO.1 žene i COUNTY NO. 02292 ----BLEVATION 0 LOCATION ۰. . LATITUDE LONGITUDE r 20 COUNTY Lake NFI 120970229200 16 - 46N - 12E • sansing s ٠. . . . -.. 4.85 · · · · · · i 7 PERCENSION PRACTIC and the second ÷., -ă - -12.2

.

.

Water Well		GEOLOGICAL		
- <u></u>	<u> </u>		Тор	Bottom -
Total Depth				219
Driller's Log filed				
				and the second second second second
•		• :		
•	*	•		for the first state of the second
	•	÷		
		4 1 L		to the same second of south
				· · · · · · · · · · · · · · · · · · ·
,		· · · · ·		· .
		•	1	
			[
· · · ·				
ermit Dates		Permit #: 0	<u> </u>	·
ONDANY Boysen, Henr		-		
ARM Busch & Lars				
LEVATION 0		NO. TY NO. 25154		
OCATION 200'S line,				
ATITUDE 42.461250	LONGITODE	8 87.827997	لبلل	
OUNTY Lake	API 1	20972515400	16 - 46N	- 128
· ·				
· . ·				
		· ·		
, ·				*
. *	•	•		
. *		· · · · ·	<u>.</u>	
		n an star An an star An an star	<u>.</u>	4.8
	•	n an Anna an Anna An Dhùin Anna An Anna	<u>.</u>	
	•	2 († 1920) 2 († 1920)		
· · · · · · · · · · · · · · · · · · ·	· .	: 3 !		
.4	· .			

ILLINOIS STATE GEOLOGICAL SURVEY Pege 1 Water Well Bottom Тор brown clay Q 8 blue clay 8 13 gravel 13 15 sandy blue clay 15 90 hardpan 90 108 soft blue clay 108 129 gravel 129 131 limestone 131 195 Total Depth 195 5" PVC from 0' to 112' 5" STEBL from 112' to 133' Casing: Size hole below casing: 5" Water from limestons at 0' to 0'. Static level 89' below casing top which is 1' above GL Pumping level 0' when pumping at 5 gpm for 0 hours Driller's Log filed Address of well: 1405 Winthrop Location source: Location from permit Permit Date: December 8, 1976 Permit d: 5

 COMPANY
 Henry Boysen Co./Lichter, J.P.

 PARM
 Busch & Larson

 DATE DRILLED January 24, 1977
 NO.

 ELEVATION 0
 COUNTY NO. 25155

 LOCATION 200'S line, 200'E line of SM NB SE

 LATITUDE 42.461252
 LONGITUDE - 87.628555

 COUNTY
 Lake

 API 120972515500

554	97									
	==	<u> </u>	_	_	1	-			<u> </u>	
		<u>.</u>						•••••		
	F	İ		1	Ť	┥				
	Ë			-		<u> </u>				
	ļ.,	Ļ								
	F	-		+	+	+	-	-		
	Ľ	<u>!</u>		-1	-†	"t				
	•									

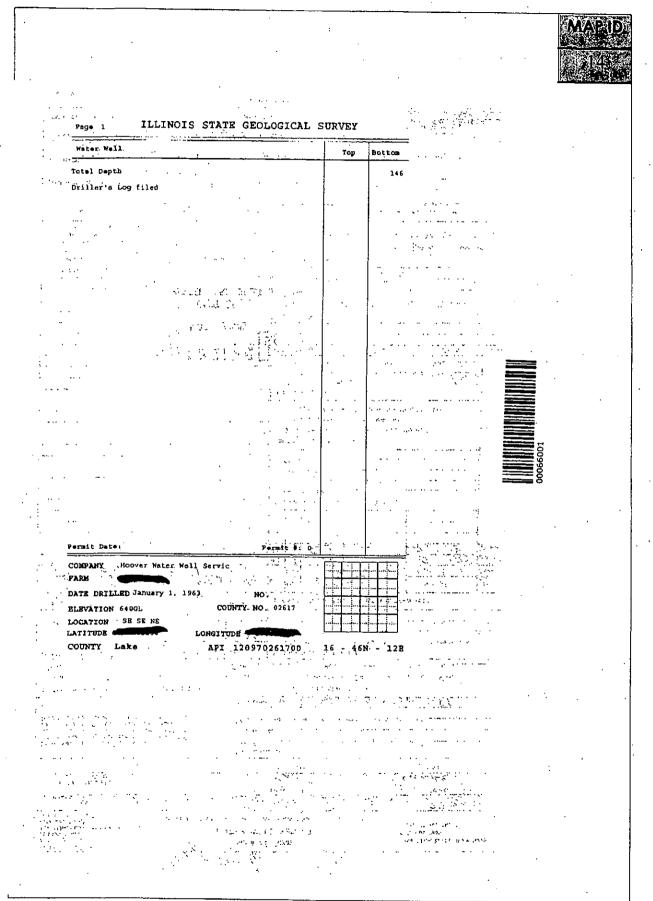
16 - 46N - 12B

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

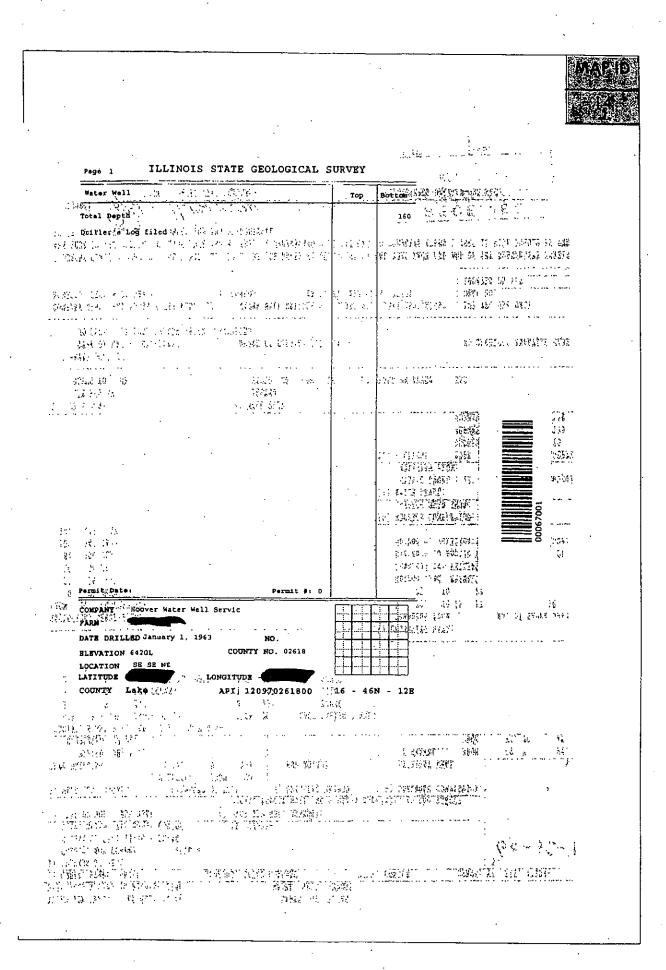
Private Water Well	Тор	Bottom
sand	c	25
saлd & Clay	25	140
gravel	140	160
Total Depth		160
Casing: 4" GLV #11 from 0' to 0'		1
Size hole below casing: 4"		1
Water from gravel at 140' to 160'. Static level 90' below casing top which is 1' above GL Pumping level 95' when pumping at 10 gpm for 2 hours Permanent pump installed at 126' on , with a capacity o	10 gpm	•,
Additional Lot J, Ravine Acres subdivision. location info:		
Location source: Field verified		ł
· .		
		ļ
		(
		Ì
· ·		
Permit Date: August 2, 1977 Permit #: 645	34	
COMPANY Gross, Eugene J.		
FARM		
DATE DRILLED September 30, 1977 NO.		+
ELEVATION 0 COUNTY NO. 33751		
LOCATION 2240'N line, 490'W line of SE NE		

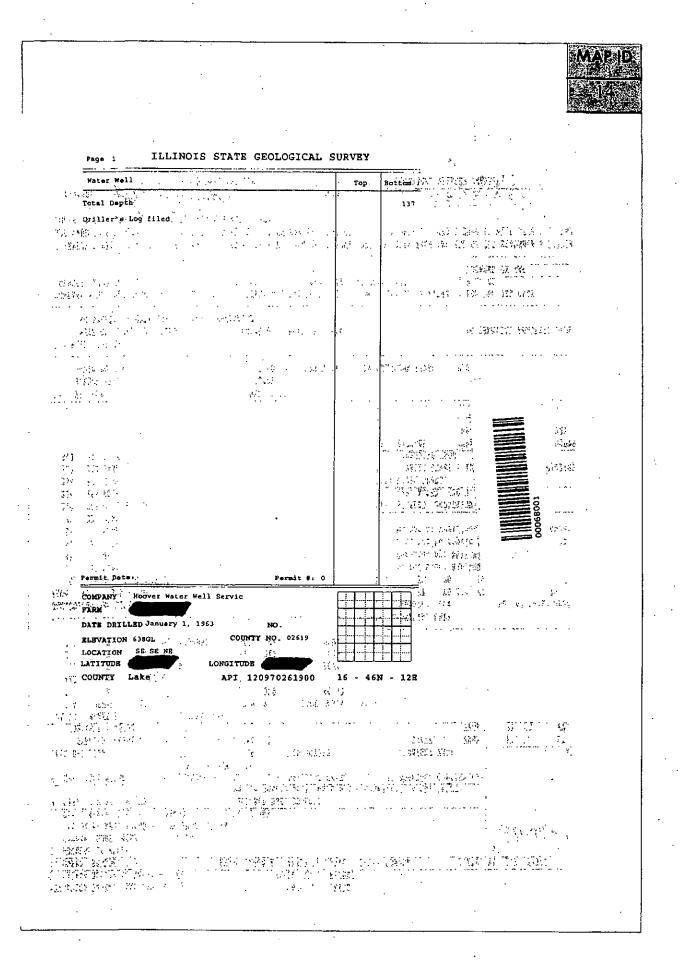
COUNTY Lake

API 120973375100 16 - 46N - 12B


ILLINOIS STATE GEOLOGICAL SURVEY Page 1 _____

Water Well тор Bottom Total Depth 322 . Driller's Log filed


Permit #: 0 Permit Date: COMPANY Hoover Water Well Servic . FARM DATE DRILLED July 1, 1971 NO. COUNTY NO. 03280 BLEVATION 0 LOCATION section LONGITUDE LATI TUDE COUNTY Lake API 120970328000


1 . . .

16' - 46N - 12B

.

	M/2.215
Page 1 ILLINOIS STATE GEOLOGICAL S	URVEY
Noter Well Law of the Law of the Section	Top Bottom
Total Dopth	315
lander von der Staten von der Staten son der Staten von der Staten von der Staten von der Staten von der Staten 2012 – Auf – Alben von der Staten von 2113 – Staten von Staten	nn an shan al na 2010 na 2 46 44 Calabar Calabar Calabar Sayatan Dingga Calabar Na Sayatan Angar Kabaratan Sayatan Sayatan Sayatan Calabar Sayatan
	100 4819 32 403
Control Contro	an an anna an anna anna anna anna anna
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	and the second
Constant in the second se	a Bio altra 2006 - Core and a hos
作品がなる。 1.22日 - Article	
	58-72°
	11. TANKSY - STAL
	(1999) (1986) (1989) (1989) (1989) (1989) (1986) (1
eau d'anna an Anna Anna Anna Anna Anna Anna A	141 - 413,941 1988 1991 19
	. While as recompany of a
11 19 19. 21 19 1949	
Permit Dete: Permit #: 0	
COMPANY HOOVER Mater Well Servic	
DATE DRILLED May 1, 1968	The second secon
BLEVATION 0 COUNTY NO. 02798	
LOCATION 2500'N line, SO'W line of NW 324	rie fan de state de state de second
COUNTY Lake API 120970279800 1	5 - 46N - 12B
ມີ X 12	· · ·
CONTRACTOR AND A STREET	`
 Statistical Statistical Control of Control	03 85 1 24 25 1 1 24 25 1 25 1 1 24 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1999 - 19	stantic states and the states of the states
こうそう 手 ひを かんのダーブン しんしゃ オーマングセント・バル カルセル いかわからい	non - Characteri Anne ann - Son ann an th art Ceur
THE REPORT OF THE WAY AND THE REPORT OF THE	· · · · · · · · · · · · · · · · · · ·
uzeni el Mala de Louis de Constante de Abril. Anterio de Mala Constante de Const	a the second and

Lander Anderson and rson and A

Page 1

Water Well	Top	Bottom
topsoil	0	. .
eandy clay	2	. 89
blue.clay	65	10
hardpan	100	120
limestone	. 120	12
Total Depth		127
Casing: 5" GALV 15# from 0' to 120'	· ·	11
Size hole below casing: S ^a	j	
Nater from limestone at 120' to 127'. Static level 60' below casing top which is 1' above GL Aumping level 60' when pumping at 10 gpm for 2 hours Permanent pump installed at 105' on , with a capacity o	10 grpm	
riller's log filed		
dditional		-
ocation info:		
ocation source: Platbook verified		
•		
	1	

COMPANY Gross, Emil E.		
PARM		
DATE DRILLED October 27, 19	72 NO.	
ELEVATION 640GL	COUNTY NO. 03883	
LOCATION SE SE NE		
COUNTY Lake	API 120970388300	16 - 46N

•			
	•		

- 128

ILLINOIS STATE GEOLOGICAL SURVEY Page 1 ••• Water Well Тор Bottom Total Depth 242 Driller's Log filed 0007600 Permit Date: Permit #: 0 COMPANY Hoover, L. R. 1 FARM DATE DRILLED October 1, 1971 NO. ELEVATION 0 COUNTY NO. 03399 LOCATION 75'N line, 50'E line of SE LATITUDE LONGITUDE -COUNTY Lake API 120970339900 16 - 46N - 12B

Water Well	Top	Bottom
yellow sand & gravel	0	24
gravel	24	42
hardpan, dry gravel	42	es
sand, gravel, blue clay	89	127
large gravel 4 bouldere	127	136
Total Dapth.		139
Casing: 5" GALV TEC 14.81 PPP from 0' to 138'		
Size hole below casing: 5°		
Mater from large gravel at 127' to 130'. Static level 75' below casing top which is 1' above GL.		
Pumping level 135' when pumping at 3 gpm for 0 hours Permanent pump installed at 126' on , with a capacity of	0 gpm	•
Driller's Log filed		

Driller's Log filed Location source: Location from permit

- 12E

Permit Dat	October 10	, 1973	Permit (li 259	36
COMPANY	Hoover, L. R. Si Henarichs				
	LLED November 1	• •	NO,		
BLEVATION	7 Q	C0	UNTY NO. 24153		
LOCATION	1150'S 450'W	NE/C NE			
LATITUDE	42.468423	LONGITI	DDE + 87.827003		Li Li
COUNTY	Lake	API	12097241530	0	16 - 46N

50)

ILLINOIS STATE GEOLOGICAL SURVEY Page 1

Water Well	Тор	1	Bottom
gravel		р	4
band	.	1	20
hardpan	20	> [90
blue clay	90	,	127
hardpan	127	,	130
limestone .	130	>	145
Total Depth			145
Casing: 5" GALV 15# from B' to 130'			
Size hole below casing: 5"			
Water from limestone at 130' to 145'. Static level 75' below cosing top which is 1' above GL Pumping level 130' when pumping at 10 gpm for 4 hours			
Permanent pump installed at 140' on September 30, 1978. capacity of 10 gpm	with a		
Driller's Log filed			

Location source: Platbook verified

00080

Permit #1 79780 Permit Date: September 21, 1978

COMPANY Gross, Emil E.	
PARM	┝╴╪╍╪╍╪╺╏═╧╴╋╼╪╶╶╣
DATE DRILLED September 21, 1978 NO.	
ELEVATION C COUNTY NO. 26697	
LATITUDE LONGITUDE	
COUNTY Lake API 120972669700	16 - 46N - 12B

MARIE

Nater Well			Тор	Bottom
Total Depth				274
	•			
	•			
Driller's Log filed				
		· .		
	•			
	·			
				Į
				ļ
				ĺ
				}
	•			

Permit Date:	Permit #: 0	
COMPANY HOOVET, L. PARM		
BLEVATION 0	1, 1977 NO. COUNTY NO, 26818	
LATITODE	330'W line of NW NE SE LONGITUDE	
COUNTY Lake	API 120972581800	16 - 46N - 12E

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY Water Well Top Total Depth 190 Driller's Log filed 190

 Permit Date:
 Permit 6: 0

 COMPANY
 Hoover Mater Well Servic

 FARM
 Formation of the servic

 DATE DRILLED December 1, 1976
 NO.

 BLEVATION 0
 COUNTY NO. 25157

 LOCATION 650'N line, 325'E line of SE

 LATITUDE

 LATITUDE

 COUNTY

 LATITUDE

 LATITUDE

 API 120972515700

 16

0 16 - 46N - 12E

ILLINOIS STATE GEOLOGICAL SURVEY 1

Delugate Mater Noll		<u></u> ;
Private Mater Well	Тор	Bottom
bandy clay	0	22
ardpan .	22	62
elay	62	70
itoney clay	10	107
lick clay	107	127
ravel	127	129
imescone	129	168
otal Dapth	!	168
aaing: 5" ASTM A-53 T4C 15#/FT from 0' to 129'		100
ize hole below casing: 5"		
ater from rock at 0' to 0'.		
tatic level 100' below casing top which is 1' above GL		
umping level 129' when pumping at 8 gpm for 1 hour		
	.	••
dditional Lot 8, Sheridan Lake View subdivision. ocation info: 2nd Addition		
ocation source: Location from permit		
• • • • • • •		
	1	
irmit Date: February 24, 1986 Permit #: 122	181	
OMPANY Hoover, Lonny R.		
ATE DRILLED Pebruary 14, 1986 NO.		
LEVATION 0 COUNTY NO. 27962		
OCATION SE NE SE		
LONGITUDE		
DUNTY Lake API 120972796200	16 - 46N	- 128
•		

ILLINOIS STATE GEOLOGICAL SURVEY Page 1

Private Water Well	Тор	Botton
black dirt	0	1 1
yellow clay	1	15
hardpan .	15	75
blue clay	75	124
limestone	124	150
Total Depth		150
Casing: 5" GALV from 0' to 150'	1 F	· .
Size hole below casing: 5"		1
Water from limestone at 124' to 150'. Static level 95' below casing top which is 1' above GL Pumping level 147' when pumping at 3 gpm for 0 hours		
Permanent pump installed at 147' on , with a capacity of	11 gpm	
Additional location info:	•	
Location Bource: Pield verified		
		1

			•		
		•			
1					
	•	-			
			-		
; 1	111	<u> </u>			
••••••••••••••••••••••••••••••••••••••	1	····]			
T.	<u>.</u>				
÷		-			
÷					

Permit Date	December 2, 1983	Permit #:	110645
COMPANY	Gross, Michael		
FARM	Veterana Administration 265		
DATE DRIL	LED December 8, 1983	NO.	
ELEVATION	COUNTY	NO. 33750	
LOCATION	205019 line 7018 line of MM	e1.	

W line of NW SW LONGITUDE - 87.825087 0 LATITUDE 42.466337 COUNTY Lake API 120973375000

4	6N ·	- 12E		

000

15 -

Page 1	ILLINOI	S STATE	GEOLO	SICAL SU	JRVEY	
Water Well				· · .	Top	Bottom
Total Depth						119
Driller's Log	filed					
•				1		
				1		
		-				
• •						
						ļ
				ľ		
				·		
,						1
•						
		•		ļ		1

Permit Date: Permit COMPANY Green M L PARM DATE DRILLED January 1, 1940 NO. 1 COUNTY NO. 0228 BLEVATION 0 LOCATION 420'N line, 1600'E line of SW LATITUDE LONGITUDE -COUNTY Lake API 120970228700 15

#i 0	- -		
37			•

- 12B - 46N

MARID

Poge 1 ILLINOIS STATE GEOLOGICAL SURVEY

Private Water Well	тор	Bottom
till dirt	· 0	2
vellow clay	2	12
and 6 gravel	12	. 15
blue clay	15	25
nardpan	25	50
sand	50	55
Total Depth		55
Casing: 5" ASTM A120 T/C 15#/PT from 0' to 51'		
Screen: 4' of 5° diameter 12 alot Srout: CLAY SLURRY from D to 20. Size hole below casing: 5°		
Nater from sand at 50' to 55'. Static level 22' below casing top which is 1' above GL Pumping level 22' when pumping at 10 gpm for 2 hours Permanent pump installed at 45' on November 30, 1985, w: capacity of 0 gpm	th a	
Additional Lot 21, Kellog's Homesite subdivision. Location info: Block #2		
ocation source: Field verified	•	
· · · · ·		

Permit Date: November 27, 1985 COMPANY Boyce, Kenneth D. PARM DATE DRILLED November 30, 1985 LOCATION 0 LATITUDE LONGITUDE COUNTY Lake API 120972783300 15 - 46N - 12E

Mater Woll	Top	Bottom
topsoil	0	
sand	1	3
blue clay	36	50
gravel	56	110
Total Depth		110
Casing: 4.5" GALV from 0' to 110'		ĺ
Size hole below casing: 4.5*		
water from gravel at 56' to 110'. Static level 4' below Caeing top which is 0' above GL Pumping level 10' when pumping at 15 gpm for 15 hours		
Driller's Log filed		ŀ

 Permit Date:
 Permit B: 0

 COMPANY
 Boysen, Henry, Jr.

 PARM
 Camp Logan

 DATE DRILLED January 1, 1941
 NO.

 BLEVATION 0
 COUNTY NO. 02288

 LOCATION 2310'S 990'W NE/c NE

 LATITUDE
 42.465117

 LONGITUDE - 87.809448

 COUNTY
 Lake

. .

15 - 46N - 12B

Water Well		Тор	Bottom		•
Total Depth	·	· ·	. 66		
Driller's Log filed					
					•
		, , ,	4		
				• •	
			-		
		1			
				:	5
					0940
					8
			· ·		
Permit Date:	Par	mit #r 0			
COMPANY Hoover Water					
PARN DATE DRILLED January 1.					• •
ELEVATION 621GL	, 1963 אס. כסטאדץ אס. (2615			
LOCATION SH NW SH	LONGITUDE				
	API 1209702	51500 15 - 4	6N - 12B		
COUNTY Lake					
		• •		·	
COUNTY Lake					·
COUNTY Lake				·	·
COUNTY Lake			· · ·		
COUNTY Lake					

ILLINOIS STATE GEOLOGICAL SURVEY Page. 1 -----Water Well Top Bottom sand 0 ננ blue clay 11 31 hardpan зì 74 blue clay 74 86 hardpan 86 101 blue clay 103 134 limestone 134 160 Total Depth 160 Casing: 4" GALV TEC 10.09 from 0' to 134' Size hole below casing: 4* Water from limestone at 134' to 160'. Static level 40' below casing top which is 1' above GL Pumping level 120' when pumping at 10 gpm for 0 hours Driller's Log filed location source: Platbook verified

Permit Date: Permit #1 NF4052 Hoover Water Well Servic COMPANY PARM 140 DATE DRILLED August 11, 1968 NO. ELEVATION 0 COUNTY NO. 02796 LOCATION 1100'N line, 750'S line of NW LONGITUDE -LATITODE COUNTY Lake API 120970279600

15 - 46N - 12B

Page 1

Natar Well	Тор	Botton
end.	a	10
blue clay	00	71
gravel	71	80
Total Depth		80
Casing: 4' GALV TEC 10.89 from 0' to 77'		
Screen: 3' of 4° diameter 20 ølot Size hole below cæsing: 4°		
Water from gravel at 71' to 80'. Static level 45' below caeing top which is 1' above GL Pumping level 50' when pumping at 11 gpm for 0 hours Permanent pump installed at 63' on , with a capacity of	9 0 2 m	2
Driller's Log filed		1.
Location source: Platbook verified	•	
		1
		1
	•	
	•	1

Permit Date:	Permit #: N	123741
COMPANY HOOVER Wate	r Well Servic	
DATE DRILLED April 5, ELEVATION 640GL LOCATION	1968 NO. COUNTY NO. 02797	
COUNTY Lake	API 120970279700	15 - 46N - 121

ILLINOIS STATE GEOLOGICAL SURVEY Page 1

Water Well	Тор	Bottom
sand	C	
gravel & clay	9	12
gravel	121	124
limestone	124	12
Total Depth	ĺ	127
Casing: 5" GALV TEC 14.81 PPF from 0' to 124'		
Size hole below casing: 5"		
Water from limestone at 124' to 127'. Static level 33' below casing top which is 1' above GE Pumping level 75' when pumping at 10 gpm for 0 hours Permanent pump installed at 105' on November 29, 1976, Capacity of 6 gpm		
Driller's Log filed		
Location source: Location from permit		
	· ·	
		ļ
· · ·		
· . ·		
Permit Date: October 19, 1976 . Permit #: 5	3776	
COMPANY Hoover, L. R.		
PARM CONTRACTOR		
DATE DRILLED November 18, 1976 NO.		+
ELEVATION 0 COUNTY NO. 25066		
LOCATION		

Permit Date: October 19, 1976	. Permit #1 5	1776
COMPANY Hoover, L. R. FARM		
DATE DRILLED November 18, 1976	NO .	
ELEVATION 0 COUN	TY NO. 25066	
LOCATION LATITUDE LONGITUD	8	
COUNTY Lake API	120972506600	15 - 46N - 12B

ILLINOIS STATE GEOLOGICAL SURVEY Page 1 Water Well Bottam Тор Total Depth 130 Driller's Log filed 0069000 Permit Date: Permit #: 0 COMPANY Hoover Water Well Servic' FARM · · 🗲 DATE DRILLED January 1, 1963 . NO. COUNTY NO. 02614 ELEVATION 6130L LOCATION NE NE NH LATITUDE LONGITUDE COUNTY Lake

API 120970261400

15 - 46N - 12H

age

Water Woll	1	
	Top	Bottom
topsoil	0,	د
send 4 hardpan	с	132
gravel	132	138
Total Depth		138
Caming: 4' GALV 11# from 0' to 136'		
Screen: 3' of 4° diameter 20 slot Size hole below caaing: 4°		:
Water from gravel at 132' to 138'. Static level 35' below casing top which is 2' above GL Pumping level 40' when pumping at 12 gpm for 4 hours		
Permanent pump installed at 63' on , with a capacity of	10 gpm ·	
Driller's Log filed Location source: Location from permit		
beeter bourte. Beacies item permit	1	· ·
]	
• ,	•	
· · · ·		
, .		
•	1	
	·	
Permit Date: Permit #: NP3	8309	
COMPANY Gross, Emil E.		
PARM Pitcher Construction Co.	┝┿╸┼┊╂	┊┠╧┙
DATE DRILLED April 3, 1973 NO.		
SLEVATION 0 COUNTY NO. 03882		
OCATION NE NE NM		<u> </u>
ATITUDE 42.470622 LONGITUDE - 87.816769		
COUNTY Lake API 120970388200	15 - 46N	- 12B

8

- 46N - 12B

Nater Well		Top	Bottom
Total Depth	·		141
			1
Driller's Log filed			
ı			
	-		{
	·		
•			
ermit Date:			
	Permit #: 0		
OMPANY HOOVET, L. R.		···	
ATE DRILLED November 1, 1971	NO.		
LEVATION 0	COUNTY NO. 03416		
OCATION LA	NCITUDE		<u></u>

0104001

N - 12E

Notor Noll		Тор	Bottom
Total Depth		· ·	266
		Ì	
		ĺ	{
· · · ·			
Driller's Log filed			1
		1	i i
	•		
			1
			[
			ļ
•			
			ł
			ļ
		ļ	
		1	

Pormit Date: Permit #, 0 COMPANY Hoover, L. R. PARM DATE DRILLED January 1, 1974 NO. ELEVATION 0 COUNTY NO. 24152 LOCATION LATITUDE COUNTY Lake API 120972415200, 15 - 46N - 12E

,

Nator Well		Тор	Bottom
Total Depth			171
	1		1
Driller's Log filed			1
· · ·			
			ļ
	· · · [ĺ
			1
			1

Bottom 177

Permit Date: Permit #1 0 COMPANY Hoover Water Well Servic PARN DATE DRILLED JANUARY 1, 1963 NO. ELEVATION 6210L COUNTY NO. 02616 LOCATION NW NE SH LATITUDE LONGITUDE COUNTY Lake API 120970261600 15 - 46N - 12

15 - 46N - 12B

.

Page 1

Water Well		1	7
		Тор	Bottom
topsoil		0	3
sand	•	3.	14
hardpan		14	85
blue clay		85	130
gravel		130	134
Total Depth			134
Caping: 4" GALV 11# fro	om. 0' to 134'	ļ	
Pumping level 65' when pum	ing top which is 1' above OL	10 gpm	
Driller's Log filed Additional location info:			
Location source: Location	from permit		
	•		
Permit Date:	Permit #: NF1	4790	
COMPANY Gross, Emil E.			
PARM			
DATE DRILLED June 2, 1972	NO.		╪╋╧
ELEVATION 0	COUNTY NO. 03881		<u> </u>
LOCATION NE SW			
COUNTY Lake	LONGITUDE.		
COUNTY Lake	API 120970388100	15 - 46N	I - 128

API 120970388100

15 - 46N - 12B

MAR

00102001

ILLINOIS STATE GEOLOGICAL SURVEY Page 1

Water Woll Тор Bottom Total Depth 143 Driller's Log filed

Permit Date: Permit #: 0 COMPANY Roover, L. R. ---FARM DATE DRILLED May 1, 1973 NO. BLEVATION 0 COUNTY NO. 03921 LOCATION LATITUDE ONGITUDE COUNTY Lake API 120970392100

15 - 46N - 12E

Myapilda 28

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

-----Water Nell Bottom Тор topsoil 0 1 brown clay 1 Э brown clay, gravel Э 6 blue clay, gravel 8 13 graval 13 19 blue clay, heavy gravel 19 65 hardpan 65 100 blue clay 100 127 limestone 127 199 Total Depth 199 5° PVC from 0' to 109' 5' BLACK from 109' to 130' Casing: Size hole below casing: 4.75* Water from limestone at 127' to 199'. Static level 110' below casing top which is 1' above GL Driller's Log filed Address of well: Winthrop Court Location source: Location from permit 0010600

Permit Det	a: June 10, 1976	Permit #:	46333	
COMPANY	Henry Boysen Co./Lichter, J	J.P.		
PARM	Busch & Larson			
DATE DEL		NO.		

DATE DRIDGED CONC 117	NU.	
RLEVATION 0	COUNTY NO. 24846	
LOCATION 150'9 line, LATITUDE 42.462886	325'N line of NW NE SW LONGITUDE - 07.019262	
COUNTY Lake	API 120972484600	15

1		i i	
\square			
C			
	į	1	
	-		

15 - 46N - 12B

Nater Well	Тор	Bottom
Total Depth		167
	ĺ	
<u>.</u>		
Filler's Log filed		
		, I

Permit Date: Permit 0: 0

COMPANY Hoover, L. R. FARN N DATE DRILLED July 1, 1974 NO. ELEVATION 0 COUNTY NO. 24252 LOCATION 355 LATITUDE LONGITUDE -COUNTY Lake API 120972425200 15 167

.

15 - 46N - 12B

0010900

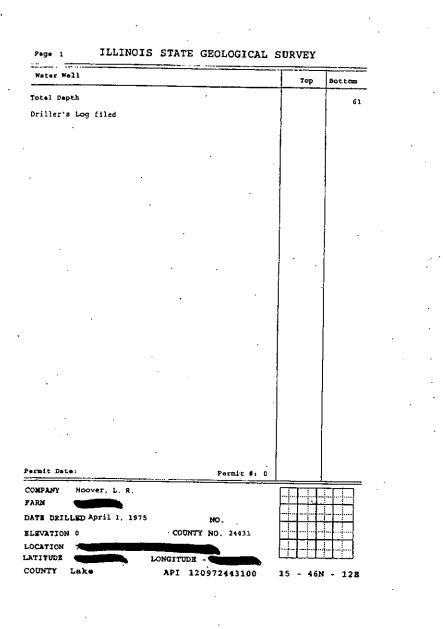
1 ILLINOIS STATE GEOLOGICAL SURVEY

yellow clay sand hardpan brown clay cand-gravel Total Depth Casing: 4" OALV STEEL 11# from 0' to 44' Screen: 3' of 4' diameter 15 alot Size hole below casing: 4" Water from sand-gravel at 43' to 46'. Screen: 10' of 4' diameter 15 alot Size hole below casing: 4" Water from sand-gravel at 43' to 46'. Screen: 10' below casing: 4" Water from sand-gravel at 30' on , with a capacity of Pumping level 18' when pumping at 10 gpm for 0 hours Permanent pump installed at 30' on , with a capacity of Nodditional Hocation source: Pield verified. Moder of well work of well work of well work of well Mater Dericker 27, 1987 NO. NO. NO. NO. NO. NO. NO. NO.	Deducte Haber Mall	,,,,,,	1
sand 12 hardpan 18 brown clay 40 sand-gravel 43 Total Depth 43 Casing: 4" OALV STEEL 11# from 0' to 44' 5 Screen: 3' of '4' diameter 15 slot 5 Size hole below casing: 4" 40 Water from sand-gravel at 43' to 46'. 5 Schoid 18' below casing top which is 1' showe GL 10 gpm Pumping level 18' when pumping at 10 gpm for 0 hours 10 gpm Additional 10 10 gpm Madrees of well 10 gpm 10 gpm Additional 10 gpm 10 gpm Moderees of well 10 gpm 10 gpm Addrees of well 10 gpm 10 gpm Moderees of well 10 gpm 10 gpm Moderees of well 10 gpm 10 gpm Moderees of well 10 gpm 10 gpm Addrees of well 10 gpm 10 gpm Moderees of well 10 gpm 10 gpm Marker DepiLleD March 3, 1987 NO. 10 gpm MARITION 0 COUNTY NO. 29270 10 gpm	Private Mater Nell	top	Bottom
hardpan brown Clay sand-gravel Total Depth Cooling: 4" OALV STEEL 11% from 0' to 44' Screen: 3' of '4' diameter 15 plot Size hole below casing: 4" Water from sand-gravel at 43' to 46'. Stotic level 10' below casing top which is 1' above GL Pumping level 10' when pumping at 10 gpm for 0 hours Permanent pump installed at 30' on , with a capacity of 10 gpm Additional Location source: Field verified. More of well ARM ATE DRILLED March 3, 1987 NO. LUNNITUDE LONNITUDE Noter The State of the second seco	yellow clay	· 0	1 1
brown clay sand-gravel Total Depth Coaing: 4" OALV STEEL 11% from 0' to 44' Screen: 3' of '4' diameter 15 plot Size hole below casing: 4" Mater from sand-gravel at 43' to 46'. Stotic level 10' behow casing top which is 1' above GL Pumping level 10' beho wasing top which is 1' above GL Pumping level 10' beho wasing top which is 1' above GL Permanent pump installed at 30' on , with a capacity of 10 gpm Additional Location info: Micross of well Address of well Address of well More Field verified. MORANY Gross, Michael ARN ATE DRILLED March 3, 1987 LONSITUDE LONSITUDE MORANY COUNTY NO. 29270 OCATION ATITUDE MORANY COUNTY NO. 29270	and	12	1 1
and-gravel Total Depth Caoing: 4" OALV STEEL 11% from 0' to 44' Screen: 3' of '4' diameter 15 plot Size hole below casing: 4" Nater from sand-gravel at 43' to 46'. Screen: 10' below casing top which is 1' above GL Pumping level 10' when pumping at 10 gpm for 0 hours Permarent pump installed at 30' on , with a capacity of Nodditional Location info: Nddress of well March 27, 1987 Dermit #: 13C221 XOMPANY Gross, Michael ARM ATE DRILLED March 3, 1987 NO. COUNTY NO. 29270 OCATION ATITUDE LONGITUDE Note:	hardpan .	18	4
Total Depth Cosing: 4" OALV STEEL 11H from 0' to 44' Screen: 3' of '4' diameter 15 plot Size hole below casing: 4" Water from sand-gravel at 43' to 46'. Storic level 10' when pumping at 10 gpm for 0 hours Permanent pump installed at 30' on , with a capacity of Ndditional Location info: Mddress of well Mddress of well Mdress of well	brown clay	40	
Casing: 4" OALV STEEL 11# from 0' to 44' Screen: 3' of '4' diameter 15 slot Size hole below casing: 4" Water from sand-gravel at 43' to 46'. Stotic level 18' below casing top which is 1' above GL Pumping level 18' when pumping at 10 gpm for 0 hours Permanent pump installed at 30' on , with a capacity of 10 gpm Additional Location info: Mdress of well Socation source: Field verified. Permit &: 13c221 NOMPANY Gross, Michael ARN ATT DRILLED March 3, 1987 LONGITUDE LONGITUDE COUNTY NO. 29270 COUNTY NO. 29270 COUNT	sand-gravel	43	4
Screen: 3' of 4' diameter 15 plot Size hole below casing: 4' Water from sand-gravel at 43' to 46'. Stotic level 10' below casing top which is 1' above GL Pumping level 10' when pumping at 10 gpm for 0 hours Permanent pump installed at 30' on , with a capacity of Ndditional Location info: Moderess of well Address of well Address of well Address of well Permit #: 13c221 NOMPANY Gross, Michael ARM ATT DRILLED March 3, 1987 NO. LONGITUDE LONGITUDE Note: Note: N	Total Depth		
Size hole below casing: 4" Mater from sand-gravel at 43' to 46'. Stotic level 18' below casing top which is 1' above GL Pumping level 18' when pumping at 10 gpm for 0 hours Permanent pump installed at 30' on , with a capacity of Ndditional Location info: Mdress of well Address of well Address of well Address of well Address of well Address of well Permit #: 13c221 NOMPANY Gross, Michael ARN ATE DRILLED March 3, 1987 NO. LEVATION 0 COUNTY NO. 29270 LONGITUDE ATITUDE ADDRESS (Address of Longitude LONGITUDE	Casing: 4" GALV STEEL 11# from 0' to 44'		
Static level 10' below casing top which is 1' above GL Pumping level 10' when pumping at 10 gpm for 0 hours Permanent pump installed at 30' on , with a capacity of Additional Location info: Address of well Address of well	Screen: 3' of '4" diameter 15 plot Size hole below casing: 4"		
Additional Hocation info: Hocation source: Field verified. Hocation sou	Water from Band-gravel at 43' to 46'. Static level 10' below casing top which is 1' above GL Pumping level 10' when pumping at 10 gpm for 0 hours		
ermit Date: March 27, 1987 Permit #: 13C221	Permanent pump installed at 30' on , with a capacity o	f 10 gpm	
ACCETION SOURCE: Field verified.			
ermit Date: March 27, 1987 Permit #: 13q221	Address of well		
ermit Date: March 27, 1987 Permit #: 13q221	ocation source: Field verified.		
COMPANY Gross, Michael ARR ATE DRILLED March 3, 1987 NO. LEVATION 0 COUNTY NO. 29270 COCATION LONGITUDE			
COMPANY Gross, Michsel ARN ATE DRILLED March 3, 1987 NO. LEVATION 0 COUNTY NO. 29270 OCCATION ATITUDE LONGITUDE			
CMPANY Gross, Michsel ARM ATE DRILLED March 3, 1987 NO. LEVATION 0 COUNTY NO. 29270 OCATION ATITUDE LONGITUDE			
COMPANY Gross, Michsel ARN ATE DRILLED March 3, 1987 NO. LEVATION 0 COUNTY NO. 29270 OCCATION ATITUDE LONGITUDE			
ARN ATE DRILLED March 3, 1987 NO. ILEVATION 0 COUNTY NO. 29270 COUNTY NO. 29270 LONGITUDE	ermit Dats: Harch 27, 1987 Permit #: 13	221	
ATE DRILLED March 3, 1987 NO. LEVATION 0 COUNTY NO. 29270 COLINITY NO. 29270 LONGITUDE	OMPANY Gross, Michsel		
LEVATION 0 COUNTY NO. 29270			
OCATION LONGITUDE			
LONGITUDE			
		15 - 46N	- 121

Ð

Private Water Hell	Тор	Bottom
gravel, sand £ clay	Ð	20
sandy clay	20	60
hardpan	60	76
limestone	102	102
clay	76	102
no record	1.02	736
Total Depth		136
Casing: 5" ASTH A-53 TAC 15#/PT from 0' to 102'		Í
Size hole below casing: 5"	1	
Water from rock at 0' to 0'. Static level 40' below casing top which is 1' above GL Pumping level 126' when pumping at 2 gpm for 1 hour Permanent pump installed at 126' on May 15, 1986, with	a capacity	
of 4 gpm		
Additional Sector Additional S		
Address of well:		
Location source: Field verified		
• •		
·		
Permit Date: April 22, 1986 Permit #: 12	294	
COMPANY HOOVET, LONDY R.		
PARM		
DATE DRILLED May 15, 1986 NO.		
BLEVATION 0 COUNTY NO. 28125		
LOCATION LONGITUDE		
COUNTY Lake API 120972812500	15 - 46	N - 12B

. .


Page 1

Water Nell				Тор	Bottom
Total Depth			•		2
Driller's Log filed		:		1	1
]
				1	
н. 				1	
	•				
	•			ĺ	
				•	
				}	
			•		
				•	
				}	
,			_		
Permit Date:		Permit	#: 0		<u> </u>

PARM		F	+	
DATE DRI	LED January 1, 19	971 NO.		
ELEVATION	, 0 א	COUNTY NO. 03077		
LOCATION LATITUDE		LONGITUDE -		
COUNTY	Lake	API 120970307700 1	5	-

46N - 12B

MAPID

ILLINOIS STATE GEOLOGICAL SURVEY Page 1 # 1.12<u>5</u>

Тор

Water Well

Total Depth 147 Driller's Log filed

Permit Date: Permit #1 0 COMPANY Hoover, L. R. PARM DATE DRILLED September 1, 1971 NO. BLEVATION 0 COUNTY NO. 03357 LOCATION LATITUDE LONGITUDE COUNTY Lake

API 120970335700 15 - 46N - 12B

----Bottom

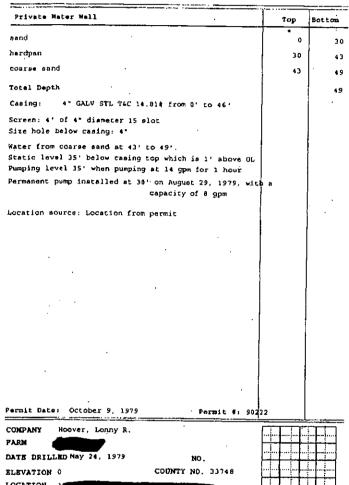
10121

ILLINOIS STATE GEOLOGICAL SURVEY

Private Natar Hell	Тор	Bottam
yellow clay	0	16
blue clay 4 gravel	16	51
Coarse sand	51	56
Total Depth		56
Casing: 4* GALV STEEL 11# from 0' to 54'		
Screen: 4' of 4" diameter 15 slot Size hole below casing: 4".		
Water from coarse sand at 51' to 56'. Static level 16' below casing top which is 1' above GL Pumping level 18' when pumping at 0 gpm for 0 hours Permenent pump installed at 20' on , with a capacity of		

Location source: Location from permit

Page 1


0011100

Permit Date: January 17, 1989 Permit #: 008843

COMPANY Gross, Michael		
PARM		
DATE DRILLED Pebruary 10,	1989 NO.	
RLEVATION 0	COUNTY NO. 31926	
LOCATION NW SE NW	LONGITUDE	
COUNTY Lake	API 120973192600	15 - 46N - 12E

ILLINOIS STATE GEOLOGICAL SURVEY Page 1

LOCATION LATITUDE LONGITUDE -COUNTY Lake

API 120973374800

15 - 46N - 12B

_____ Private Water Well Bottom Тор top soil 0 2 sand 2 9 blue 9 37 gravel 37 39 blue 39 64 gravel-sand 64 67 blue-hardpan 67 82

82

89

89

ILLINOIS STATE GEOLOGICAL SURVEY

Total Depth Casing: 5" PVC from D' to 87'

Screen: 3' of 5" diameter 10 slot

Size hole below casing: 5" Water from gravel at 82' to 89'.

Static level JS' below casing top which is 1' above GL Pumping level 0' when pumping at 10 gpm for 0 hours Permanent pump installed at 60' on April 3, 1979, with a capacity of 10 gpm

Address of well:

Page 1

gravel coarse

Location source: Location from permit

Pormit Date: Pébruary 22, 1979 Permit #: 03609 COMPANY Gaffke, George E. PARM DATE DRILLED April 2, 1979

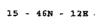
BLEVATION	0	COUNTY NO. 33747	
LOCATION			
LATITUDE (LONGITUDE	L
COUNTY	Lake	API 120973374700	15 -

.....

0011200

.

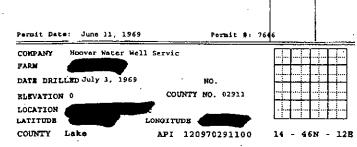
46N - 12B



Private Water Well	Top	Bottom
top soil	0	
sand & clay	- 1	
blue hardpan	Ð	99
blue clay	95	105
hardpan	105	115
gravel	115	116
Total Depth		115
Casing: 4° GALV 11# from 0' to 116'		
Size hole below casing: 4"		
Nater from gravel at 115' to 116'. Static level 45' below casing top which is 1' above GL Pumping level 45' when pumping at 11 gpm for 0 hours		
Permanent pump installed at 63' on , with a capacity of	0 gpm	
Location source: Location from permit		(·
		·
· · · ·		· ·

Permit Date: March 29, 1977 Permit #: 58329 COMPANY Gross. Emil S. PARM DATE DRILLED April 5, 1977 NO. ELEVATION 0 LOCATION LATITUDE COUNTY NO. 33749 LONGITUDE COUNTY Lake API 128973374900 15 - 46N

.



ģ

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

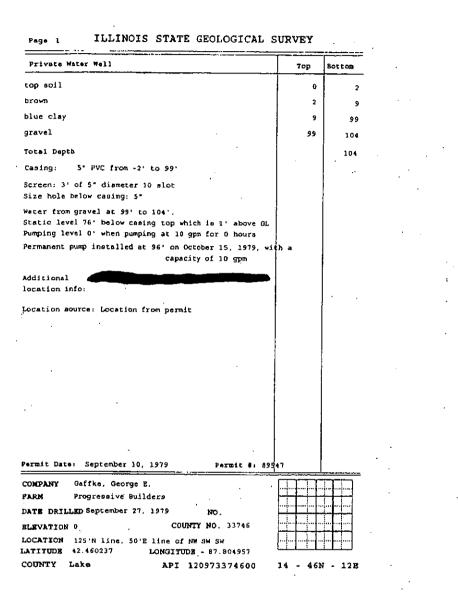
Mater Well	Top	Bottom
aand	0	, ,
sand 4 gravel	7	11
sandy blue clay	33	90
soft blue clay	90	111
gravel, some water	111	120
gravel, water	120	· 123
Total Depth	ļ	123
Casing: 5" GALV TEC 14.01 from 0' to 123'	Í	
Size hole below casing: 5"	}	
Water from gravel at 120' to 123'. Static level 18' below casing top which is 1' above GL Pumping level 24' when pumping at 20 gpm for 0 hours Permanent pump installed at 42' on , with a capacity of	8 ցրա	
Driller's Log filed	ĺ	

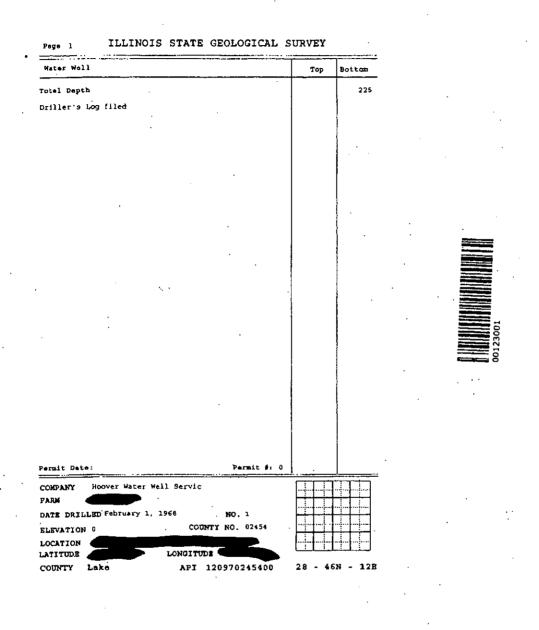
Driller's Log filed Location source: Platbook verified

1.

Page 1

Weter Well	Тор	Bottom
and .	o	39
hardpan	35	. BI
blue clay	· 81	120
limescone	128	160
Total Depth		180
Caping: 5* GALV T&C_14.81 from 0* to 128*		
Size hole below casing: 5"		
Nater from limestone at 128' to 190'. Static level 14' below casing top which is 1' above GL Pumping level 180' when pumping at 3 gpm for 0 hours Permanent pump installed at 168' on , with a capacity o	8 gpm	
Driller's Log filed ' ocation source: location from permit		
· · · ·		
· ·		
	-	
,		


Permit Date:	Permit #1 62	87
COMPANY Hoover Water Well Servic PARM DATE DRILLED November 15, 1968	NO. 1	
	T NO. 02795	
COUNTY Lake API 13	20970279500	14 - 46N - 12B



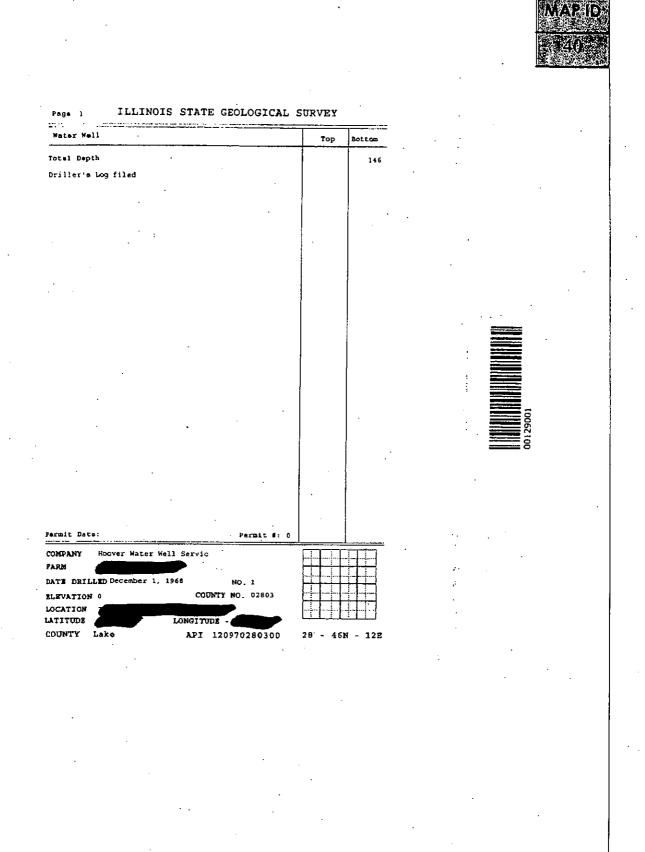
ILLINOIS STATE GEOLOGICAL SURVEY Page 1 ____ **...**. Water Well Bottom Тор sapd Ð 33 blue clay 33 96 very sandy clay 46 57 hard, dry clay 57 70 sand (dead) 70 86 soft blue clay 86 99 gravel 99 100 limestone 100 125 Total Depth 125 5" GALV T&C 14.81 PPF from 0' to 100' Casing: Size hole below casing: S" Water from limestone at 100' to 125'. Static level 20' below casing top which is 1' above GL Pumping level 25' when pumping at 30 gpm for 0 hours Driller's Log filed Location source: Location from permit . Permit Date: Permit 8: 8067 COMPANY Hoover Water Well Servic FARM DATE DRILLED November 21, 1969 NO. COUNTY NO. 02993 BLEVATION 0 LOCATION LATITUDE (LONGITUDE COUNTY Lake API 120970299300 14 - 46N - 12B

i

MAP 10

Bottom	Top	 Nator Hell
147		Total Depth
		• •
		Driller's Log filed
		Driller's LOG Tiled

Permit Date, Permit 8: 0 COMPANY HOOVER Water Well Servic PARM DATE DRILLED November 1, 1968 NO. 1 ELEVATION 0 COUNTY NO. 02002 LOCATION LATITUDE COUNTY Lake API 120970280200 28 - 46N - 12E



Page

Private Nator Mell	Тор	Botton
gravel	0	10
yellow clay	10	15
hardpan	15	142
limestone	. 142	156
Total Depth		156
Casing: 4" GALV STEEL from 0' to 142'		ł
Size hole below casing: 4"	•	
Water from limestone at 142' to 156'. Static level 112' below casing top which is 1' above GL Pumping level 112' when pumping at 9 gpm for 0 hours Permanent pump installed at 130' on , with a capacity o		
location source: Location from permit		

Permit Date: October 3, 1979	Permit #: 899	78
COMPANY Gross, Emil E. Parm		
DATE DRILLED October 5, 1979 BLEVATION 0	NO. COUNTY NO. 33862	
LOCATION 7 LATITUDE LO COUNTY Lake	NGITUDE -	28 - 46N - 12B

Private Water Well	Тор	Bottom
brown clay	0	10
blue clay-mxd gravel	10	151
limestone	151	195
Total Depth		195
Casing: S' PVC from -1' to 131' S' BLACK STEEL from 131' to 152'		
Size hole below casing: 5*		
Nater from limestone at 151' to 195'. Static level 93' below casing top which is 1' above GL Pumping level 0' when pumping at 12 gpm for 0 hours Permanent pump installed at 120' on June 4, 1979, with of 10 gpm	capacity	
Address of well:		
Location source: Location from permit		
Permit Date: May 22, 1979 Permit #: 85	674 .	

COMPANY GATTRE, DEorge	D .	{····
PARM		
DATE DRILLED May 25, 1979	NO.	
BLEVATION 0	COUNTY NO. 33861	
LOCATION		
LATITUDE	LONGITUDE	
COUNTY Lake	API 120973386100	28 - 46N - 12B

Private Water Well	Top	Bottom
top soil 4 fill	0	3
sand	з	12
yellow clay	12	22
blue clay	22	55
sand	- 55	60
hardpen	60	, 120
blue clay	120	122
limestone, gravel	122	139
limestone	135	160
Total Depth	i I	160
Casing: 5" ASTM A-120 T6C 15#PT from 0' to 135'		
Grout: CLAY SLURRY from 0 to 20. Size hole below casing: 5°		
Water from limestone at 135' to 160'. Static level 115' below casing top which is 1' above GL pumping level 125' when pumping at 11 gpm for 0 hours Permanent pump installed at 158' on August 15, 1990, wi capacity of 8 gpm		
capacity of a gim		
Additional pn.		
Address of well:		
Location source: Location from permit		
	1	
· .		
Permit Date: April 3, 1990 Permit #:		

		the second se
COMPANY Boyce, Kennel		
PARM - 🔮 🗧 Builder		
DATE DRILLED August 9,	1990 NÖ.	┝╍┊╸╋╸┊╸╋╶┊╸┫╺┆╍┥
ELEVATION C	COUNTY NO. 35998	
LOCATION NE SE SE		
LATITUDE 42.430811	LONGITUDE - 87.826778	
COUNTY Lake	API 120973599800	28 - 46N - 12E

128

g● 1	ILLINOIS	STATE	GEOLOGICAL	SURVEY

Pag

Water Holl							To	np	Bottom
Total Depth									19
Driller's Log filed									
									ļ
,									
		•							
				•		-			
		•							
						ļ	•		
						2			{
						:			
Permit Data:				Pers		o			
COMPANY Boysen, Honry,	Jr.							7	
FARM Busch & Larson							1	1	
DATE DRILLED November 1,	1976			NO.			$\left - \right $	+++	
ELEVATION 0			NTY		5067		1		
LOCATION 100'N line, 75 LATITUDE 42.435096			א איא 1018 -		0119		<u> </u>		11
COUNTY Lake	7	PI	120	97:250	6700		28 -	45	N - 12

R

MAPID CEPE

. Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

yellow clay stoney gray clay gray clay stoney gray clay	0 14 25 61	14 25 64
gray clay	25	
		54
atoney gray clay	64	
		. 107
soft gray clay	107	121
limestone gravel	121	122
limestone	122	220
Total Depth		220
Casing: 5" GALV T&C 14.81#/PT from 0' to 122'		
Size hole below casing: 5"		Į
Mater from limestone at 122° to 220°. Static level 95° below casing top which is 1° above GL Pumping level 175° when pumping at 4 gpm for 0 hours		
Driller's Log filed		
ocation source: Location from permit		1

PARE COUNTY NO. 24432	COMPANY Roover, L. R.	· · · ·	
ELEVATION 0 COUNTY NO. 24432		•	
	DATE DRILLED December 5, 19	75 ND.	
	ELEVATION 0	COUNTY NO. 24432	
		LONGITUDE -	

28 - 46N - 12B

Page 1

		Last tom
Private Nater Nell	Тор	Bottom
zlay	0	20
sand E Clay	20	105
lay	105	145
rock	145	165
Total Depth		165
Casing: 5" STEEL 154/FT from 0' to 145'	}	
Grout: BENTONITE CHIPS from 0 to 20. Size hole below casing: 5*		
Water from rock at 145' to 165'. Static level 120' below casing top which is 1' ab Pumping level 125' when pumping at 0 gpm for 2 ho	urs (
Permanent pump installed at 140' on July 29, 1994 of 10 gpm	, with a capaci	· ·
Additional	a.	
Location source: Location from permit		
		· ·
:		1.
•		
		ļ
		· ·
	ļ	
·		
Permit Date: June 22, 1994 Permit	4 1	
	<u></u>	<u></u>
COMPANY Gross, Rugene J.		
DATE DRILLED July 20, 1994 NO.		
BLEVATION 0 COUNTY NO. 384.		
LOCATION SE SE SE		╋┥╋
LATITUDE LONGITUDE		••••••••••••••••••••••••••••••••••••••
COUNTY Lake API 120973841	00 28 - 4	6N - 12
•		

. .

· · · ·

Private Nater Nell	Тор	Bottom
eand .	0	28
sand & clay	28	130
clay	130	155
gravel	155	159
Total Depth	•	159
Casing: 5' STEEL 15# from 0' to 159'		
Grout: SLURRY from 0 to 16. Size hole below casing: 5"		-
Nater from gravel at 0' to 159'. Static level 100' below casing top which is 1' above GL Pumping level 110' when pumping at 0 gpm for 2 hours Permanent pump installed at 140' on August 14, 1992; wi capacity of 10 gpm		
Additional location info:		
Address of well:		
Permit Dete: August 3, 1992 Permit Pi		
COMPANY Gross, Eugene J. PARM DATE DRILLED August 10, 1992 NO. ELEVATION 0 COUNTY NO. 37098 LOCATION SE SE SE LATITUDE LONGITUDE COUNTY Lake API 120973709800	28 - 40	5N - 121

٠.

Page 1

_____ _____ Noncommunity - Public Water Well Bottom Top Total Depth .

Permit Date: Formit #: COMPANY . 7 A R M Extra Value Liquora . DATE DRILLED NO. 12 COUNTY NO. 45167 ELEVATION 0 LOCATION SE SE SE LATITUDE 42.428995 LONGITUDE - 87.826790 COUNTY Lake API 120974516700

28 - 46N - 12B

MAP ID

ILLINOIS STATE GEOLOGICAL SURVEY

foncommunity - Public Nater Nell		Тор	Bottom
<u>.</u>	·····		+
tal Depth			
•			
		Ì	
	•		
	•		l.
	• •		.
			ĺ
			1 I
.*			
	• •		
•			ļ
		{	
	·	· .	
		1	
· ·			ļ
ernit Date:	·Permit #:		
CORPANY			
ARM Al's Tap		<u> </u>	

FARM Al's Tap		
DATE DRILLED	NO.	┝┿┿╍
BLEVATION 0	COUNTY NO. 45166	
LOCATION SE SE SE LATITUDE 42.428995	LONGITUDE - 87.826790	Lili
COUNTY Lake	API 120974516600	28 - 40

28 - 46N - 12B

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

1

 Nater Well
 Top
 Bottom

 Totel Depth
 152

 Driller's Log filed
 .

Permit Date: Permit #: 0

COMPANY Hoover Water Wel	ll.Servic	
PARN	▶ · · · · · · · · · · · · · · · · · · ·	
DATE DRILLED February 1, 1	.977 NO.	
ELEVATION 0	COUNTY NO. 25159	
LOCATION		
LATITUDE	LONGITUDE	
COUNTY Lake	API 120972515900	28 -

59 900 28 - 46N - 12B

_1

Water Hall	Тор	Bottom
Total Depth		165
· ·	[
	ļ	
Driller's Log filed		

Permit Date: Permit #⊨ 0 Hoover Water Well Servic COMPANY

FARM	
DATE DRILLED January 1, 1971	NO.
BLEVATION 0	COUNTY NO. 03079
LOCATION	
LATITUDE LO	NGITUDE
COUNTY Lake	API 120970307900
•	

28 - 46N - 12B

MAP ID

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

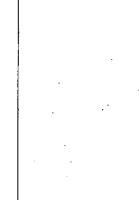
Water Well	Тор	Bottom
Total Depth		6
Driller's Log filed		
•		
•		
·		
		Í
	•	1

Permit Date: Permit Date: COMPANY HOOVER Water Well Servic PARM DATE DRILLED May 1, 1971 ND. ELEVATION 0 COUNTY NO. 03201 LOCATION LATITUDE LONGITUDE -COUNTY Lake API 120970328100 28 - 4

0					·
			TT	Ē	
			+		
			П		
		+	+		
	<u> </u>		·		

12B 28 46N

· · · . .


. ·

Page 1	ILLINOIS STATE GEOLOGI	CAL SURVEY	
Water Woll		top	Bottom
Total Depth			185
	,	. (
oriller's La	⊳g filed		
			1

			[
•			

,	
• •	
,	

Permit Date:	Permit #: 0
COMPANY HOOVER Hater Hell	l Servic
DATE DRILLED January 1, 196	3 NO.
ELEVATION 650GL	COUNTY NO. 02623
LOCATION NE NW SE	LONGITUDE
COUNTY Lake	API 120970262300 28

- 46N - 12B

Water Well Bottom тор Total Depth 232 Driller's Log filed

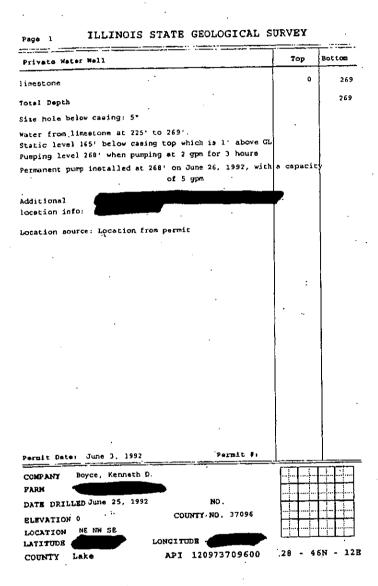
Permit Date: Permit #: 0 COMPANY Hoover, L. R. . PARM Hamma Concrete DATE DRILLED Occober 1, 1974 NO. ELEVATION 0 COUNTY NO. 24711 LOCATION 350'N line, 750'W line of SE LATITUDE 42.434422 LONGITUDE - 87.832475 COUNTY Lake API 12097247110(API 120972471100-

28 - 46N - 12B

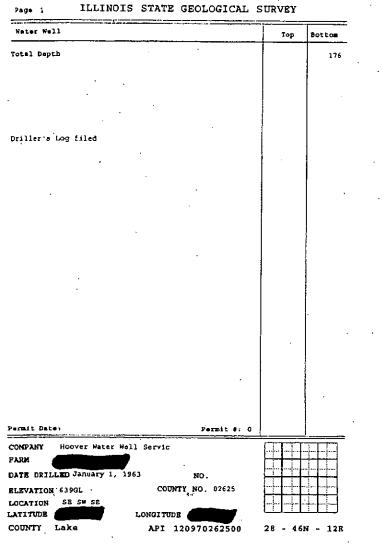
Private Water Well	Тор	Bottom
fill & black dirt	0	
ธลกป้	· 2	
yellow clay & mand	· 6	20
blue clay	- 20	· 50
medium gravel sand	50	51
hardpan .	51	150
limestone	150	215
Totel Depth		215
Casing: 5" ASTN A120 T/C 15#/FT from 0" to 150'	1	
Grout: CLAY SLURRY from 0 to 20. Size hole below casing: 5*		
Mater from limestone at 150° to 215°. Static level 110° below casing top which is 1° sbove GL Pumping level 150° when pumping at 2 gpm for 3 hours		
Permanent pump installed at 200' on February 9, 1987, w capacity of 4 gpm	th'a '	
Additional Nocation info:		
ocation source: Field verified		
	1	
	ļ	
ernit Date: February 4, 1987 Permit 8, 129		
	319	
CONPANY Boyce, Kenneth D.		
NO.		
LEVATION 0 COUNTY NO. 29070		
OCATION		-
LONGITUDE -	╘╺╧╾╹╌╌╴┠╶╵	أستعامه
OUNTY Lake API 120972907000	28 - 46N	- 12B

ë

Water Hell To	op	Bottom
ay	0	1 11
ravel	11	27
y, hardpan, & boulders	27	158
	158	160
e l	160	190
pth		190
S" STEBL from 0' to 160'		
ENT/#8 MESH from 0 to 11. on limestone at 160' to 190'. evel 137' below casing top which is 1' above OL level 170' when pumping at 7 gpm for 0 hours it pump installed at 180' on , with a capacity of 0 gr	an,	
	סול	


location info:

Location source: Location from permit


... Fermit Date: June 21, 1994 Permit Ør COMPANY Gross, Michael 01.0M

DATE DRILLED July 6, 1994	NO.	
BLEVATION 0	COUNTY NO. 38345	
LOCATION NE NW SE		
LATITUDE	LONGITUDE -	
COUNTY Lake	API 120973834500	28
••		

28 - 46N - 12B	

MAPID P 43

g

Private Mater Well	Tap	Bottom
yellow clay	0	20
blue clay	20	60
hardpan	60	135
line ledge	135	140
limestone	140	174
Total Depth	1	174
Casing: 5" GALV WELL from D' to 140'		
Size hole below casing: 5"		ļ
Water from limestone at 140' to 174'. Static level 110' below casing top which is 1' above GL Pumping level 110' when pumping at 5 gpm for 0 hours Permanent pump installed at 165' on , with a capacity o]	

Location source: Location from permit

Permit Date: December 11, 198	5 Permit #: 1	21770
COMPANY Gross, Michael		
DATE DRILLED March 13, 1986	ю.	
BLEVATION 0	COUNTY NO. 27858	
LOCATION LATITUDE.	NGITUDE	
COUNTY Lake	API 120972785800	28 - 46N - 12B

.

Page 1 12221012 Control Contro		
Private Water Well	Тор	Bottom
top soil	O`	2
yellow clay	2	9
gravel & sand	9	12
blue clay	12	30
grave)	30	. 34
blue clay	34	56
gravel 4 sand	56	61
blue clay	61	97
gravel é sand	97	103
hardpan .	103	149
ruppje	149	164
limestona	164	100
Totel Depth	· .	-380
Caeing: SP. ASTM A-53 T/C 15#/FT from 0' to 164'		
Grout: CLAY SLURRY from 0 to 20. Size hole below casing: 5"		
Water from limestone at 164' to 180'. Static level 128' below chaing top which is 1' above GL Pumping level 165' when pumping at 8 gpm for 2 hours Permanent pump installed at 178' on August 6, 1993, wit of 8 gpm		.y
Additional location info:		

Permit #:

NO. COUNTY NO. 37741

API 120973774100

LONGITUDE -

Address of well:

. DATE DRILLED August 5, 1993

BLEVATION 0 LOCATION SE SW SE

COUNTY Lake

LATITUDE

FARM

Permit Date: July 7, 1993

COMPANY Boyce, Kenneth D.

28 - 46N - 12B

· · ·

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

Water Well				_			Тор	Bottom
Totel Depth	· · · ·				. •			14
						Í		
								1
Driller's L	og filed	•	•					
			•			•		
		•				•		1
			•				•	
						ĺ		
•				:				
•		·-						1
		•	•••		•. •			
			•					
	•	. <u>.</u> .						
Permit Date:	L .			Par	mit #1			
	Hoover Water	Well Serv	1c			<u>.</u>	<u>} </u>	┵╌╌┲╍
FARM	Lotz Const				•		╞╌┟╼╞╍┨	
DATE DRILL	ng June 1, 19	70.	1	NO.				

 PARM
 Lot2 Const

 DATE DRILLED June 1, 1970
 NO.

 BLEVATION 0
 COUNTY NO. D1450

 LOCATION
 1000'N line, 500'E line of SE

 LATITUDE
 42.432601
 LONGITUDE - 87.827410

 COUNTY
 Lake
 API 120970145000

.

28 - 46N - 12E

.

ILLINOIS STATE GEOLOGICAL SURVEY Page 1

Private Water Well	top	Bottom
top soil	0	:
sand	2	35
blue clay	19	32
hardpan	33	99
gravel	. 95	98
hardpan	· 98	11
blue clay	114	110
rubble	110	12:
limestone .	121	15
Total Depth		150

5" ASTM A-120 T/C 15# from 0' to 121' Casing:

Grout: CLAY SLURRY from 0 to 20. Size hole below casing: 5"

Water from limeatone at 121' to 150' ... Static level 105' below casing top which is 1' above GL Pumping level 105' when pumping at 10 gpm for 2 hours Permanent jump installed at 145' on June 16, 1987, with a capacity of 10 gpm

Additional Lot 4. Sharon Park 2 subdivision. location info: Block #1

Location source: Location from permit

Permit Date: April 23, 1987

Permit #: 131114 T

COMPANY Boyce, Ken	neth D.	
PARM CARACTER		
DATE DRILLED June 16,	, 1987 NO,	
ELEVATION 0	COUNTY NO. 29422	
LOCATION NE SE		
LATITUDE	LONGITUDE	
COUNTY Lake	API 120972942200	28 - 46

5N - 12B

ILLINOIS STATE GEOLOGICAL SURVEY Page 1

Private Water Woll	Top	Bottom
grvl, sand, clay mix	· c	8
yallow clay	8	15
blue clay	15	50
hardpan	50	140
limestone	140	142
Total Depth		142
Casing: 4" GALV STEEL #11 from 0' to 140'		· ·
Size hole below casing: 4"		1
Water from limestone at 140° to 142°. Static level 112° below casing top which is 1° above G Pumping level 125° when pumping at 9 gpm for 0 hours	L	

Additional location info:

Location source: Location from permit

Permit #: 94391

.

Permit Dat	 June 17, 1980 	Permit #:	94391
COMPANY	Gross, Emil E.		
PARM			
DATE DRIL	LED August 12, 1	980 NO.7	
BLEVATION	1.0	COUNTY NO. 33854	
LOCATION			
LATITODE		LONGITUDE	
COUNTY	Lake	API 120973385400	28

8 - 46N - 12B

,

D

Private Nater Hell	Тор	Bottom
eand	0	10
clay	10	60
gravel & clay	60	156
rock .	156	157
Total Depth		157
Casing: 5' STREL #15 from 0' to 156'		·
Size hole below casing: 5"		
Nater from at 0' to 157'. Static level 100' below casing top which is 1' above GL Pumping level 110' when pumping st 0 gpm for 2 hours Permanent pump installed at 140' on January 11, 1991, w capacity of 10 gpm		
Additional Lot #3, F.H. Bartlett subdivision. location info:		
Address of well: 10205 W, Chicago Ave. Beach Park, IL		
Location source: Location from permit	}	
· · ·		
·		Į.
; · · ·		
• •		
Permit Date: January 2, 1991 Permit #:		
COMPANY Gross, Eugene J. FARN C4S Builders		
]iiii	

DATE DRIL	LED January 10,	1991	NO.
RLEVATION	0	COU	NTY NO. 35994
LOCATION	SW NE SE		
LATITUDE	42.432642	LONGITU	DX - 87.029198
COUNTY	Lake	API	120973599400

28 - 46N - 12B

••• • • • •

Page 1

Private Water Well тор Bottom 0 10 clay 10 38 clay & mand 39 43 gravel 43 Total Depth 5" STEEL 11# from 0' to 0' Casing: Screen: 4' of 4" diameter 20 slot Size hole below casing: 4* Water from at 43' to 0'. Static level 20; below casing top which is 1' above GL Pumping level 30' when pumping at 0 gpm for 2 hours Permanent pump installed at 40' on September 21, 1990, with a capacity of 10 gpm Additional location info: Address of well: Location source: Location from permit Permit Date: July 9, 1990 Permit #: COMPANY Oross, Bugene J. PARM DATE DRILLED September 20, 1990 NO. COUNTY NO. 35996 ELEVATION C LOCATION SW NE SE LATITUDE LONGITUDE 28 - 46N - 12B COUNTY Lake API 120973599600

.

::

Private Water Well	Тор	Bottom
yellow clay	0	30
blue clay sand	10	10
clay	100	14
rock	146	18
Total Depth		180
Casing: 5" STEEL #15 from 0' to 146'	, ,	
Size hole below casing: 5"		
Mater from rock at 140° to 170°. Static level 140° below casing top which is 1' sbove GL Pumping level 156' when pumping at 0 gpm for 2 hours		
Permanent pump installed at 170' on June 10, 1991, with of 10 gpm	a capacit	γ . ·
Address of well:		
Location source: Location from permit		
· ·		
. *		}
		1
Permit Date: May 23, 1991 Permit #:		
COMPANY Gross, Eugene J.		

		1		****	r1	-1.5	••••
PARM		H			-	Ħ	-
DATE DRILLED June 1, 1991	NO.	Ë	-				
ELEVATION O	COUNTY NO. 36294	•••	•••			{	•••
LOCATION NE NE SE					Ì		
LATITUDE	LONGITUDE	-	-		÷		
COUNTY Lake	API 120973629400	28	ŀ	-	4 6	5N	•

0021700

122

0015300

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

Private Water Wall	Тор	Bottom
block dirt	0	
yellow clay 4 wand	- 2	20
blue clay	20	sz
medium gravel sand	52	54
hardpan	. 54	379
blue clay	175	184
hərdpan	184	187
- Iddur	187	185
limestone	189	229
Total Depth		225
Casing: S* ASTM A120 T/C 15#/PT from 0' to 189'		
Grout: CLAY SLURRY from 0 to 20. Size hole below casing: 5"		
Water from limestone at 189' to 225'. Static level 115' below casing top which is 1' above GL Pumping level 185' when pumping at 2 gpm for 2 hours		
Permanent pump installed at 225' on October 8, 1986, wi capacity of 4 gpm	th a	
Additional location info:		
Location source: Location from permit		}
x .		
Permit Date: August 26, 1986. Permit #: 126	327	
COMPANY Boyce, Kenneth D.		
PARM		$\frac{1}{1}$
DATE DRILLED October 7, 1986 NO.	┝┿╋╍┽╍╂	++
ELEVATION 0 COUNTY NO. 28546		
LOCATION SE LONGITUDE		
COUNTY Lake API 120972854600	28 - 46	N - 12
· · ·		

Private Water Well	Тор	Bottom
black dirt	0	:
sand .	· 1	
gravel	7	25
med gvl sand & gvl	25 `	21
hardpan	27	124
blue clay	124	13!
limestone rubble	135	130
limestone	136	15
Total Depth		153
Casing: 5" ASTM A120 T/C 15#/FT from 0' to	136 -	
Grout: CLAY SLURRY from 0 to 20. Size hole below casing: 5"		·
Static level 00' below casing top which is 1' i Pumping level 100' when pumping at 1S gpm for : Permanent pump installed at 150' on April 26, 1 of 8 gpm	2 hours	Y
Additional		
Additional location info: Location source: Location from permit		
location info:		
location info: Location source: Location from permit	ait *: 137376	
location info: Location source: Location from permit		

	·	
Private Water Well	Тор	Bettom
	٥	65
sand £ clay	65	120
gravel & clay	120	140
gravel	140	155
Total Depth	•	155
Casing: 4' GALV #11 from D' to D'		
Size hole below casing: 4*	•	
Water from gravel at 140' to 155'. Static level 125' below casing top which is 1' above OL Pumping level 130' when pumping at 5 gpm for 2 hours Permanent pump installed at 140' on , with a capacity O		

Additional location info:

Page 1

Location source: Location from permit

Parmit Date: June 2, 197	6 Permit #1 47	1975
COMPANY Gross, Bugene	J.	
FARM		
DATE DRILLED June 28, 19	976 NO.	┝╈╊┊╋╅╂┾╸
ELEVATION D	COUNTY NO. 33858	
LATITUDE	LONGITUDE	
COUNTY Lake	API 120973385800	28 - 46N - 1

- 45N - 12B

Fuge 1		
Private Water Well	Тор	Bottan
black dirt	C	1
Yollow clay	1	11
blue clay	31	91
Band	91	120
clay	120	170
Total Depth	1	170
Casing: 4" GALV-11# from 0' to 170'		[
Size hole below casing: 0*	, ·	l .
Water from gravel at 160' to 170'. Static level 1' below casing top which is 1' above GL Pumping level 110' when pumping at 10 gpm for 1 hour Permanent pump installed at 146' on November 12, 1980, capacity of 10 gpm Additional	vith a	
location info:		
bocation source: Location from permit		
		ļ
· ·	• ••	
		Į
]
• .	} ·	
Permit Date: September 29, 1980 Permit #: 96	52	
	ل : : ا : : ا : : ا : : ا : : : ا :	······································
COMPANY Gross, Eugene J. FARK		
DATE DRILLED November 15, 1980 NO.		
BLEVATION 0 COUNTY NO. 33860		
LOCATION SE		
LATITUDE LONGITUDE	•••••••	
COUNTY Lake API 120973386000	28 - 45	N - 12B

Private Water Mell	Тор	Bottom
brown clay		10
plum clay	10.	110
nardpan	110	160
rock	160	166
fotal Depth		166
Casing: 4" GALV #11 from 0' to 0'		
Size hole below casing: 4"		}
Water from rock at 160' to 166'. Static level 90' below casing top which is 1' above GL Pumping level 120' when pumping at 10 gpm for 2 hours Permanent pump installed at 126' on , with a capacity o	10 gpm	
Additional Lot 4, Sheridan Road Park subdivision. Location info: Block #14		
acation source: Location from permit		

8-14

100
10040100

Permit Dat	 Pebruary 10, 	1975	Permit #	1 360	00
COMPANY PARM	Gross, Eugene J Pitcher Construc				
DATE DRIĮ	LED February 24,	1975	NO.		
RLEVATION LOCATION	¥ 0 - SE` 42.431744		UNTY NO. 33865		
COUNTY	Lake	API	12097338650	0	28 - 46N - 12B

· · ·

00195

128

Pege 1 ILLINOIS STATE GEOLOGICAL SURVEY

Private Nator Well	Τορ	Bottom
brown Clay	. 0	1
blue clay	10	11
hardpan	110	16
rock	160	16
Total Depth		160
Casing: 4" GALV #11 from 0' to 0'		
Size hole below casing; 4"		
Static level 100' below casing top which is 1' above GL Pumping level 120' when pumping at 10 gpm for 2 hours Permanent pump installed at 126' on , with a capacity o Additional Lot 2, Sheridan Road Park subdivision.	10 gpm.	
Location info: Block #16		
Location source: Location from permit		
		• •
vermit Date: February 10, 1975 Permit #: 360		

COMPANY	Grose, Eugene J		
FARM	Pitcher Construc	ction	
DATE DRIL	LED June 16, 1979	NO.	
BLEVATION	0	COUNTY NO. 33866	
LOCATION	SE		
LATITUDE	42.431744	LONGITUDE - 87.830421	المستعم المستعم المستحم
COUNTY	Lake	API 120973386600	28 - 46N

Page 1

Private Water Wall	Top	Bottom
sand	0	21
sand & clay	20	12
clay .	120	16
rock	162	16
Total Depth		169
Casing: 4" GALV #11 from 0' to 0'		l
Size hole below casing: 4"		
Water from rock at 162' to 169'. Static level 100' below casing top which is 1' above GL Pumping level 100' when pumping at 10 gpm for 2 hours Permanent pump installed at 126' on , with a capacity o		
Additional Lot 5, Sheridan Road Park subdivision. location info: Block #14	-	
Address of well: Illinois & Garnett		
Location mource: Location from permit		

Permit Date: July 27, 1976 Permit #: 50094 COMPANY Gross, Eugene J. PARM Pitcher Construction Co.

PARA	FICTURE CON	10010001011 00.		
DATE DRIL	LED October	11, 1976	NO.	- H
ELEVATION	4 O	co	UNTY NO. 33867	ļ ļ
LOCATION	SE) <u>+</u> -
LATITUDE	42.431744	LONGIT	TDE - 87.830421	
COUNTY	Lake	API	120973386700	28

- 46N - 12B

0019600

.

Page 1. IDdinois Dinii Coolociti		· · · · · · · · · · · · · · · · · · ·
Private Water Well	Тор	Bottom
top soil & fill	o	. 2
sand	2	13
yellow clay	13	22
blue clay	22	56
nanç	56	60
hardpan	60	122
blue clay	122	142
rubble	142	149
limestone	149	155
Total Depth		155
	•	
Grout: CLAY SLURRY from 0 to 20. Size hole below casing: 5"	1	
<pre>Water from limestone at 149' to 155'. Static level 130' below casing top which is 1' above GL pumping level 140' when pumping at 9 gpm for 2 hours permanent pump installed at 150' on November 12, 1990,</pre>	1	
Permit Date: July 3, 1990 Permit #:	<u> </u>	
COMPANY Boyce, Kenneth D.		
FARM Lucy's Appliances		
DATE DRILLED November 9, 1990 NO.		
ELEVATION 0 COUNTY NO. 36002	┝╍┝╍┝	
LOCATION 5E LATITIDE 42.431744 LONGITUDE - 87.830421		
LATITUDE 42.431744 LONGITUDE 67.830421 COUNTY Lake . API 120973600200	28 - 40	N - 12B
COUNTI DERG . ALI INCO/SUGURO		

Private Mater Well	Тор	Bottom	· · ·
fill & black dist	C	2	
sand 6 yellow clay	2	18	
blue clay	10	60	
mealy mand .	.60	60	
hardpan	80	82	•
mealy sand	82	. 95	
hardpan	95	110	
mealy sand	110	114	
hardpan	114	130	
mealy sand	130	139	
bardpan ·	139	155	· ·
rupple	155	156	
limestone	156	166	-
Total Depth		166	
Cosing: 5" ASTM A-120 TLC 15#PT from 0' to 156'			
Grout: CLAY SLURRY from 0 to 20. Size hole below casing: 5"			
Water from limestone at 156' to 166'. Static level 130' below casing top which is 1' above GL Pumping level 140' when pumping at 9 gpm for 2 hours		· .	
Permanent pump installed at 165' on September 28, 1990, capacity of 8 gpm	with a '	ļ	
Additional location info:			
Permit Date: April 12, 1990 Permit #:	<u> </u>	<u> </u>	
COMPANY Boyce, Kenneth D. PARM DATE DRILLED September 28, 1990 NO. BLEVATION 0 COUNTY NO. 36005			
LOCATION SE LATITUDE LONGITUDE LONGITUDE COUNTY Lake API 120973600500		N - 12B	

Private Nater Nell	top	Bottom
yellow clay	0	10
hardpan .	10	B 0
blue clay	80	100
hardpan	100	150
gravel	150	155
limestone	155	180
Total Daptb		180
Casing: S" STEEL from 0' to 155'		
Size hole below casing: 0"		
Water from limestone at 0' to 0'. Static level 5' below casing top which is 120' above GL Pumping level 120' when pumping at 20 gpm for 0 hours Permanent pump installed at 180' on , with a capacity 0		

Location source: Location from permit

Page 1

COUNTY

Permit Date: August 2, 1983	Permit #: 1	08530 .
COMPANY Gross, Michael		
РАЛИ		
DATE DRILLED September 15, 1983	NO.	
BLEVATION 0 COUNTY	NO. 33870	
LOCATION		
LATITUDE		

	LÖNGI T	ли <u>к</u> — — — — — — — — — — — — — — — — — — —
Lake	API	120973387000

ILLINOIS STATE GEOLOGICAL SURVEY Page 1 ۰.

Hater Hell		Тор	Bottom
Total Depth			186
	.		
		·	
Driller's Log filed			
	, ·		

Permit Date:	Permit P: U	
COMPANY HOOVER, L. R. PARM	······································	
DATE DRILLED August 1, 197 BLEVATION 0	5 NO. COUNTY NO. 24485	
LOCATION LATITUDE	LONGITUDE	
COUNTY Lake	API 120972448500	28 - 46N - 12E

.

ILLINOIS STATE GEOLOGICAL SURVEY Page 1 _ Noter Hell Bottom Тор Total Depth 373 Driller's Log filed 0013900 Permit Date: Permit #: 0 COMPANY Hoover, L. R. 1 FARN DATE DRILLED September 1, 1975 NO. COUNTY NO. 24592 BLEVATION 0 LOCATION LATITUDE LONGITUDE COUNTY Lake API 120972459200 28 - 46N - 12B

MAP ID 34 149-22

ILLINOIS STATE GEOLOGICAL SURVEY

Page 1

 Mater Hell
 Top
 Bottom

 Total Depth
 176

 Driller's Log filed
 176

 Permit Date:
 Permit #: 0

 COMPANY
 Hoover, L. R.

 PADM
 Interim the second
DATE DRILLED WAY 1, 1973 NO. ELEVATION D COUNTY NO. 03522 LOCATION LATITUDE LONGITUDE COUNTY Lake API 120970392200 28

28 - 46N - 125

00143001

. .

Page 1

Privato Water Well	Top	Bottom
no record	0	170
drift (sand)	170	175
Total Depth		175
Casing: 4" ASTM T4C 11.13#/FT from 0' to 175'		
Size hole below casing: 4"		ł
Water from sand at 174' to 175'. Static level 140' below casing top which is 1' above GL Pumping level 165' when pumping at 12 gpm for 2 hours		
Location source: Location from permit		

Permit Date: June COMPANY HOOVET PARM DATE DRILLED July RLEVATION 0 LOCATION SN SE SI LATITUDE (COUNTY Lake

001560

25, 1985	. Permit #: 11	£622
Lonny R 31, 1985		
	API 120972742100	28 - 46N - 12E

MAPID 100

017100

Page 1

ILLINOIS STATE GEOLOGICAL SURVEY

Private Nator Well	Тор	Bottom
brown clay	0	8
brown sand	6	13
blue clay	. 13	10
gravel	40	42
blue clay	42	49
sand	49	54
blue clay	54	132
broken rock	132	134
limestone	134	136
broken rock sand	136	137
limestone .	137	194
Total Depth		194
Casing: 5° PVC from 0' to 115' 5° BLACK STEEL from 116' to 136'		
Size hole below casing: 5"		
Water from limestone at 137' to 194'. Static level 86' below casing top which is 0' above GL Pumping level 0' when pumping at 10 mm for 0 bours		

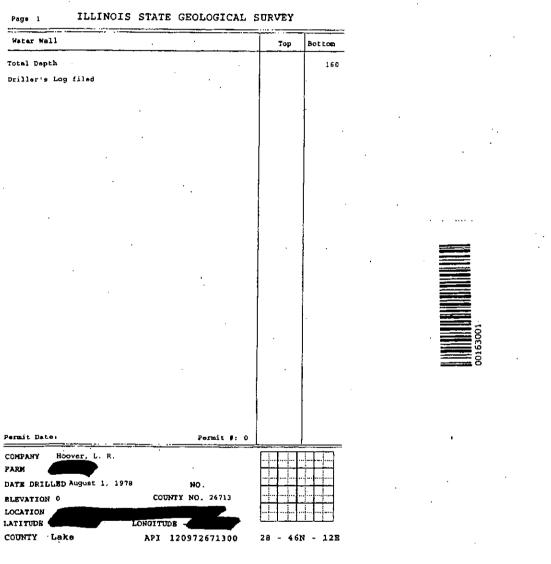
Pumping level 0' when pumping at 10 gpm for 0 hours Permanent pump installed at 120' on April 10, 1986, with a capacity of 15 gpm

Address of well:

Location source: Location from permit

Permit Date: February 19, 1986 Permit #: 122314

COMPANY	Gaffke, George	B.	
PARN	Brooks Builders		┝╧╀╧╊╧╂╧┥
DATE DRI	L LED A pril 1, 1980	s NO.	
ELEVATIO	9 0	COUNTY NO. 27949	
LOCATION	150'S line, 25'	W line of 6E SE	
LATITUDE	42.428529	LONGITUDE - 87.830349	. <u>Li Li Li Li Li</u>
COUNTY	Lake	API 120972794900	28 - 46N - 12B


Private Woter Well	Тор	Bottom	
fill & black dirt	0	2	
sand & yellow çlay	. 2	21	
blue clay	21	40	
hardpen	40	89	
mealy cand	.09	95	•
hardpen ·	95	`151	•
limescone, gravel	151	154	
limestone	154	168	
Total Depth	Į	160	
Caping: 5" ASTM A-53 T&C 158/FT from 0' to 154'	1		
Grout: CLAY SLURRY from 0 to 20. Size hole below casing: 5"			, ,
Water from limestone at 154' to 168'. Static level 125' below casing top which is 1' above GL Pumping level 127' when pumping at 10 gpm for 2 hours Permanent pump installed at 165' on April 30, 1990, wit		5 y	· .
Additional location info:		N	.'
Location source: Location from permit			
· · ·			
Permit Date: October 13, 1989 Permit #: 01	9212	<u> </u>	
CÓMPANY Boyce, Kenneth D. PARM			•
DATE DRILLED April 27, 1990 NO.			
ELEVATION 0 COUNTY NO. 35999 LOCATION SW SE SE			•
LATITUDE LONGITUDE			

Private Water Nell	Тор	Bottom	
plack dirt § fill	. 0	2	
eilow clay & mealy sand	2	19	
blue clay	19	55	• -
ardpan	55	160	
gravel & rubble	160	165	
lastone	188	200	· ,
otal Depth		200	
asing: 5' ASTM A-S3 T4C 15#/PT from 0' to 186'			• .
rout: CLAY SLURRY from 0 to 20, ize hole below casing: 5"			
ater from limedione at 188' to 200'. tatic level 130' below casing top which is l' above G umping level 150' when pumping at 10 gpm for 10 hours			
ermanent pump installed at 189' on March 23, 1990, wi of 8 gpm	th a capaci	су	
dditional	Ť.		
ddreeg of well:			
ocation source: Location from permit			
		ļ	
ermit Date: October 13, 1989 Permit #: 01	5213	<u> </u>	
COMPANY Boyce, Kenneth D.			· · · · · ·
VARM CONTRACTOR	┝┿╋╤┦		•
ATE DRILLED March 22, 1990 NO.			
LEVATION 0 COUNTY NO. 36000			
OCATION SH SE SE			
ATITODE LONGITODE	28 - 46		
COUNTY Lake API 120973600000			

Private Water Well	Тор	Bottom
top soil	0	2
yellow clay & mand	2	9
yellow clay	9	15
blue clay	15	50
hardpan	50	120
blue clay ·	120	146
rubble	148	153
limestone	153	156
Total Depth		156
Cosing: 5" ASTM A-53 T4C 15#/FT from 0' to 153"		
Grout: CLAY SLURRY from 0 to 20. Water from limestone at 0' to 0'. Permanent pump inscalled at 148' on October 30, 1989. capacity of 8 gpm	wi⊑ba	
Additional location info: Address of well:		
Location source: Location from permit		•
•		
,		
Permit Date: October 13, 1969 Permit #: (035214	
COMPANY Boyce, Kenneth D.		
PARM		<u>+</u>
DATE DRILLED October 27, 1989 NO.		
BLEVATION 0 CODNTY NO. 36001		
LOCATION SW SE SE		
LATITUDE LONGITUDE		
COUNTY Lake API 120973600100	28 - 461	N - 12R

MAP ID

.

• •

Private Water Hell	Top .	Bottom
sandy clay	, 0	60
clay & gravel	80	120
clay	120	168
rock	.168	175
Total Depth		175
Casing: 5" STEEL 15# from 0' to 168'		
Grout: SLER from 0 to 18. Size hole below casing: 5"		
Static level 110' below casing top which is 1' above GL pumping level 120' when pumping at 0 gpm for 2 hours		
Permanent pump installed at 168' on November 1, 1993, w. capacity of 7 gpm	tch a	
Additional . location info:		
Address of well:		
Location mource: Location from permit		
• •		
		ł
		1
Permit Date: September 27, 1993 Permit #:	<u> </u>	<u> </u>
COMPANY Gross, Eugene J.		
PARM CONTRACTOR		
DATE DRILLED October 15, 1993 NO.		

BLEVATION 0	COUNTY NO. 37885	
LOCATION NW NW SE	LONGITUDE	
LATITUDE C	BONGITODE	•
COUNTY Lake	API 120973788500	28 - 46N - 12B
	-	

221001

Private Mater Well	Top	Bottom
clay	0	60
clay & sand	60	125
clay & gravel	125	175
gravel	175	182
Total Depth].	182
Casing: S" STEEL 15# from 0' to 182.	1 · · ·	
Grout: BENTONITE from 0 to 20. Size hole below casing: 5"		
Water from gravel at 175' to 182'. Static level 110' below casing top which is 1' ab Pumping level 120' when pumping at 0 gpm for 2 ho Permanent pump installed at 140' on January 27, 1 capacity of 10 gp	urs 995, with a	
Additional Lot E/2 #1, Sheridan Rd. Park su location info: Block #15		
Address of well: 10395 W. Illinois Beach Park, IL		
Location source: Location from permit		
Permit Date: December 1, 1994 - Permit	fi	
COMPANY Gross, Eugene J.		
FARM RAM Builders		
DATE DRILLED January 23, 1995 NO.		$\left - \right + $
ELEVATION COUNTY NO. 387	06	
LOCATION NW NW SE		
LATITUDE 42.434491 LONGITUDE - 87.8340		6N - 12
COUNTY Lake API 120973870	500 28 - 4	oti - Ti

0223001

Pı

Private Nater Well	τορ	Bottom
clay & send	0	60
zlay	60	105
clay & mand	105	150
eand & gravel	150	170
Total Depth		170
Casing: S" STEEL 15# from 0' to 168'		· .
Screen: 4' of 4" diameter 20 elot Grout: SLER from 0 to 18. Size hole below casing: 4"		
Water from grovel at 168' to 170'. Static level 120' below casing top which is 1' abo Pumping level 130' when pumping at 0 gpm for 2 ho Permanent pump installed at 165' on July 6, 1993, of 10 gpm	hia (
Additional location info:		;
Location source: Location from permit	÷	
· · ·		
	· .	
Permit Date: June 22, 1993 Permit	# 3	1
COMPANY Gross, Eugene J. PARM DATE DRILLED July 2, 1993 NO.		
ELEVATION 0 COUNTY NO. 3774	.0	
LOCATION NW NW SE		
COUNTY Lake API 1209737740	00 28 - 4	6N - 12

228001

00228001

.

ILLINOIS STATE GEOLOGICAL SURVEY Page 1 **211 (**11 Water Well Тор Bottos Total Depth 167 Driller's Log filed Permit #: 0 Permit Date: Hoover, L. R. COMPANY FARM DATE DRILLED April 1, 1977 NO. COUNTY NO. 25218 ELEVATION 0

 _	
the second s	
_	
_	
and the second se	
	iĝ
the second day of the second d	:0
	9
_	
	- 7

LOCATION LATITUDE LONGITUDE COUNTY Lake

28 - 46N - 12B API .120972521800

.

Private Water Mell	Тор	Bottom
sand & gravel	0	20
hardpan	20	42
bund band	42	50
hardpan	50	74
nud eand	74	85
blue clay	B 5	120
blue clay & gravel	120	163
limestone	163	222
Total Depth		222
Casing: 5" GALV STEEL 15∦ from 0' to 163'		
Size hole below casing: 5"]
Water from limestone at 163' to 222'. Static level 110' below casing top which is 1' above GL Pumping level 220' when pumping at 1 gpm for 3 hours Permanent pump installed at 220' on , with a capacity o	10 grpm	
Address of well:	۰.	

Location source: Field verified

Permit Date: Pebruary 7, 1986

COMPANY PARM	Gross, Michael			
DATE DRÌLI	BD February 10, 1986		NO.	
RLEVATION	0	COUNTY	NO. 27931	
LOCATION				
LATITUDE	LONG	ITUDE (
COUNTY	Lake A	PI 120	972793100	28 - 46N - 12B

Pormit #: 122257

. .

Privato Water Well	Tap	Bottom
clay	0	10
clay & mand	10	90
clay	90	152
rock	152	172
Total Depth		172
Casing: 5 STEEL 15# from 0 to 152		
Size hole below casing: S*		
Water from rock at 0' to 172'. Static level 110' below casing top which is 2' above GL Pumping level 120' when pumping at 0 gpm for 2 hours Permanent pump installed at 140' on December 21, 1993, o capacity of 10 gpm		
Additional .	ſ	
location info:		
Address of well:		
Location source: Location from permit		
•		
		•
Permit Date: November 14, 1991 Permit #;		
COMPANY Gross, Eugene J.		<u> </u>
PARM DATE DRILLED December 17, 1991 NO.		
BATE DRILLED BECENDER IN, 1991 NO. BLEVATION 0 COUNTY NO. 36482		
LOCATION NE SW SE		
LATITUDE LONGITUDE	┖┉┉┠┈┊╌┠	<u> </u>
COUNTY Lake API 120973648200	28 - 461	N - 12E

ILLINOIS STATE GEOLOGICAL SURVEY Page 1 Private Mater Moll Top Bottop no record 0 136 limestone 136 170 170 Total Depth \$12e hole below casing: 5" Water from limestone at 136' to 170'. Static level 134' below casing top which is 1' above GL Pumping level 150' when pumping at 0 gpm for 4 hours Permanent pump installed at 168° on October 3, 1992, with a capacity of 8 gpm Additional location info: Location source: Location from permit ÷ Permit Date: July 13, 1992 Permit N: Boyce, Kenneth D. COMPANY PARM . DATS DRILLED October 2, 1992 NO. . COUNTY NO. 37425 BLEVATION 0 LOCATION NB SW SE LONGITUDE LATITODE API 120973742500 COUNTY Lake

28 - 46N - 12B

Water Well Bottom Тор · clay ð 4 sandy clay 4 22 gravel & clay 22 28 hardpan 28 70 sand & runny clay 70 81 øandy clay 81 110 hardpen 110 140 hardpan & boulders 140 148 licestone 152 152 gravel 148 152 Total Depth 190 4" GALV TEC 10.89 PPF from 0' to 152' Casing: Size hole below casing: 4" Water from limestone at 0' to 152'. Scatic level 60' below casing top which is 1' above GL Pumping level 160' when pumping at 2 gpm for 0 hours Driller's Log filed Location source: Platbook verified

Permit Dat	• 1	Permit () NF	07232
COMPANY PARM	Hoover Water Well Servis	c	
DATE DRIL BLEVATION	L <u>PD</u> October 1, 1969 0 CO	NO. ONTY NO. 03010	
LOCATION LATITUDE	600'N line Congin Longin	UDE -	
COUNTY	Lake API	120970301000	28 - 46N - 12B

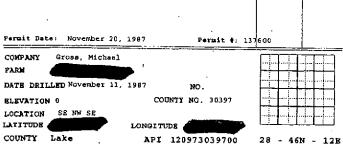
00157001

ILLINOIS STATE GEOLOGICAL SURVEY Page 1

Private Mater Well	Тор	Bottom
111 & black dirt	D D	2
sand	2	12
yellow clay & sand	12	22
blue clay	22 .	60
hardpan	60	161
rubble	161	165
limescone .	165	169
Total Depth		169
Casing: 5" ASTM A120 T/C 15#/FT from 0" to 165"	{. 	
Grout: CLAY SLURRY from 0 to 20. Size hole below casing: 5*		
Water from limestons at 165' to 169'. Static level 121' below casing top which is 1' above GL Pumping level 126' when pumping at 12 gpm for 2 hours		
Permanent pump installed at 160' on August 17, 1987, wi capacity of 10 gpm	h e	
Additional location info:		
Location source: Location from permit		
· · ·		
ermit Date: August 13, 1987 Permit #: 134	374	•
COMPANY Boyce, Kenneth D.	└────────────────────────────────────	
DATE DRILLED August 17, 1987 NO.		
ELEVATION 0 COUNTY NO. 29906		
LOCATION NW SE		
LONGITUDE	ليتعالينا	
COUNTY Lake API 120972990600	28 - 46N	- 128

Page 1

.


Privata Water Well	Тор	Bottom				
black dirt	0	2				-
yellow clay	2	в	•			
silty sand	8	11				
blue clay	11	50	•			
sand	50	55				
hardpan	55	110				
blue clay	110	141				
5and	141	143		•		
hardpan	343	161				
gravel	191	164				
Total Depth		164				
Casing: 5 ASTM A120 T/C 15#/FT fram 0' to 161' fram 0' to 0'						· · · ·.
Srout: CLAY SLURRY from 0 to 20. Size hole below casing: 5"						
Static level 110° below casing top which is 1° above GL Pumping lovel 115° when pumping at 12 gpm for 2 hours Permanent pump installed at 160° on July 21, 1985, with of 8 gpm	{	,		.	• • •	
Additional Location info:						
ocation source: Fiald verified						
Permit Date: July 11, 1965 Permit #: 116	948					· ·
COMPANY Boyce, Kenneth D. PARM July 20, 1985 NO.						
						• •
ATITUDE LONGITUDE -						
COUNTY Lake API 120972746500						

· · ·

MAN .

ILLINOIS STATE GEOLOGICAL SURVEY Page 3

Privata Water Well	Тор	Bottom
clay	0	. 19
hardpan	19	74
sandy clay	· 74	90
hardpan	90	125
blue clay	125	163
broken limeatone	163	164
limestone	164	196
Total Depth		196
Casing: 5" GALV STEEL from 0' to 164'		
Size hole below casing: 5"		
Water from limestone at 164' to 196'. Static level 110' below casing top which is 1' above GL Pumping level 170' when pumping at 12 gpm for 0 hours Permanent pump installed at 180' on , with a capacity o	10 gpm	
Location source: Location from permit		

MAP/D

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

-----Private Water Well Bottom Top black dirt C 1 sand 1 13 blue clay 13 45 gravel 45 55 Total Depth 55 Casing: 4" GALV 118 from 0' to 45' Screen: 5' of 3" diameter 10 elot Size hole below casing:)* Water from gravel at 45' to 50'. Static level 20' below casing top which is 1' above GL Pumping level 40' when pumping at 15 gpm for 1 hour Permanent pump installed at 45' on December 23, 1982, with a capacity of 8 gpm Additional location info: Location source: Field verified Permit Date: November 17, 1982 Permit #: 109633 Gross, Emil E. COMPANY PARM DATE DRILLED December 23, 1982 NO. BLEVATION 0 COUNTY NO. 33855 LOCATION LATITUDE LONGITUDE COUNTY Lake API 120973385500 28 - 46N - 12E

MARID SZ

ILLINOIS STATE GEOLOGICAL SURVEY Page 1 -----Private Water Well Тор Bottom top soil 0 2 sand & gravel 2 17 blue clay 17 25 sand & gravel 25. 29 blue clay 29 61 sand & gravel 61 65 hardpan 65 137 137 blue clay 154 rubble 154 161 limestone 161 172 Total Depth 172 Casing: 5" ASTM A53 15#/FT from 0' to 161' Grout: CLAY SLURRY from 0 to 20, Size hole below casing: 5" Water from limestone at 161' to 172'. Static level 120' below casing top which is 1' above GL Pumping level 135' when pumping at 9 gpm for 4 hours Permanent pump installed at 168' on September 21, 1994, with a capacity of 9 gpm Additional · location info: Address of well: Location source: Location from permit Permit Date: June 13, 1994 Permit #: COMPANY Boyce, Kenneth D. an Builders PARM DATE DRILLED September 20, 1994 NO. COUNTY NO. 38624 ELEVATION 0 . LOCATION NW SE LONGITUDE - 87.832838 LATITUDE 42.433576

COUNTY Lake

API 120973862400 28 - 46N - 12B

Private Hater Nell .	Top	Dottom
fill & cop soll	. 0	2
yellow clay & sand & stone	2	. 15
blue clay	18	33
hardpan	33	163
limestone	163	170
Total Depth	ł	170
Casing: 5" ASTM A-53 T&C 15#/FT from 0' to 163'		
Grout: CLAY SLURRY from 0 to 20. Water from limestone at 163' to 170'. Permanent pump installed at 148' on March 14, 1994, v of 8 gpm	ith a capaci	τy
Additional Lot #6, Sheridan Rd. Park subdivision location info: let Add.	n.	
Address of well: 10454 Chicago Ave. Beach Park, IL		
Location source: Location from permit		

Permit Data: December 3, 1993

COMPANY Boyce, Kenneth D. Ram Buildere

DATE DRILLED March 14, 1994

PARM

ELEVATION 0 LOCATION NW SE LATITUDE 42.433576

COUNTY Lake

28 - 46N - 12B

;

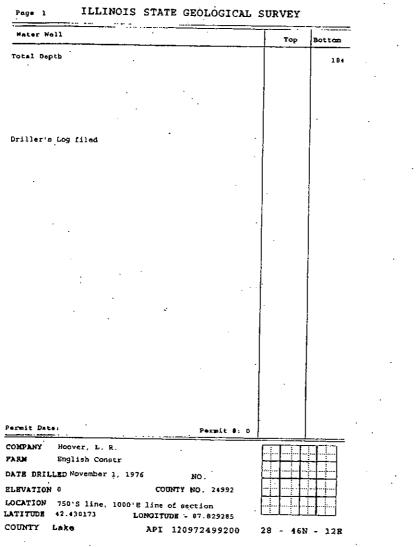
Permit #:

'но. COUNTY NO. 38151

LONGITUDE - 87.832838 API 120973015100

1É

0023400


Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

Private Water Well	Тор	Bottom
£111	0	3
clay	3	11
gravel	11	22
hardpan 💪 boulders	22	126
blue clay	126	150
gravel	150	152
limestone .	152	192
Total Depth		192
Casing: 5" STEEL from 0' to 152'		1
Jrout: CLÁY SLURRY from 0 to 20. Size hole below casing: 5*		
Vater from limestone at 152' to 192'. Static level 138' below casing top which is 0' above Pumping level 165' when pumping at 6 gpm for 0 hours Permanent pump installed at 180' on , with a capacit Permanent pump installed at 180' on , with a capacit	9	
Additional location info:		
Address of wells		
Location source: Location from permit		
		•
Permit Date: April 30, 1992 - Permit #:		
COMPANY Gross, Michael		
DATE DETILED MAY 31, 1992 NO		

Comment of the second sec		
FARM		
DATE DRILLED May 31, 1992	NO.	
BLEVATION 0	COUNTY NO. 37095	
LOCATION SE NH SE		
LATITUDE	LONGITUDE	
COUNTY Lake	API 120973709500	28 - 46N

- 128

N A

001500

MAP 10

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY Heter Hell Top Fotel Depth 165

	ĩ
-	
	-
	=
	-
	Ë _
	- 0
	Ξō
	= 5
	00151001
_	Ξċ
	= c

Permit Dat	• .	Permit #: (
COMPANY PARN	Hoover, L. R. Smythe Constr		
DATE DRIL BLEVATION	LED September 1.	1976 NO. • COUNTY NO. 24993	
	42.429750	'E line of section LONGITUDE - 87.828173	
COUNTY	Lake	API 120972499300	28 - 46N - 12B

· . ·

• •

.

Private Water Nell	Тор	Bottom
yellow clay & gravel	0	17
hardpan	12	35
blue clay	35	40
hardpan	40	80
mud eand	80	100
sandy clay	100	110
blue clay	110	125
hardpan .	125	135
blue clay	135	145
gravel	145	347
sand & gravel	147	162
limestone	162	200
Total Depth		200
Casing: 5" GALV STEEL from 0' to 162'		
Size hole below casing: 5"		
Mater from limestone at 162' to 200'. ' Static level 140' below casing top which is l' above GL Pumping level 140' when pumping at 12 gpm for 0 hours Permanent pump installed at 198' on , with a capacity o	10 gpm	
ocstion source: Location from permit		

Permit Date: May 24, 1985 Permit #1,116065 COMPANY Gross, Michael 1 **PARM** DATE DRILLED July 11, 1985 NO. ELEVATION 0 COUNTY NO. 27349 LOCATION NW SE SE

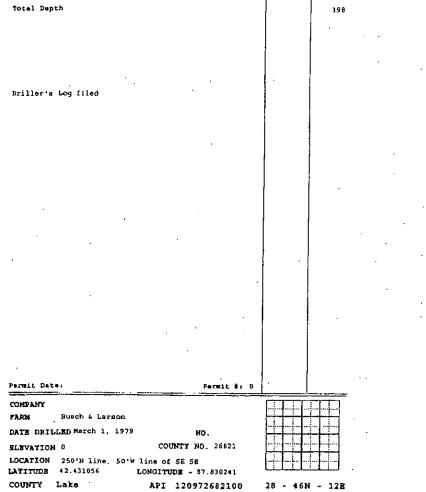
LATITUDE LONGITUDE COUNTY Lake API 120972734900

28 - 46N - 125

MAPID. A-5355

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

Water Woll	Top	Bottom
Total Depth		200
	ļ	
Driller's Log filed		
· · ·		
•		
	Ī	
	-	


200

Permit Data:		Permit #: 0			
COMPANY PARM DATE DRII	Hoover, L. R.	1978		NO.	
BLEVATIO	, . 0 7	co	UNTY	NO. 26711	
LOCATION					•
LATITUDE COUNTY	Lake	LONGIT API		972671100	28 -

28 - 46N - 12B

MAPID

28 - 46N - 12B

ILLINOIS STATE GEOLOGICAL SURVEY

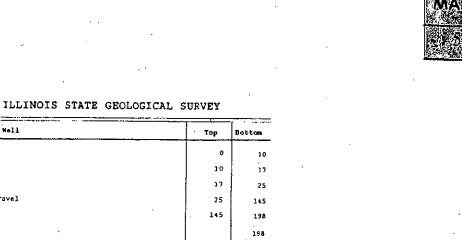
Bottom

Тор

Page 1

Water Well

00175001


ILLINOIS STATE GEOLOGICAL SURVEY

Page 1

COUNTY Lake

Private Water Well	Tep	Bottom
clay (111	0	1
original cop soil	1	2
sandy brown clay	2	. 12
blue clay	12	. 12
blue clay & gravel	 0 C	56
blue clay	66	115
gvl & clay-brkn ls	135	155
limestone	156	220
Tetal Dath		
Total Depth		220
Casing: 5" PVC from -1' to 136' 5" BLACK STEEL from 136' to 157'		
Size hole below casing: 5"		
Water from limestone at 156' to 220'. Static level 107' below casing top which is 1' above GL Pumping level 0' when pumping at 3 gpm for 0 hours		
Permanent pump installed at 180' on March 12, 1985, with of 10 gpm) a capacit	Y
Address of well:		
Location source: Location from permit		
		•
	•	
Pormit Date: February 27, 1985 Permit #: 116	661	
CONPANY Gaffke, George E.		
PARM CONTRACTOR	┝┽╂┽╂╸	
DATE DRILLED March 11, 1985 NO.	┝═╞╍╎╍┊╸╏╍	
ELEVATION 0 COUNTY NO. 27174	┝╍┝╍┤╍┥╍╽╍	
LOCATION		
LATITUDE LONGITUDE		

API 120972717400 28 - 46N - 12B

Total Depth

5" PVC from 0' to 125' 5" BLACK from 125' to 146' Casing:

Size hole below casing: 5*

Water from limestone at 145° to 198°. Static level 123' below casing top which is 1' above GL Pumping level 0' when pumping at 4 gpm for 0 hours Permanent pump installed at 180' on March 16, 1979, with a capacity of 10 gpm

Address of well:

Page 1 _____

brown clay

. blue clay

limestone

pand

Private Water Nell

blue clay-lt gravel

Location source: Location from permit

Permit Date: December 5, 1978 Permit #: 82737 сонрану Gaffke, George E. FARM Busch & Larson DATE DRILLED March 2, 1979 NO. COUNTY NO. 33851 BLEVATION 0 LOCATION 225'N line, 150'W line of SE SE LATITUDE 42.431120 LONGITUDE - 87 LONGITUDE - 87:829868 COUNTY Lake API 120973385100 28 46N

-12B

ğ

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

Private Water Well	. тор	Bottam
no record	o	140
rock	140	168
Total Depth		168
Casing: 4* STEEL 11# from D' to 140'		
Size hole below casing: 4*	· ·	
Water from rock at 0' to 168'. Static level 120' below cabing top which is 1' above GL Pumping level 168' when pumping at 0 gpm for 2 hours Pormanent pump installed at 168' on June 15, 1992, with		
of 10 gpm		i
Additional Lot #4, B. Sheridan Rd. Park subdivisi location info:	an.	

Location source: Location from permit

ŝ

ermit Date: May 15, 1992	Permit #:	
COMPANY Gross, Eugene J.	· · · · · · · · · · · · · · · · · · ·	
OATS DRILLED June 10, 1992	NO.	
LEVATION 0	COUNTY NO. 37097	
ATITUDE Lake	LONGITUDE	28 - 46N - 12B

.

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

Private Water Woll	Тор	Bottom	•	•	
topsoil	0	2			
sand & yellow clay .	2	12	,		
yellow clay	12	18			
blue clay	36	69			
sand	69	75			
hardpan	75	163	•		
rubble	163	167			
limestone	167	175		•	
Total Depth		175			
Casing: 5" ASTM T/C 15#/' from 0' to 167'					
Grout: CLAY SLURRY from 0 to 20,					
Size hole below caping: 5"					
Pempingnlepohplinehoilpdmping68t Ongfmbfoarf Baur8990, cspacity of 8 gpm Additional location info: Address of well:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•		00239001	
Permit Dater				-	
COMPANY Boyce, Kenneth D. PARM DATE DRILLED February 19, 1990 NO. ELEVATION 0 COUNTY NO. 27293 LOCATION NN SE SE LATITUDE LONGITUDE					

· · · ·

	<u>.</u>				Top	Bottom
otal Depth	-	,				
i						
		•				
				· ·		
						ļ
						ŀ
•						
				.		
						1
						1
						1
•						
						{
			•			· · .
				Í		1
		;				
ernit Date	:		Permit ♥:			i I
COMPANY	9T9 Consultanta			 []		
PARM	IL Beach Pk/Cone			H		
	ED July 18, 2002		NO. B-2			
BLEVATION	587GL	COUNT	Y NO. 47796			
LOCATION			- 87.807080			

LATITUDE 42,432491 LONGITUDE - 87.807080 API 120974779600 27 - 46N - 12E

ŝ

COUNTY Lake

.

MAP 10 4544 54

Page 1

ILLINOIS STATE GEOLOGICAL SURVEY

		Top	Bottom	
otal Depth	· · · · ·		15	
· ·				
		· ·		
			ĺ	•
			1	·
•			· ·	
			ļ .	
		ł	-	
			1	
•			· .	
•				
			ļ	
Permit Date:	Permit #:	-		
COMPANY STS Consultants				
FARM IL Beach Pk/Concession				
DATE DRILLED July 18, 2002	NO. 8-3			
	TY NO. 47797			
	8 - 97.007080		└┊┛╪┚	
	120974779700	27 - 41	5N - 12B	

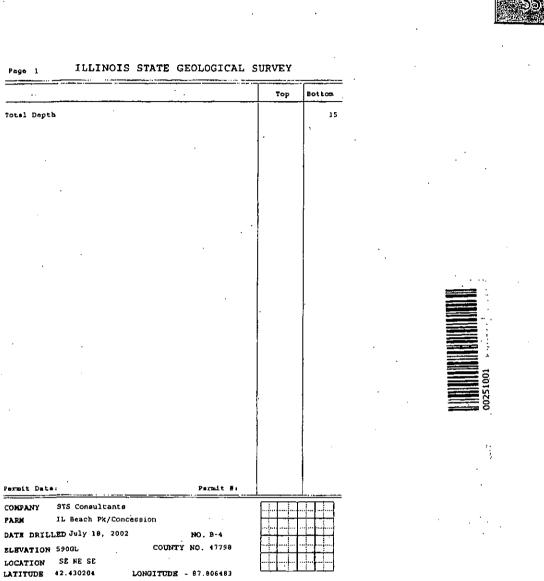
MAPID

	Тор	Bottom		,
otal Depth		8		
		1	•	
	•			
		1		
				00249001
		ļ		
		1		ă antina de la companya d
		Ì		
ernit Date: Pernit #:	<u> </u>			
COMPANY STS Consultants CARM IL Beach Pk/Concession				
ARM IL Beach Pk/Concession MATE DRILLED July 18, 2002 NO. B-7				
ELEVATION 587GL COUNTY NO. 47800				·
OCATION SENESE				
ATITUDE 42.432491 LONGITUDE - 67.607080 COUNTY Lake API 120974780000	27 - 4	6N - 12B		
UNII DEAB API 1209/4/80000	21 - 4	VI 12B		、
· · · ·				

00		
90		
00	27 - 46N - 12B	

	Тор	Botto	<u> </u>		
otal Depth		•	15	·	
	1				•
	.				
•			•		
	ĺ				
			•		
•	ĺ			۰.	
· ·					
	ľ				
·.		· .			
ermit Date: Perm	alt #r				
COMPANY STS Consultants PARM IL Beach Pk/Concession			7		
DATE DRILLED July 18, 2002 NO. B					
BLEVATION SEEGL COUNTY NO. 4	7799				

27 - 46N - 12B


LONGITUDE - 87.806483

API 120974779900

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY -

LOCATION SE NE SE LATITUDE 42.430204

COUNTY Lake

27 - 46N - 12B

PARK

COUNTY Lake

API 120974779600

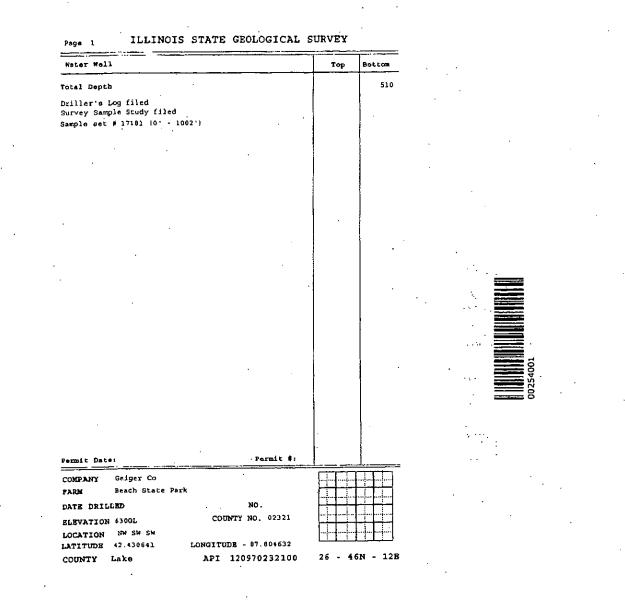
MAPID #SOF

0025200

Water Well Bottom Тор 149 Total Depth . Driller's Log filed Permit #: Permit Date: COMPANY Ferguson P H PARM NO. DATE DRILLED COUNTY NO. 02324 ELEVATION 617GL LOCATION NE SH NW LATITUDE 42.438048 LONGITUDE - 87.821823 27 - 46N - 12E COUNTY Lake API 120970232400

ILLINOIS STATE GEOLOGICAL SURVEY

Page 1


· - ----

ng e	1	ILLINOIS	STATE	GEOLOGICAL	SURVEY

Page 1 ILLINO	IS STATE GEOLOGICAL	SURVEY	
Mator Nell		Тор	Bottom
Total Depth			156
		· ·	
Driller's Log filed			ļ
		· ·	
			. ·
ermit Date:	Permit #:		
COMPANY Ferguson F H			
ARM	NO.		
LEVATION 636GL	COUNTY NO. 02325		
OCATION NW SW SW			
OUNTY Lake	API 120970232500	27 - 46	N - 12B

MAP ID 1582.1

MAP ID

1 ILLINOIS STATE GEOLOGICAL SURVEY

Bottom

B

Top

Page

Total Depth

Pe nts Concession 2002 NO.	mait #:		
	mit #:		
	4		
	•		
	•	•	
			•
	. [•
			• .,
			чи. Т
		· .	

•

.

Revision 0

A.2 ISWS LOGS

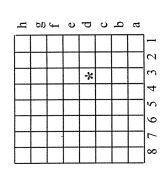
Illinois State Water Survey PICS Database

Thursday, June 8, 2006

County: LAKE

Township: 46N

Range: 12E


Sections: 14-17,20-2326

Records Found: 11

Contact the Illinois State Water Survey's Ground Water Division @ (217)-333-9043 Questions: Please cite the Illinois State Water Survey's PICS (Public-industrial-Commercial) Database in all publications based wholly or partially on this information. **Publication:**

information was initially entered from public water supply data and supplemented with the Illinois State Water Inventory Project data This database is Note: The data in the PICS Database is a listing of municipal and commercial wells which are known to the Illinois State Water Survey (ISWS). This updated as additional information is received and verified.

This data cannot be resold or redistributed. The Illinois State Water Survey must be acknowledged in any use of this material.

Location of a 10-acre-plot within a section:

The origin can be found at the lower right-hand-corner of an 8 x 8 grid. In this example, the well is in the 10-acre plot '3d'.

SWSID FI	PS T	FIPS TWN RNG		SEC 1	SEC PLOT	NAME	DBID	WELL # I	DEPTH S	STATUS	Y EAK SEALED TYPE		YEAR DRILLER
0 06795790	097 46	46N 12	12E	14	QI	LAKE CO PWD - ZION BENTON	10087	-		I		1955	
09769850 097		46N 12	12E	15 2	2E	ILLINOIS BEACH STATE PARK	11890	101	100	n			
09795125 097 46N	97 40		12E	15 8	8E	AVALON MHP	2726		83	s	1995 -	8	
09795245 0	097 46	46N 12	12E	15 8	8F	НОГГ ИНОСК НІГГ МНР	2725		126)	1	1956	
09792000	097 46	46N 12	12E 3	21	1A	NOIZ	2727	ω	995	s	1958 S	1935	J P MILLER/VARNER
09792000 097		46N 12	12E	21	1B	ZION	2728		1093	D	D	1926	LAYNE-BOWLER/VAR NER
09792000 097 46N	97 4		12E	21 (6B	ZION	2729	7	220	s	- 1969	1932	
09707430 0	097 4(46N 15	12E 3	22	5A	ZION INDUSTRIES INC	11883	-	93	n			
09730130	097 46	46N 12	12E 3	23 (6B	EXELON - ZION STATION	11887			Ι			
09795790 097	97 4	46N 12	12E	23 (6D	LAKE CO PWD - ZION BENTON	2731	5	23	A		1959	RANNEY WELL CO
09795790 097	97 4	46N 12	12E	23 (6E	LAKE CO PWD - ZION BENTON	2730	1	33	A		1952	RANNEY WELL CO

 $\mathbf{c}_{\mathbf{i}}$

the second and the se	
City	_County
Section 2-3.63 Twp. No. 4	-6N Range 125
Location (in feet from section corner) 2950's	S. 1560'E, NW con
Owner dake to Wath bush	Authority land (alo (PWD- Bigg RENTED)
Contractor hanney Mater Supplies Co	Address
Date drilled 1959	_Elev. above sea level top of well_57
Depth 23 ft Water from	Repurped to #1
Log A performed takena	to 120', 144', 88'+ 204' respectively
from moth to a	Fouth, 75° L'Vetween pipes
	_Where filed
Size hole 13 ft If reduced, where and Casing record concrete 13 dia	how much
Casing record concrete 13 dia	Calleon
Distance to water when not pumping	Distance to water is
feet after pumping at	_G. P. M. forhours.
Reference point for above measurements	
Type of pump During submersitely	
Length of cylinder	Length of suction pipe below cylinder
Length stroke	_Speed
Hours used per day	Type of power electric months
	Rating of pump in G. P. M. 1200
Can following be measured: (1) Static water l	evel
(2) Pumping level	_(3) Discharge
Temperature of water	_Was water sample collected
Date	Effect of water on meters, hot water
coils, etc	
Date of Analysis	
	Recorder Robert Taarman Date Jan 8, 1960
2807-22617 12	Date

)

Cityion	County_ Labe
Section Z3 Twp. No.	46N Range 12E
	1056 E + F SW COMMEN 2450 5 + 1530
Location (in feet from section corner)	S. pikly, now Lake CO PUD- ZION BENTEN NU/2
Owner Jake Co. Vulle Wall	Authority
Contractor Ranney Collecto	
Date drilled	Elev. above sea level top of well 591.33
Depth 33'	
Log	
Llog	
Wine dettings sound	Where filed
	and how much
ر	
Casing record	101
Distance to water when not pumping	
feet after pumping at 00	G. P. M. for hours.
Reference point for above measurements	
Type of pump Pomoria AV 251	6 Distance to cylinder $28'\frac{5}{8}" \times 8" \times 17$
Length of cylinder 45%", 5 Sta. 12"	Length of suction pipe below cylinder $l \times 8$
Length stroke	Speed
Hours used per day	Type of power F.M. # F 318925
Rating of motor 60HP, 1765RP	M_Rating of pump in G. P. M. 750
Con following he measured: (1) Static wa	ter level yes.
(2) Pumping level Yes	(3) Discharge Yer
(4) Influence on other wells	, No
	Was water sample collected Yer
	Effect of water on meters, hot water
coils, etc	
Date of Analysis	
	Recorder WG Wood
2807-22617 12	Date

..

1400 200	
City	County
· ()	No. 45N Range REE
Location (in feet from section corner)) 2450'S, 1500'E, NWCON
Owner Sake Co Water Dich Contractor Ranney Water Supp	Authority Now Lala Co PWD-Zion Browton lies Co Address
Date drilled 10 - 10	Elev. above sea level top of well
Depth 33' 5 c	Ueden pripes, 3-12'dia 47', 76'+104' 2-8" dia 96'+164'
Log	2-8" dia 96' 2 164'
	0° 2 Jetween pipe
	Where filed
Size hole 13 T If reduced, w	vhere and how much
Casing record 13' dia	concrete careson
Distance to water when not pumping_	Distance to water is
feet after pumping at	G. P. M. forhour
Reference point for above measurement Type of $\frac{2}{pump}F-M$ Review of $\frac{2}{pump}$	Distance to cylinder $\frac{28 \times 8}{}$
Length of cylinder 12" 5.200	Length of suction pipe below cylinder
Length stroke 1 gump has, in addition to the motor, Hours used per day	ant 2 gear drive and a 80 HP Continental gradient en Type of power F- M electric motor
	Rating of pump in G. P. M. $750/230$ TDH
Can following be measured: (1) Sta	tic water level 725
(2) Pumping level	(3) Discharge
(4) Influence on other wells	
Temperature of water	Was water sample collected
Date	Effect of water on meters, hot wate
coils, etc	
Date of Analysis	Analysis No.
	Recorder Robert Baaman
2807-22617 12 .	Date 8, 1960

.

(al. in	till Hancom 192
	Min
City SectionTwp. No	$\frac{\text{County}}{46 \text{ M}} = \frac{125}{25}$
Location (in feet from section corner)	450'S, 1500'E, NW Corr
Owner Lake Co Public Water St	a i i
10 10 10 10	Now Lake Co PMD-ZION BENZON
Contractor tanney Calledon	Address
Date drilled	Elev. above sea level top of well $591, 33$
Depth 33	Ĩ
Log	
	>
Were drill cuttings saved	Where filed
Size hole 13^{\prime} If reduced, where a	and how much
Casing record	
Distance to water when not pumping	15 ¹ Distance to water is 22 ¹
700	
•	G. P. M. for hours
Reference point for above measurements	
Type of pump	
•	Length of suction pipe below cylinder
	Speed
Hours used per day	Type of power
Rating of motor	Rating of pump in G. P. M
Can following be measured: (1) Static wat	ter level
(2) Pumping level	(3) Discharge
Temperature of water 50,4°F	Was water sample collected 4e-
Date	Effect of water on meters, hot water
coils, etc. Complete Isla se	to Handon .
Date of Analysis	Analysis No. 118-5-1
	Recorder W W and
2807-22617 12	
	Date

*

564 616 64 65 S

1

STATE WATER SURVEY WELL DATA.

12 -----

	Q. Q. Z. L
$\mathbf{\tilde{\mathbf{x}}}$	Date July 31 195
	Recorder / Aller
	Authority
Owner Atty Hell City Fion	County Lata
When drilled Contractor	Address
Transformer location from section cor	ner if possible)
1480 Strette + 510 Jul Mach M & cor for	uz1-46N-12=
Elevation top of well 635.	Depth /025
Elevation top of well Goo.	
Log See Englight	ALP A. A
163 to Lundlock 896 to by	a flat V. Dawing -
Casing record	10 %
	130
Size hole	
Were drill cuttings saved? Were they	sent to State Geological
Survey? Distance to water when not	pumpingAfter pumping
atgpm, forhours. Reference poi	int for above measurements
Type of rump Justance to co	linder
Length of suction pipe below cylinder	
Length stroke Speed Hou	ars used per day
Type of power Mitter	
Can following be measured: Water level	not pumping Pumping
Discharge 400 gem Influence on other	r wells
Temperature of water /6° C -Were water	er samples collected Mux
DateAnalysis number	test of water on
DateAnalysis number_0407	32
meters, hot water coils	
Cost of well	

	D. porteal
7.10N	County 6 6 Ke
City	E // i C Range
SectionTwp. No	Nange
Location (in feet from section corner)	
Owner CITY OTZION	_Authority
Contractor <u>all nel Doutler</u>	Address
Date drilled	Elev. above sea level top of well
Depth // 4.0 -	ORIGING/14 1025'
Log	
3	
Were drill cuttings saved	_Where filed State Water Sur
Size hole If reduced, where and	
Chairman and the second	
Casing record	4-15-48) Distance to water is 32
Distance to water when not pumping 76 320	
feet after pumping at	(, 1, 11, 101
Reference point for above measurements	FLOOR of Bldg
Type of pump Layne Centrations/	_Distance to cylinder
Length of eylinder / Sel 10/1 91/9/	
Length stroke	_Speed
Hours used per day 5 to 24	Type of power Electric
	Rating of pump in G. P. M. 330
Can following be measured: (1) Static water	level
(2) Pumping level	
(4) Influence on other wells	
Temperature of water	Was water sample collected 5-2/4
Date	Effect of water on meters, hot water
Build, att-1	
coils, etc. <u>1201101 mport</u>	Analysis No 1121865
Date of Analysis	
	Recorder
2807-22617 12	Date

Well No.1

City D	County
City	_Twp. No Range
Section	
Owner City of Zion	Deepened well Address Dukog ve Ia. Deepened well Address Dukog ve Ia.
Contractor Vorner Well Un Inter Co	Elev. above sea level top of well 523
Date drilled Deepened in 1944	Elev. above bou 10
Depth 1100	
Log on File	
· · · · · · · · · · · · · · · · · · ·	
	Where filed 5.6.5
Were drill cuttings saved	uced, where and how much [6 6 0-165) 15" from 166-316:12" From 316-1628.12" [6
Size hole Tople Do to 1 1 Feud	freed, "mart of 5785"
Casing record 16" to 166; 12"	$\frac{1}{100} = 15 \text{ to } 5785}$ $\frac{1}{100} = \frac{1}{100}
Distance to water when not pur	hours. 50 8
and the second se	and and a second se
Time of nump - Onte - Bruder	10 Distance to comment
Length of cylinder 13 stages	Length of suction pipe below cylinder 10 of 6"
Length of cynnuer Length stroke 350 of 6" Colu	
Length-stroke 350 016 Com	Type of power Electric
Hours used per day	$\frac{1}{2} = \frac{1}{2} = \frac{1}$
Rating of motor Go H-F.	Rating of pump in G. P. M. 400
Can following be measured:	(1) Static water level Yes. F proper Dauge is used.
(4) Innuence on enter 59	5Was water sample concert
Temperature of water	Effect of water on meters, hot water
Date Aug. 10 1940	
coils, etc	100 996
Date of Analysis	() + Harla
	Recorder <u>Autom</u>
2807-22617 12	Date

WELL HO.	
a francisco de la companya de	
City Zion	County_Lake
	45 N Range 12E
	20 N. 510 E. of 5.W. Corner
CHINE Zinn	Authority Erwin Clarg Will John
Owner (70; Mander	Address Zion, Ill-
Contractor to mer pour	Elev. above sea level top of well $\frac{2\pi \sigma^2}{2\pi^2}$
Depth 1100 (deepened by Vorner 1	$\frac{1943}{2}$
Log <u>see Starts</u>	
	Where filed
Were drill cuttings saved	e and how much
Casing record	
· · · · · · · · · · · · · · · · · · ·	(194) Sept 5, 194
Let memory C8	(1943) Distance to water is $232'$ (Sept. 5.194)
Distance to water when not pumping $\overline{GS'}$	G P. M. for 4/V nours.
Distance to water when not pumping GS' feet after pumping at Abo Reference point for above measurements	Pump hase
Distance to water when not pumping 68' feet after pumping at <u>400</u> Reference point for above measurements Type of pump <u>Lathe turbine</u>	G. P. M. for <u>470</u> nours. Pump hase Distance to cylinder <u>350</u>
Distance to water when not pumping $68'$ feet after pumping at 400 Reference point for above measurements. Type of pump $1000000000000000000000000000000000000$	G. P. M. for $4/12$ nours. Pump hase Distance to cylinder 350^{-1} Length of suction pipe below cylinder $10^{-1} - 6^{-1}6^{-1}$
Distance to water when not pumping $68'$ feet after pumping at 400 Reference point for above measurements. Type of pump 2100 me Length of extinnel $350'-b''\phi$	G. P. M. for $4/2$ nours. Pump hase Distance to cylinder 350° Length of suction pipe below cylinder $10^{\circ} - 6^{\prime\prime}$ Speed
Distance to water when not pumping $68'$ feet after pumping at <u>400</u> Reference point for above measurements Type of pump <u>Lathe turbine</u> Length of extinder <u>350'-b''</u> Length stroke	G. P. M. for <u>477</u> <u>Pump hase</u> Distance to cylinder <u>350</u> Length of suction pipe below cylinder <u>10'-6"¢</u> Speed Type of power elect.
Distance to water when not pumping $68'$ feet after pumping at <u>400</u> Reference point for above measurements. Type of pump <u>10 me</u> turbine Length of extinder <u>350'-b''</u> Length stroke Hours used per day <u>over 10 hrs</u> Rating of motor <u>6044</u>	G. P. M. for <u>477</u> <u>Pump hase</u> Distance to cylinder <u>350</u> Length of suction pipe below cylinder <u>10'-6"¢</u> Speed Type of power <u>elect</u> . Rating of pump in G. P. M. <u>400</u>
Distance to water when not pumping $68'$ feet after pumping at <u>400</u> Reference point for above measurements Type of pump <u>Lathe turb ine</u> Length of extinder <u>350'-6"¢</u> Length stroke Hours used per day <u>over 10 hrs</u> Rating of motor <u>6044</u>	G. P. M. for <u>477</u> <u>Pump hase</u> Distance to cylinder <u>350</u> Length of suction pipe below cylinder <u>10'-6"¢</u> Speed Type of power <u>elect</u> . Rating of pump in G. P. M. <u>400</u> water level <u>Yes</u>
Distance to water when not pumping $68'$ feet after pumping at <u>400</u> Reference point for above measurements Type of pump <u>10 me</u> <u>10 me</u> Length of <u>column</u> <u>350'-6''</u> Length stroke Hours used per day <u>over 10 hrs</u> Rating of motor <u>50 HP</u> Can following be measured: (1) Static	G. P. M. for <u>4</u> / <u>U</u> nours. <u>Pump hase</u> Distance to cylinder <u>350</u> . Length of suction pipe below cylinder <u>10'-6"¢</u> Speed Type of power <u>elect</u> . Rating of pump in G. P. M. <u>400</u> water level <u>Yes</u> (3) Discharge <u>No</u>
Distance to water when not pumping $68'$ feet after pumping at <u>400</u> Reference point for above measurements Type of pump <u>10 me</u> <u>10 me</u> Length of <u>column</u> <u>350'-6''</u> Length stroke Hours used per day <u>over 10 hrs</u> Rating of motor <u>60 HP</u> Can following be measured: (1) Static (2) Pumping level <u>Ves</u> pp	G. P. M. for <u>477</u> <u>Pump hase</u> Distance to cylinder <u>350</u> Length of suction pipe below cylinder <u>10'-6"¢</u> Speed <u>Type of power elect</u> . Rating of pump in G. P. M. <u>400</u> water level <u>Yes</u> (3) Discharge <u>No</u> <u>No 3 & Creamery Well</u> .
Distance to water when not pumping $68'$ feet after pumping at <u>400</u> Reference point for above measurements Type of pump <u>Lathe turbine</u> Length of extinder <u>350'-b"¢</u> Length stroke Hours used per day <u>oven 10 hrs</u> Rating of motor <u>6040</u> Can following be measured: (1) Static (2) Pumping level <u>105</u> (4) Influence on other wells <u>105</u> on	G. P. M. for <u>4</u> / <u>U</u> nours. <u>Pump hase</u> <u>Distance to cylinder 350</u> Length of suction pipe below cylinder <u>10'-6"¢</u> Speed <u>Type of power elect.</u> <u>Rating of pump in G. P. M. 400</u> water level <u>Yes</u> (3) Discharge <u>No</u> <u>No. 3 & Creamery Well</u>
Distance to water when not pumping $68'$ feet after pumping at <u>400</u> Reference point for above measurements Type of pump <u>Lathe</u> turbine Length of extinder <u>350'-6"¢</u> Length stroke Hours used per day <u>over 10 hrs</u> Rating of motor <u>6044</u> Can following be measured: (1) Static (2) Pumping level <u>405</u> (4) Influence on other wells <u>405</u> Temperature of water <u>59.4</u>	G. P. M. for <u>477</u> <u>Pump hase</u> Distance to cylinder <u>350</u> Length of suction pipe below cylinder <u>10-6</u> Speed Type of power <u>elect</u> . Rating of pump in G. P. M. <u>400</u> water level <u>Yes</u> (3) Discharge <u>Ho</u> <u>No. 3 + Creamery Well</u> Was water sample collected <u>Yes offler 4/2 hi</u> Effect of water on meters, hot water
Distance to water when not pumping $68'$ feet after pumping at <u>400</u> Reference point for above measurements Type of pump <u>Lathe turb me</u> Length of extinder <u>350'-6"</u> Length stroke Hours used per day <u>over 10 hrs</u> Rating of motor <u>6044</u> Can following be measured: (1) Static (2) Pumping level <u>105</u> (4) Influence on other wells <u>105</u> on Temperature of water <u>59.4</u>	G. P. M. for <u>477</u> <u>Pump hase</u> Distance to cylinder <u>350</u> Length of suction pipe below cylinder <u>10-6</u> Speed Type of power <u>elect</u> . Rating of pump in G. P. M. <u>400</u> water level <u>Yes</u> (3) Discharge <u>Ho</u> <u>No. 3 + Creamery Well</u> Was water sample collected <u>Yes offler 4/2 hi</u> Effect of water on meters, hot water
Distance to water when not pumping GS' feet after pumping at <u>Aoo</u> Reference point for above measurements. Type of pump <u>Layne</u> , turbine Length of extinder <u>350'-6"6</u> Length stroke Hours used per day <u>over</u> <u>lohns</u> Rating of motor <u>Getta</u> Can following be measured: (1) Static (2) Pumping level <u>Yes</u> on Temperature of water <u>59.4</u> Date <u>Sept</u> 5, 1946 coils, etc. <u>Water is Treated</u>	G. P. M. for $4/4$ hours. Pump hase Distance to cylinder 350^{-1} Length of suction pipe below cylinder $10^{-1}-6^{-1}6$
Distance to water when not pumping $68'$ feet after pumping at <u>400</u> Reference point for above measurements Type of pump <u>10100 me</u> Length of extinder <u>350'-6"</u> Length of extinder <u>350'-6"</u> Length stroke Hours used per day <u>over 10 hrs</u> Rating of motor <u>6044</u> Can following be measured: (1) Static (2) Pumping level <u>105</u> (4) Influence on other wells <u>105</u> on Temperature of water <u>59.4</u> Date <u>Sept. 51946</u>	G. P. M. for $4/4$ hours. Pump hase Distance to cylinder 350^{-1} Length of suction pipe below cylinder $10^{-1}-6^{-1}6$

Varner Well Drilling Company

INCORPORATED

905 Dibuque Bldg.

Telephone 3691

DUBUQUE, IOWA,

ZION REFAIRS NO. 1 WELL ZION. ILLINOIS

Janus ry 13, 1944 July 29, 1943 DATE COMPLETED DATE STARTED 15" from sarface to 575'; 12" from 575' to 1025'; 10" from 1025' to 1100' DIAMETER DEPTH 1100' Approx. 163' of 16" O.D. from surface; 12" from 313' to '75' CASING Pulled pump and thecked hole to 1018', cleaned to 1020' Shot hole at 925' with 166# shot, 950' with 167# shot, and 985' with 167# shot. Measured hole and cleaned out from 930' to 1025' Installed 322' test jump - Results: 6.00 P.M. 460 GPM - Water below bowls 6.30 P.M. 390 GPM - Water below bowls 7.00 P.M. 370 GPM - Water below bowls Removed pump cleaned to 1025' and drilling new 10" hole. 1025' to 1027' - 2' - Limestone 1027' to 1035' - 8' - Grey Dol mite 1035' to 1040' - 5' - Brown Line Rock and red Shale 1040' to 1044' - 4' - Brown Shale and Sand 1044' to 1065' -21' - Brown Sand Shot hole at 1065' with 200# shot, hole filled to 960' Cleaned out hole to 1065" shot hole at 908' wi h 250# shot and 970' with 250# shot. Checked hole to 920' and cleaned cut to 1(65'. Drilling new 10" hole. 1065' to 1070' - 5' - Brown Limestone 1070' to 1080' - 10' - Brown Limestone 1080' to 1086' - 6' - Brown Sandstone Install 340' of pump and run test, pumping level 340' and pump 435 GPM Removed pump and cleaned hole to 1086', drilling new 10" hole from 1086' to 1093' - 7' - Sandstone - Very Hard Install pump and running test - Water drops quickly - Remove pump, hole filled 25' Clean hole to 1093' and drilled hole tolloo' bottom. Set new Layne & Bowl >r Pump - Total pump installed - 369'.

÷

WELL INVENTORY SCHEDULE	Well No. 16 IEE-ELLE
Location Jim County Sake	ID C
Feet from Sec. Cor. 1120 N, 510 W, 5501	
Amana (1) A Same A Amana (1) A Amana A	and the state of t
Driller <u>Lange + Brinkin</u> Address	
Date drilled 1926 Method Calife tool	
Depth 1100 Hole record 16" 0-163, 15" 163-57512, 12	575 <u>2-1100</u>
Casing record 16" 0-163 (eletter 105-130'), 12" 313	-575 10" 307-376'(19
Screen record states 16" casing 105-130"	19 19 19 19 19 19 19 19 19 19 19 19 19 1
LogDrill cuttings	
Chief aquifer toOt	her aquifer
Land surface elev. 632.78 Topography	
Above Nonpumping level <u>N8,4-(below</u> measuring point on l above Pumping levelbelow measuring point aft	
gpm for hours onat	AM PM
Measuring point (MP) for above measurements $\frac{Q_{in}}{Q_{in}}$	est Mun, to LSD
Airline and measuring equipment Atcd tage	С. <u>.</u>
Pump and power	
Use of water Standby use since 1957	
Water quality	an ⁶²⁴ - الأمريك المركز الم
Analysis No. and dateTe	emp
Data collected by Date	
Source of information 12.2 40	
Can well be used in pumping test?A	re nearby observation
wells available? Are pumping records availa	able? <u>Vs</u>
Are water level records available? 1/55	
Remarks: Shot in 1925 in 20 teter handeter In 1943, Sugared from 1025 to 1100' and I	net at
100 9 100 9 110 9 100	

	WELL NO. 2		and the second sec
	City	Laka	Sealed
	Section 2 Twp. No. 42		
	Location (in feet from section corner) 120	· · · · · · · · · · · · · · · · · · ·	Comer
	Owner City of Zion Send Cupy	Authority Erwin Craig 1	V. W. Supt.
	mineral >	Address Zion, III.	1
	Contractor	Elev. above sea level top of well	651
	· · · · · · · · · · · · · · · · · · ·		
	Depth VVO		
	Log	· · · · ·	
	Were drill cuttings saved ?	Where filed	
	Size hole 10 " If reduced, where and	how much	
	Casing record 150 of 10"		110+
	Distance to water when not pumping 18 (Ma	$\gamma 1944$ Distance to water is b	heats suction occasionally
	feet after pumping at <u>AO</u>	_G. P. M. for Continuously	hours.
	Reference point for above measurements	Pump base	
	Type of pump Latine turbine	Dow/SDow/S	
	Length of cylinder 119-64	Length of suction pipe below c	vlinder 30' of 4" \$
	Length stroke	Speed	
	Hours used per day Continuously	Type of power Elect.	
	Rating of motor 20	Rating of pump in G. P. M5	O
	Can following be measured: (1) Static water	level Ho	
• •	(2) Pumping level H0	(3) Discharge	
	(4) Influence on other wells Hone I		
北.8,	Femperature of water 51.2° F		
nning		Effect of water on	
24Þ)	coils, etc. Very Soft		· · ·
	Date of Analysis	1 15	7589
		Recorder	<u></u>
	2807-22617 12	Date Dell. 6.19	Later -
		· # • •	

negative in .	and a second
	County
	Twp. No. Range Range
Location (in feet from section corn	ner) 8 N 137 W SE SE
	Authority Ma Erwin Date NAW Sam
Contractor Know Well Doctor	Address Address
Date drilled	Elev. above sea level top of well
Depth	
Log	62
~~~~	
Were drill cuttings saved	Where filed
	l, where and how much 1900 100 148; 10 900 100 - 554- 10 900 100
	(more and non and set of the set
	St/44 $-75$ Distance to water is $-75$
feet after pumping at (access to the	G. P. M. for G. P. M. for Came for 10 Chours
Reference point for above measur	ements Top of Casing bud did waw also
Type of pump	Distance to cylinder 3000
length of eylinder	Length of suction pipe below cylinder
ength stroke	Speed
Hours used per day	Type of power
Rating of motor	Rating of pump in G. P. M.
Can following be measured: (1)	Static water level
	(3) Discharge
	- tettered Mar Will totter Martin
	Was water sample collected
and the second s	
	Effect of water on meters, hot water
oils, etc	
Date of Analysis	Analysis No/ 2997
,	Recorder

k

		abortoned	· ·
FAR AUT ELE COI	APANY J. P. Miller Well Co.	ton 3 T. Eng. 46 N 935 corner	206. 286790 Map No. 1 R. 122 Sec. 21 Depth
No.	STRATA	Thickness Feet In.	Feet In.
140.		125	125
×.	Drift Sand and gravel, very little water Drift Sand, sample of water to Water Survey Lime rock, gray	5 16 183	130 146 147 330
	Marl, red Lime, gray Shale, blue Lime, gray, hard Sand, gray Lime, dark Sand, gray Marl red	20 20 190 303 11 26 93 2	350 370 560 863 874 900 993 995
	All measurements to derri 148'2" of 12 1/2" drive 0 to 148'2" 254'4" of 10" drive pipe 309'8" to 564'0" Static level 58' at 915' Static level (no operati Before shooting water level First shot - 40 # 60% at Second shot - 55 # 60% at Water level 36'	vith stee depth ons) 51* a vel 52 1/2 980* t 955*	1 shoe t 995' depti
	Third shot 50 # 60% at 9 10" casing damaged a lit will go through but 10" Well not completed to de County Lake		1 30, 1900

Liggened to 1023 in 1942. by Varner

T.-DRILL RECORD

46244-10M-11-35 Illinois Geological Survey, Urbana

CITY OF ZION, JLL. Well No. 3

Date Started = 11-2-42 Date Completed = 1-2-13 Rom ved 350 ft. of 7 1/8 0. F. Extra Heavy Column, 10" Bowls and 35 ft. of suction pipe. Swedged 10" liner with 9 7/8" 0. D. swedge Clean Hole to 980 feet. Well Shot with 100 lbs. shots at 930ft., 945 ft., and 915 ft. Bailed and drilled said shot loose from 11-17-42 to 1 '-8-42 Cleaned hole to 996 ft. level. Drilled 9 5/8" hole from 996 ft. to 1023 ft. Installed test pump and run test = 12-15-42 17 ft. of send fill cleared out after test.

Reinstelled owners pump and it is reported by Mr. Srwin Graig, Supt., well delivery is over 400 G.P.M. - Jan. 16, 1943.

É.

Section $35.26$ Twp. No. $46.N$ Range $12.5$ Location (in feet from section corner) $1142$ $1_{160}$ ( $Range 12.5$ 320/2 Owner fill. Beach State Park Authority drillars is log Contractor i. B. Steiger Address Chinage Date drilled Ching. $19+7$ Elev. above sea level top of well $575 \pm 7$ . Depth $1002$ 102 (over) Log (over) Log (over) Log $1020$ Where filed $15.5$ is and $60$ = minter. Were drill cuttings saved from Where filed $15.5$ is and $60$ = minter. Were drill cuttings saved from Where filed $15.5$ is and $60$ = minter. Casing record $12.4$ if $8$ give $\frac{150}{150}$ if $10200$ $290$ i $A \pm 460$ Distance to water when not pumping $12^{\prime}$ Distance to water is $137$ feet after pumping at $38$ G. P. M. for $250^{\prime}$ in $152^{\prime}$ Length of suction pipe below cylinder. $12^{\prime}$ Length of suction pipe below cylinder. $12^{\prime}$ Length of suction pipe below cylinder. $12^{\prime}$ Length stroke Speed Hours used per day Type of power. Rating of motor Rating of pump in G. P. M. Can following be measured: (1) Static water level (2) Pumping level (3) Discharge (4) Influence on other wells $1000^{\prime}$ Was water sample collected $7-16-10^{\circ}$ Date Effect of water on meters, bot w	City news Zion	County
Location (in feet from section corner) $\frac{1}{14\pi^2}$ $1$	3 5 26 The No	46 N Range 125
Owner III. Beach State Fork Authority drubber of well of the start         Contractor S. B. Starger         Date drilled Curg. 1947         Elev. above sea level top of well $575 \pm 7$ .         Depth 1001         Log (area)         Log took 5 Stargers         Vere drill cuttings saved for where and how much         Size hole $S''$ If reduced, where and how much         Casing record $224'$ for	SectionIwp. No	The two sen F Sw/c
Contractor $A$ , $B$ , $B$ , $G$ , $G$ , $A$ ddress, $C$ , $G$	Location (in feet from section corner)	2 100 100 1000
Date drilled $2 - 19 \neq 7$ Elev. above sea level top of well $SPS \perp 1.7$ Depth 10.2' Log (over) Log (over) Log trock 5 minutes at 1, 5, 15, 50, and 60 = intro. Were drill cuttings saved $4co$ Where filed $SSS$ . Size hole $S''$ If reduced, where and how much Casing record $2 \neq 1$ $f$ $S'' ppe 3 = 150 cf("linerr 3 \neq 0.7 + 6 \neq 10^{-1}Distance to water when not pumping 12' Distance to water is 137feet after pumping at 38 G. P. M. for 4' houReference point for above measurements 4pf 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 $	Owner fl. Beach State Furthe	- Authority Aritur & Com
Date drilled $2 - 19 \neq 7$ Elev. above sea level top of well $SPS \perp 1.7$ Depth 10.2' Log (over) Log (over) Log trock 5 minutes at 1, 5, 15, 50, and 60 = intro. Were drill cuttings saved $4co$ Where filed $SSS$ . Size hole $S''$ If reduced, where and how much Casing record $2 \neq 1$ $f$ $S'' ppe 3 = 150 cf("linerr 3 \neq 0.7 + 6 \neq 10^{-1}Distance to water when not pumping 12' Distance to water is 137feet after pumping at 38 G. P. M. for 4' houReference point for above measurements 4pf 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 $	Contractor S. B. Geiger	Address Chicago
Depth $1000'$ Log $(000)$ some also took 5 samples $11, 5, 15, 30, and 60$ mints.) Were drill cuttings saved $1000$ Where filed $1000$ Size hole $1000$ If reduced, where and how much Size hole $1000$ If reduced, where and how much Casing record $124'$ of $8''$ give $150'$ of $10000$ $290'$ $64460'$ Distance to water when not pumping $12'$ Distance to water is $10000$ feet after pumping at $38$ G. P. M. for $10000$ for $100000$ Reference point for above measurements $1000000000000000000000000000000000000$	Date drilled dug. 1947	Elev. above sea level top of well $SFS \neq T$ . M
Log (over source files of 1, 5, 5, 30, and 60 minutes.) Were drill cuttings saved $4co$ Where filed $3$ $3$ $3$ Size hole $1$ If reduced, where and how much Casing record/21' $f$ $3'' pres 3 50' f 1' liner 370' f f f f or 370' f f f f f f f f f f f f f f f f f f f$		
Were drill cuttings saved $y_{ess}$ Where filed $M$ Size hole $S$ If reduced, where and how much $S$ Casing record $224'$ of $S$ $p_{pess}$ $150'$ of $S'$ lines $290'$ $A$ $440'$ Distance to water when not pumping $12'$ Distance to water is $137'$ feet after pumping at $38'$ G. P. M. for $4'_{2'}$ how         Reference point for above measurements $Tp f$ $easing$ $152'$ Length of suction pipe $152'$ Length of eyinder $5''$ Length of suction pipe below cylinder. $2$ Length stroke       Speed       Speed $150''$ $20''''''''''''''''''''''''''''''''''''$		1
Were drill cuttings saved $y_{ess}$ Where filed $M$ Size hole $S$ If reduced, where and how much $S$ Casing record $224'$ of $S$ $p_{pess}$ $150'$ of $S'$ lines $290'$ $A$ $440'$ Distance to water when not pumping $12'$ Distance to water is $137'$ feet after pumping at $38'$ G. P. M. for $4'_{2'}$ how         Reference point for above measurements $Tp f$ $easing$ $152'$ Length of suction pipe $152'$ Length of eyinder $5''$ Length of suction pipe below cylinder. $2$ Length stroke       Speed       Speed $150''$ $20''''''''''''''''''''''''''''''''''''$	las trate 5 samples at	4 1, 5, 15, 30, and 60 minutes.)
Size hole If reduced, where and how much. Casing record/24' of 8'' pipe / 50' of ( 'linex >70' A # + o' Distance to water when not pumping Distance to water is feet after pumping at 38' G. P. M. for hou Reference point for above measurements $\frac{10}{15} \frac{1}{2}$ hou Reference point for above measurements $\frac{10}{15} \frac{1}{2}$ Type of pump Distance to available Length of evidence Length of suction pipe below cylinder Length stroke Speed Hours used per day Type of power Rating of motor Rating of pump in G. P. M Can following be measured: (1) Static water level (2) Pumping level (3) Discharge (4) Influence on other wells Temperature of water May water sample collected $\frac{1}{2}$ Date Effect of water on meters, hot w coils, etc Slight H. J. May Date Analysis No	Area subre in f	and I fi
Size hole If reduced, where and how much. Casing record/24' of 8'' pipe / 50' of ( ' linex >70' A # + o' Distance to water when not pumping Distance to water is feet after pumping at 38' G. P. M. for hou Reference point for above measurements for for Type of pump Distance to explinder Length of evinder Length of suction pipe below cylinder Length stroke Speed Hours used per day Type of power Rating of motor Rating of pump in G. P. M Can following be measured: (1) Static water level (2) Pumping level (3) Discharge (4) Influence on other wells Temperature of water Was water sample collected Date Effect of water on meters, hot w coils, etc Slight Analysis No	Were drill cuttings saved Jes	Where filed
Distance to water when not pumping       12'       Distance to water is       15'         feet after pumping at       38'       G. P. M. for       4'       hou         Reference point for above measurements <i>Hp f casing</i> hou         Type of pump <i>least J J Leasting J</i> Length of cylinder       5'       Length of suction pipe below cylinder.       2         Length stroke       Speed       Speed       2         Hours used per day       Type of power       Rating of pump in G. P. M.       2         Can following be measured:       (1) Static water level       (3) Discharge       3         (4) Influence on other wells       1000000000000000000000000000000000000	Size hole / If reduced, where	and how much
Distance to water when not pumping       12'       Distance to water is       15'         feet after pumping at       38'       G. P. M. for       4'       hou         Reference point for above measurements <i>Hp f casing</i> hou         Type of pump <i>least J J Leasting J</i> Length of cylinder       5'       Length of suction pipe below cylinder.       2         Length stroke       Speed       Speed       2         Hours used per day       Type of power       Rating of pump in G. P. M.       2         Can following be measured:       (1) Static water level       (3) Discharge       3         (4) Influence on other wells       1000000000000000000000000000000000000	Casing record 124' of 8" pipe	150'of ("liner 290' 4 40'
feet after pumping at       38       G. P. M. for       42       hot         Reference point for above measurements       Image: Constraint of the second of the secon	The second	12' Distance to water is
Reference point for above measurements $frequency for the test of test $	Distance to water when not pumping	hours
Type of pump       text       Distance to exlinder       13 2         Length of eylinder       5'       Length of suction pipe below cylinder.       2         Length stroke       Speed       10 static mathematical stroke       2         Hours used per day       Type of power       10 static mathematical stroke       2         Rating of motor       Rating of pump in G. P. M.       10 static water level       10 static water level         (2) Pumping level       (3) Discharge       (3) Discharge       10 static stat	feet after pumping at	G. P. M. 101
Type of pump       Distance to Lymmer         Length of evylinder       Speed         Length stroke       Speed         Hours used per day       Type of power         Rating of motor       Rating of pump in G. P. M.         Can following be measured:       (1) Static water level         (2) Pumping level       (3) Discharge         (4) Influence on other wells       Image: Speed         Temperature of water       Speed         Date       Effect of water on meters, hot w         coils, etc.       Mage: Mage: Mage: Mage: Mage: No.	Reference point for above measurements	Top of casing
Length of eylinder       5'       Length of suction pipe below cylinder.       2         Length stroke       Speed         Hours used per day       Type of power         Rating of motor       Rating of pump in G. P. M.         Can following be measured:       (1) Static water level         (2) Pumping level       (3) Discharge         (4) Influence on other wells       1000000000000000000000000000000000000	Type of pumptest	Distance to cylinder 13 2
Length stroke       Speed         Hours used per day       Type of power         Rating of motor       Rating of pump in G. P. M.         Can following be measured:       (1) Static water level         (2) Pumping level       (3) Discharge         (4) Influence on other wells       row         Temperature of water       ST. 4         Was water sample collected       Image: Collected         Date       Effect of water on meters, hot w         coils, etc.       remy slight       Hours of otherwing         Analysis No.       Analysis No.	found =1	Length of suction pipe below cylinder. / 2/
Hours used per day       Type of power         Rating of motor       Rating of pump in G. P. M         Can following be measured:       (1) Static water level         (2) Pumping level		Speed
Rating of motor       Rating of pump in G. P. M.         Can following be measured:       (1) Static water level         (2) Pumping level       (3) Discharge         (4) Influence on other wells       Image: Constant of water in the second of the s		-
Can following be measured: (1) Static water level (2) Pumping level (3) Discharge (4) Influence on other wells Temperature of water STA Was water sample collected T-ro- Date Date Effect of water on meters, hot w coils, etc. Very sleight Hadder Analysis No.	Hours used per day	
<ul> <li>(2) Pumping level (3) Discharge</li> <li>(4) Influence on other wells <u>row</u></li> <li>Temperature of water <u>SZ</u> <u>4</u> Was water sample collected <u><i>P</i>-<i>i P</i>-<i>i</i></u></li> <li>Date Effect of water on meters, hot w</li> <li>coils, etc. <u>very slight Hrs odor</u></li> <li>Analysis No.</li> </ul>	Rating of motor	Rating of pump in G. P. M.
<ul> <li>(2) Pumping level</li></ul>	Can following be measured: (1) Static w	vater level
Temperature of water SZA Was water sample collected <u>B</u> DateEffect of water on meters, hot w coils, etc. <u>very slight Hrs dor</u> Analysis No	(2) Pumping level	(3) Discharge
Temperature of water SZA Was water sample collected <u>B</u> DateEffect of water on meters, hot w coils, etc. <u>very slight Hrs dor</u> Analysis No	(4) Influence on other wells	
DateEffect of water on meters, hot w coils, etc	Temperature of water 57.4	Was water sample collected $\mathcal{F} = \mathcal{F} = \mathcal{F}$
coils, etc. very slight Hrs do		Take I Constant an motory bot Wat
	Date	Hrs odor
	coils, etc.	
PH 1.6 Recorder <u>3.415</u> . 8-20-47	Date of Analysis	
V 8-20-41	pH 7.6	Recorder J. A. R.
2807-22617 12 Date		Date 5- 20 - 54/

Sail minds t i 48 Plan Sund (Card) 2 Letter a data data 40 96 And E * 122 5-6 to Belo 134 - LA 150 ĺ, Lack 160 20 170 تسيح محجو Line That 175 210 2 2 2 12 212 Acie de A Section sid chale 300 gring shall for hers in the مىمەمىي جەرب the state 372 Fr & Alex And Cher 440 77 335 from wanty ling 494 It Peter Land 295 159 100% Red Rocks * Snall Crevices at 126'. Water lend up to 30', mully.

Ill st. of Public Health Yello. sopy: Well Contractor Golden Copy: Well Owner

ai

## Well Construction Report

. Nga

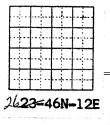
GEOLOGICAL AND WATER SURVEYS WELL RECORD RCK KRARABE, PROJECT DRILLER 9. Driller LAYNE - WESTERN License No. 122-00324 10. Well Site Address THUNDERMUKG, C-124CD 33/20 ST 11. Property Owner AKE COUNTY/CRESS REE, Well No. 1 12. Permit No. WW97-03-0391 Date Issued 5/19/97 13. Location: Sec. 300 Sec. 300 Rge. 26 NE CORUMER Ref. 200 Rge. 26	14. Water from <u>MANDS/ZME</u> at depth///79 ft ft [15. Casing and Liner Pipe to <u>2005</u> ft Show location Diam.(in) Kind and Weight From (ft) To (ft) in section plat	18" STEEL-70.597+72 206 NW SENE 14" 11 -54.57+73 634 10" 11 - 40.467 1056 1179	<pre>16. Screen: Diam. in, Length in, Slot Size 17. Size hole below casing <u>O</u> in. 18. Ground Elev. <u>WO</u> ft ms]. 19. Static level<u>305</u> ft below casing top which is <u>Ft</u>. above ground level. Pumping level <u>ME</u> ft, pumping <u>gpm for </u>Mours. 20. Earth Materials Passed Through <u>Top Bottom</u> SEE ATTARGAR</pre>		Signed Signed Signed Signed
DRM MUST BE DF WELL CON LLINOIS DEF IVISION OF 525 WEST SPRINGFIEL Hole D	b. Driven Drive Pipe Diam. in. Depth ft b. Driven Drive Pipe Diam. in. Depth ft c. Drilled Finished in Drift In Rock d d. Grout: (KIND) FROM (Ft.) TO (Ft.)	2. Well furnishes water for human consumption? Yes No 3. Date well drilled ZUNE JULY, 997 No 4. Permanent pump installed? Yes X Date 297 No Manufacturer DiXCOU J7XLSBD Ivoe SUBM	Cgpm. Depth of setting     O       ed? Yes     No     Type       er installed? Yes     No       for casing?     Model No       ted? Yes     No       ted? Yes     No	IMPORTANT NOTICE $(0) \neq Ho/R = 0/R $	PRESS FIRMLY WITH BLACK PEN OR TYPE Do Not Use/Fait Pen IL482-0126 P/CS CG70 5242 # 0001126 22220

Feet 0 to	Feat 45	Description	
45 to	50	Clay and gravel	
50 to	80	Clay	
80 to	100	Clay and gravel mix	
100to	130	Clay and boulders	
130 to	155	Sticky clay streaks of boulders	
155 to	202	Sticky gray clay	
202 to	393	Lime	
393 tc	4-08	Red shale	
408	425	Brown shale	
to 425 to	615	Gray shale	
to 615 to	830	Lime	
to 830 to	850	Lime with streaks of sand	
totototototo	910	Lime	
910	955	Lime with streaks of sand	
to 	1070	St. Peter sand	
	1120	Red soft shale	
1120	1169	Gray and red sandy shale	
totototototototo	1285	White sandstone (Galesville)	
1285	1305	Gray and reddish lime	
to			÷ .
to			
to			
to			· ·
to			
to	- , ,		
to	na a dhuan an ann ann ann ann an ann ann ann an		
to			
to		E297858.	-
to		0001127	

		Concernance	(37329-20	M-5-56)	2
,	Page 1	ILLINOIS GEOLOGICAL SURVEY	, URBAI	NA	e contraction of the second se
	DIFT	Strata	Thickness	Тор	Bottom
		ad, yellowish brown			
	Ti	11, sandy, gravelly, dark	25		25
	y	vellowish bruwn			
	Tii	1, pinkish brown	25		50
	Gra	vel, light gray	40		90
	Til	1, calcareous, pinkish brown	5		95
	no	sample	20		115
		IAN SYSTEM	5		120
	Nia	garan Series			
	D	olomite, white to yellowish gray;			
		chercy in lower portion	150		
	Ale	xandrian Series	150		270
	Ð	bomite, white to yellowish gray,			:
		CHETLY AT TOD	25		
	ORDOV]	ICIAN SYSTEM	2.5		295
	Maqu	loketa formation			
	Sh	ale, dolomitic. green; some			
		uolomite streak at ton	200		
	oate	na tormation			495
	Do	lomite, sandy, pale brown to buff	.		1000 - Paris
		The yellowish drav at too	155		
		ren Iormation	100		650
	Do	lomite, brown to gray	20		
	Plat	teville formation	38		688
	Dol	lomite, brownish to grow	140		-
	OTCH	vood formation	142		830
	Dol	omite buff to brown	AE		
	San	dstone, white dolomitic fine	45		875
		o coarse	25		
	St. P	eter formation	20		900
	San	dstone, yellowish white, fine			
~	t	o coarse, incoherent	100		
	ample	study summary log furnished by St	ato Go		1002
çoj	MPANY (	o coarse, incoherent <u>study summary log furnished by St</u> Seiger		nogre	arvey.
FAR	M Bea	ach State Park			
	E DRILLED	1947 COUNTY NO			
AUT	HORITY	L. Selkregg			
ELE	VATION	630' est. T.M.	ļ		
LOC/	ATION	4500'S. 29th St., Zion, Ill.	ŀ		
cou	NTY	LAKE S.S. #17181		3-46N-	105
			merz	6	125
			-		·· •

÷

ILLINOIS GEOLOGICAL SURVEY, URBANA


Page 1

(37329-20M-5-56) 2

~

Strata	Thiskness	ХХХ	Bottom
	-	hickne	SS
PLEISTOCENE SYSTEM			· ·
Sand, yellowish brown		25	25
Till, sandy, gravelly, dark			2.
yellowish brown		25	50
Till, pinkish brown		40	90
Gravel, light grey		5	95
Till, calcareous, pinkish		-	
brown		20	115
No sample		5	120
SILURIAN SYSTEM		-	
Niagaran Series			
Dolomite, white to yellowish			
gray, some cherty in			
lower portion		150	270
Alexandrian Series			
Dolomite, white to yellowish			
gray, cherty at top		25	295
ORDOVICIAN SYSTEM			
Maquoketa formation			
Shale, dolomitic, green;			
some dolomite streak at			
top		200	495
Galena formation			
Dolomite, sandy, pale brown			
to buff, some yellowish			
gray at top		155	<b>6</b> 50
Decorah formation			
Dolomite, brown to gray		38	688
Platteville formation			
Dolomite, brownish to gray		142	830
	[		-

COMPANY Geiger	
FARM Beach State Park	NO.
DATE DRILLED 1947	COUNTY NO.
AUTHORITY Summary Sample Study	
ELEVATION 630' est. T.M.	
LOCATION 4500'S 29th St., Zion,	111.
COUNTY LAKE S.S. #17181	



(37329—20M—5-56) 2

....

GEOLOGICAL SUBVEY, URBANA

	-		ILLINOIS GEOL	OGICAL SURVEY, URBAN	A		1
			Strata		The second	_Top=	Bottom
					-	THICKNE	\$\$
		C1	ood formation	* *			
•		Dol	Lomite, buff t adstone, whit	o brown e dolomitic		45	875
· ·			fine to coar	Se .	-	25	900
		St. Pe	eter formatio	n Gwieh white	_		
		Sar	ndstone, yell	se, incohere	nt.	102	1002
			The to toat				
· ·							
1.1.1							
14							
- Alexandra -							
1							
a San Ingina Na San Ingina							
1							
·· .							
- <u>1</u>							
200							
				at a Domla			
•		Geiger	Beach St	_		1	
· · · · ·		LAKE	S.S. #17181	23-46	N-12E		
	COUNTY			and the second	4		
				The second of th			
	·			The second s			

22.25  $\mathcal{T}$ 

	•	WATER	WELL SEALING FOR	H H	en la neteritaria de la constante de la constan Antonio de la constante de la co
	۰.,		ty Health Departs f Environmental H		WW 95-03-0980
<b>Wauke</b> (708	Grand Avenue gan, IL 60085 ) 360-6740	121 E. ( Lake Vi (708)	Grand Avenue 11a, IL 60046 356-6222	.ii	118 S. Main Street Wauconda, IL 60084 (708) 526-1125
potal after	ble wells, boring (	nitted to the Lake or monitoring wells ed in accordance wi	. Such wells are	e to be sealed r	time of the sealing not more than 30 days the Water Well
1.	Owner of Property	Avalon Mobile H Name	ome Park 1639 Addres	) Sheridan Rd SS	Zion III 60099 Zip
2.	Well Location:	Same		~	County
		Street 88		City	County
					15-118-002
4.	·	o. (and date, if kn			and a set of the set of
5.		illed <u>x</u> Driven			
6.	Total Depth 90	) Sta	tic Level 15	Diameter (ind	ches)
7.	Formation clear o	f obstruction? Yes	<u> </u>	Depth to Ol	bstruction
8.	DETAILS OF PLUGGI	NG:	DIT LES	ſ	+ NH
	From 0 To	90 <b>feet</b>	Well.	10 (	Cement phD 8' × 5 feet
	Kind of Plug 3/4	Bentonite	+ TRIR	O Pit	8' × 5 feet
	From To			MANHOLE S	STEEL ALATE COVER)
	Kind of plug	· · · · · · · · · · · · · · · · · · ·		5	TREET
	From To	o feet	Y+YO AVALON	Moribe Home	PANR
	Kind of plug				
	From To		Sher	Location on si	te
0	CASING RECORD	·····		in a pit, has	the pit been properi
9.		aning memourd? V	eliminated?	Yes	No
	Upper 3 feet of c		es <u>x</u> No		le en ethen ponous
	It well casing col material, casing y	nsists of brick, st was removed to a de	one, concrete Di oth of 10 feet b	elow the surfac	le, or other porous e. Yes No
10.	Date well was Sea		27	95	
10.		Month	Day	Year	
11.		11 driller or other	person approved	by the Departm	ent performing well
	sealing:	and a	, ,	////	and the second s
	William D. M Name (PRINT		//		
	P.O. Box 250		1. 60075	72,8	TURE NOV 1995
	Address			City 8	StatalVEU 7in
	102-000-783			190	Environmental Health Division
	License Numb	er			(22) 113 ²
					A 200000000
				Date 10-	-27-95-6
SEAL	ING OF WELL OBSERV			ake County Heal	
Sea	ling Method approve	d by sign	ature D	Date $10 - 3$	ronmental Health $\mathcal{F}$
	<u> </u>	True A	1 prices.	1-	<u> </u>
		<u> </u>	4 At so	te.	

Illinois Environmental Protection Agency Bureau of Water - Division of Public Water Supplies Inspection Report - Elgin Regional Office

FACILIT	Y NAME	Holly	Hock H	ill Mobile	Hon	ne Park	<	FAC			IL0975245			
PLANT I	PHONE		1-8	47-336-5955					COUNTY			Lake		
INSPECTI	ON DATE		Dece	ember 9, 200	)3			1	NSPECTED BY:		Chris	Johnsto	on	
	SEND	CORRE	SPONDE	NCE TO					EXEMPTION	LABORAT	DRATORY FEE STATUS			
	NAME OR		Mr	. Harris DeJo					CHLORINE (Date)		No	t exemp	t	
		DRESS		P.O. Box 66			CE	RTI	FIED OPERATOR		May 23, 1991			
	CITY, STA	TE, ZIP	Wadsw	vorth, Illinois			LAB FEE PARTICIPANT (Y/N) NO							
	<del></del>					NTACTI			TION					
CERTIFI	ED OPERAT			. Harris DeJo			CLA				"C"			
		HONE:		847-336-59			FAX: 1-847-336-5956							
OVAINED	- RESPONSI	PAGER:	1-	-847-370-036	57		OTHER: None							
	RSONNEL	DLE		ris DeJong				TITLE OR POSITION				Owner		
	F	PHONE:		-336-5955		.FAX:				1-847-	336-59	956		
<b>A B I I I</b>						TITLE OR POSITION				····		PHONE		
OTHE	R CONTACT:	³ . –	Mr. Brad DeJong Mr. Roy Hogan R					Assistant				7-528-24		
	AGE ADDRE		MIF. R	oy Hogan		Re	sidenti	al N	Aanager	· · · · · · · · · · · · · · · · · · ·	1-847	7-731-00	91	
	AGE ADDRE	33							None					
	Crit	ical	Restri	otod	r	FACILIT								
Open		view	Stat		Rea	ison	Insu	ffici	ent hydropneun	natic storage		Date	12/16/1983	
			BR	IEF DESCRI	PTIC	ON OF S	YSTEN	ΛA	ND SERVICE A	REA				
			SI	ERVICE CO	INE	CTIONS					T	# ME	TERS	
				NUMBE	R OF	DIRECT S	SERVICE	ES	29	Paramate 1, 201 (1990)	+		0	
			DIRECT SERVICES OUTSIDE CORPORA							······································	0			
					R	esidential (	Customers 29				<u>_</u>			
					Co	ommercial (	Custome	ers	0		1		0	
						Industrial (	Custome	ers	0				0	
SA	TELLITE V	VATER S		/INTERCOM	INEC	CTIONS			FACILITY N		Sc	ource?	Customer?	
			None						N/a			N/a	N/a	
			FROM			QUACY		JPF	PLY	The second se	·			
U	DATE RANGE			January 2002	то	Decem 200		ΡL	ANT CAPACITY (N	IGD)	0.0	36 MGD		
						LIMITING	G FACTO	DR F	OR PLANT CAPA	CITY?	Cap	pacity of	well #1	
	ANNUAL PUMPAGE (MG)			RAW		N/a	[		FINIS	HED		33914 M		
	AVERAGE DAILY (MGD)			RAW		N/a			FINIS	HED		03936 M		
	MAX 7 Day Average (MGD)			RAW	L	N/a			FINIS		0.006667 MGD		GD	
Historical MA	istorical MAX 7-Day Average (MGD)			RAW	ļ	N/a	<u> </u>		FINIS			06667 M	GD	
	PO	PULATION		52	L				timated or Census I			isus		
			<u> </u>		How was Estimated Population Figured?					N/a				
AVERAGE	DAILY PER	CAPITA	76	gpppd					Verage Daily (Finis					
	UDAGE.				Tin	ne to Prodi	luce MAX 7- Day Average (Finished)			4.4 hours				

	r	T		Status				UMMARY Current	GWUDI	187-1	vers	
TAP #	Location or Description	Source Name	Source ID		Well Depth	Casing Length	Aquifer	Production (GPM)	Eval. .(DATE)	VOC	SOC	
TP 01	Treatment for well #1 inside wellhouse at 1601 Sheridan Rd., 60099	Well #1	WL20228	A	126 feet	126 feet	Drift	25 gpm @ 5.0 HP & unknown head	March 28, 1994	No application submitted	No application submitted	
sou	Use (Disconnected Irces, backups, Isonal use, etc)	(	Operates autor	natically	off systen	n pressure	Э.				-	
	riological History v water samples)	٢	No detections i	n the las	st 12 montl	ıs.						
		Disinfe	ectant Used	1	ridation ical Used		Chemical lition		Other T	reatment		
		(10% stre 50%. A pump rat	Hypochlorite ength, diluted A peristaltic ed 85 gpd @ i is used).	N	one	No	one			l/a		
			Inst	allation D	eficiencies			(	General Con	dition of Plant		
	REATMENT	2 3 4 5	does n Two, 8 No cor the so The ch is not p vented constru	ot have 2 gallon diammer dium hyp lorine so provided properl uction pe cient hyc	bypass pij bladder ta to r protect bochlorite to blution tan with a sca y, and was ermit. Iropneuma	bing. anks. ttive curb tank. k is not ca ale, and is i installed ttic storag	alibrated, s not without a ge.		F	air		
	er Comments rding this TAP	fc ta pi H	t this location i or well #2, a 96 ank(majority bu it), and two, 82 ad a 1,1,1-tricl pril 8, 1987. F	0 gallon iried, wit gallon l hloroeth	hydropne h only the pladder tar ane detect	umatic face ente iks. ion of 2 p	ering the	Emergency	Power	Manual (	generator	
							nic Statist	ics				
		norganic (1	type)					Concentrati	on (mg/L)			
		Iron						0.11 mg/L (Aj	oril 3, 2002	2)		
		Mangane	se				(	).004 mg/L (A	pril 3, 200	2)		
	На	rdness as	CaCO3					106 mg/L (M	ay 6, 1996	)		
	AI	alinity as (	CaCO3					164 mg/L (M	ay 6, 1996	)		
	Tota	al Dissolve	d Solids					348 mg/L (M				
	٨	Natural Flue	oride					1.1 mg/L (Ap		)		
		pН						7 93 (May	iy 6, 1996)			

							0	peratii	ng Re	ports	/ Recor	ds											
										Conten	t of Month	ly Reports											
	y Report Submitted		Repo each	ort for TAP?	Da Produ from We	Each	Da Meas Resid			Dosage Ilations?			Notes and	Other Obser	vations								
Yes	No	Late	Yes	No	Yes	No	Yes	No	Yes	No	1												
Х			Х			Х		Х		Х													
			Cross	Connec	tion contr	ol Ordin	ance				]												
syster	s the n have nance?	Date Ap (by IE			gram rced?	Do Pri	vate We	lls Exist Area?	in the S	Service	per mo	onth. The	Reports b se reports	do not incl	lude any m	onthly	total						
Yes	No			Yes	No	Ye	es		No		] av	/erages,	maximums	minimum	s, or chlori	ne data	a.						
Х		Nove 19		Х					Х														
									Mon	itoring	1			·····									
						Bac	teriolog	gical Sun	nmary														
		Monite			ast 12 Mo					Primary	lah	р	hone	F	AX	Ι							
			Ra	IW	Finis	hed	Distrib	oution		· · · · · · · · · · · · · · · · · · ·													
Numb	er of Sar	nples	C	)	0		12	2		orth SI nitary E		1-847-	623-6060	1-847-623-0804									
Numb	er Satisfa	actory	C	)	0		12	2	c,	econdary	(Lab		hone	F	AX								
Nur	nber Inva	alid	C	)	0		0			scondarj	Lab	1	none										
Numbe	r Unsatis	factory	0		0		0			PDC		1-309-	592-9688	1-309-6	92-9689								
	al / E. Co Positive	oli.	0	I	0		0			form Mo an Appro	5	system	Portions of included in lan?		Chlorine Residuals taken at Sample Sites?								oring EE Jual?
									Y	es	No	Yes	No	Yes	No	Yes	No						
Monito	ring Viola	ations	0		MCL Vio	lations	0		2	X		Х			Х		Х						
							Fluc	oridation	Summ	iary (Las	t 12 montl	าร)											
TAP No	No. Samj		Minin (mg		Maxim (mg.		Avera	age		Violatior	ns (list mo	nths)	Not	es and Obse	rvations (Fluo	ridation)							
N/a	N/	a	N/	a	N/a	a	N/	a			N/a		Does	not add fl	uoride, and	d exem	pt						

·	Vi	ability / Financial Management	
Service Fee (Minimum Charge)	None - included in the rent	Other source(s) of income used to maintain the water system	Rental fees
Direct Charge (cost per 1,000 gallons)	N/a	Does the Utility have an ACTIVE program to ensure all customers pay bills?	N/a
Billing Frequency	N/a	Does the utility have a fund to cover major repairs?	Yes
ICC Regulated? (Y/N)	N/a	Name and phone no. of person responsible for system repairs.	Mr. Harris DeJong 1-847-370-0367 Beach Park Pump & Well, at 847-249- 0628, normally works on the well
Date of Last Rate Increase	N/a	Name and Phone No. of Person Responsible for Financial Management of the Water System	Mr. Harris DeJong 1-847-370-0367
		Major Water Supply Concerns expressed by Residents/ Customers.	Reportedly None
What wa	s the most recent major.	repair or Improvement Involving This Water System (Include Dates)	
1998 - new well pump.			
Planned, Anticipated or Needed Upg Improvements (Include dates or time known)		Water meters at residences	

						Servio	e Area	a / Pres	sure Zo	ne / I	Distribution S	System	<u>וווווווווווווווווווווווווווווווווווו</u>		
	٧	Vater So	ource(	s)			TP								······································
	L	ocation	or De	scripti	on		;	rvice A		No. of Service		Finis	shed Wa	ater Storage (	Show Capacities)
							P	opulati	on	Co	nnections	Gro	ound	Elevated	Hydropneumatic
												No	one	None	960 gallons
	Entire distribution system							52			29	-	**		*82 gallons
·····															*82 gallons
M		n Systei ssure	n		_ocatio	n	N		n Systen ssure	า	Locatio	n	Free Chlorine Residual (mg/l)		Location
	50	psi			w poin systerr			30	psi		High poin system		0	.4 mg/L	Distribution system
	Flush	ing Prog	gram		Prote	ire ection ided?	M	rent ap able?	Valve	Main	tenance Prog	Iram	No	otes and Othe	er Observations
None	Yearly	2 x year	More	Often	No	Yes	No	Yes	No Val	ves	No Program	ОК	1		
	×				x			x				X	The di 2,356 f than 4-	feet of main, a	iem consists of all of which is less meter. The area is ewers

						· · · ·	
		7	• • ~			Y WELL No.1	
	١						
						CHICAGO COMPANY, - DRILLERS	
S	AMPLE	SE	τ "	48	5, Sta	TE GEOLOGICAL SURVEY, URBANA,	
	· · ·					Studied April 1927, by LE Workma	
				· .			
	×.	(63	143			No Bamples	
				163	///		
NA		~			, <i>I</i> , /		
JR1	NIAGARA	162	137			Dolomite, light gray and buff, very finely crystalline.	
SILURIAN							
တ			20	300		Dolomite, buff, medium crystalline	
		200 20	32	340		Delomite, red, yellow, gray, and green; shale, red, som	
			16	376		No samples Shale, dolomitic, greenish gray	
		1 1 1	24	400		No samples Dolomite, light gray, finely cryptalline	
•• •	MAQUOKETA	222	-49	- 143		n. samples	
				. 414.		Shale, dolomitic, brownish gray, soft	
			26	500		No samples	
			47	597			
Z							
V I					11,17		
1017			198		7,7	Dalomite, light brown, finely crystalline	
>							
	GALENA- PLATTEVILL	E 315					
0				745			
a	میں کو معنی میں طور کی ہے۔ میں کو معنی میں طور کی دی ہے مطالب کے میں اور میں اور اور کی میں کو اور کی میں کو او اور اور اور کی کی میں کو اور کی کی میں کو اور کی کی کو اور کی کی کو اور کی کی کو اور کی کو اور کی کو اور کی کی					The second s	
0		N	<b>9</b> 5			Dolomite, buff, finely crystalline to dense	
			- 12	890	· · · · · · · · · · · · · · · · · · ·	Dandestand, dolemitic, buff, fine Delemite, Dandy, gray	
			12	888		Sandstone, deternition, buff, very fine Delomite, silty and sandy, gray	
				896	· · · · · · · · · · ·	Dolomite, very time condy, buff and gray	
		129	127			Sandstone, white and bull, give to medium	
	ST. TETER						
				1022		Shale, sandy, red and gray, dott	

**Revision 1** 

### APPENDIX B

#### BORING LOGS

- B.1 2006 STRATIGRAPHIC AND INSTRUMENTATION LOGS
- B.2 HISTORICAL GEOTECHNICAL LOGS

**Revision 1** 

### B.1 2006 STRATIGRAPHIC AND INSTRUMENTATION LOGS



Page 1 of 2

PROJECT NAME: ZION GENERATION STATION PROJECT NUMBER: 45136-30 CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: ZION, ILLINOIS

HOLE DESIGNATION: MW-ZN-01S DATE COMPLETED: May 1, 2006 DRILLING METHOD: Vacuum/HSA FIELD PERSONNEL: D. NICHOLLS

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft	Monitoring Well		<u> </u>	SAMF	
		AMSL		BER	SVAL	(%)	
	TOP OF RIS GROUND SURFA		ground protective casing	NUMBER	INTERVAL	REC (%)	'N' VALUE
	GRAVEL	591.33					
	SAND (FILL) - trace to some gravel, trace organics, fine to medium grained, brown,		Concrete				
-2	moist	동안 같 같					
- 4							
-6							
			2" Ø PVC Well Riser				
-8			Well Riser				
-							
-10		581.43	Bentonite Seal				
	SP-SAND, trace to some gravel, loose to compact, wet, fine to medium grained, brown		Cour	1		0	10
12	compact, wet, fine to medium grained, brown			.		Ŭ	10
12			◀ 4.25" Ø	2		55	10
			4.25 € Borehole			55	16
-14							
				3		80	15
-16							
-	SM-SAND, with trace to some silt, trace	574.43		4		80	19
-18	gravel, compact, fine grained, brown, wet						
				5		65	29
-20							
-22							
	- dense to very dense at 23.0ft BGS		2" Ø PVC Well Screen Sand	6		95	44
-24		567.43					
	SP-SAND, trace to some silt, compact to dense, fine grained, brown, wet		2" Ø PVC	7		95	62
-26			2" Ø PVC				
				8		90	21
-28	- getting coarser and grey for next 6" at 27.5ft						
20	BGS		Sand	9		90	44
20	ML-SILT, dense, fine grained, grey, wet	562.18		1		90	44
- 30						100	05
				10		100	25
- 32							
				11		75	28
-34							
				12		0	29
- 36				13	$\vdash$	70	50
						,,,	
- 38							
F	CL-CLAY, till (clay, trace to some silt, trace	552.43					
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE	DEFED TO	OUDDENIT ELEVIATION TADLE				



Page 2 of 2

PROJECT NAME: ZION GENERATION STATION PROJECT NUMBER: 45136-30

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: ZION, ILLINOIS

HOLE DESIGNATION: MW-ZN-01S DATE COMPLETED: May 1, 2006 DRILLING METHOD: Vacuum/HSA FIELD PERSONNEL: D. NICHOLLS

	DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	Monitoring Well			SAMF	PLE	
	ft BGS	STRATIGRAFHIC DESCRIPTION & REWARKS	ft AMSL		NUMBER	INTERVAL	REC (%)	'N' VALUE	
		gravel), dense, grey, gravel, very well embedded in finer matrix, dry, till END OF BOREHOLE @ 39.5ft BGS		WELL DETAILS Screened interval: 572.43 to 551.93ft AMSL 19.00 to 39.50ft BGS	Z	Z	<u> </u>	Z	
	- 			Length: 20.5ft Diameter: 2in Slot Size: 10					
	- 46			Material: PVC Sand Pack: 574.43 to 551.93ft AMSL 17.00 to 39.50ft BGS					
	- 48			Material: #5 Quartz Sand					
	- 50								
	- 56								
	- 60								
	-62								
	- 64								
	- 66								
06	- 68								
GDT 6/15/									
A_CORP.	- 74								
30.GPJ CF	- 								
)G 45136-:									
URDEN LC	-	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; RI	EFER TO (	CURRENT ELEVATION TABLE					
OVERB									



Page 1 of 2

PROJECT NAME: ZION GENERATION STATION PROJECT NUMBER: 45136-30 CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: ZION, ILLINOIS

HOLE DESIGNATION: MW-ZN-02S DATE COMPLETED: May 2, 2006 DRILLING METHOD: Vacuum/HSA FIELD PERSONNEL: D. NICHOLLS

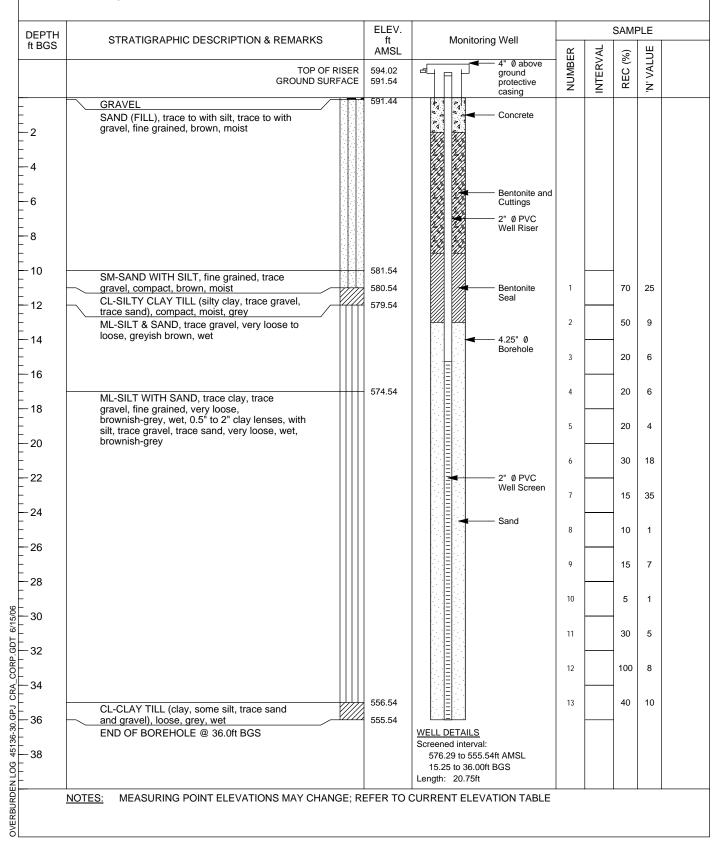
DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft	Monitoring Well			SAMF	PLE	
ft BGS	TOP OF RISER GROUND SURFACE	AMSL 593.78 591.21	4" Ø above ground	NUMBER	INTERVAL	REC (%)	N' VALUE	
	GROUND SURFACE GRAVEL & GRASS SAND with GRAVEL (FILL), presence of		protective casing	N	N	R	Ż	
-2	organics (trace), fine grained, brown, moist							
- 	。 。 2		Concrete Bentonite and Cuttings					
- 8	0 • C		2" Ø PVC Well Riser					
	SAND (FILL), trace to with silt, trace gravel,	581.21	Bentonite Seal					
	very loose to compact, fine grained, brown, moist			1		15	8	
 14	- trace organics, piece of wood, black (1cm x 1cm) at 13.5ft BGS		4.25" Ø Borehole	2		15	4	
	- getting wet at 14.0ft BGS			3		30		
				4		30	18	
20	CL-SILTY CLAY TILL (silty clay, trace sand,	571.21 570.96		5		30	19	
22	trace gravel), fine grained, brownish-grey, wet SM-SILT & SAND, trace clay, trace gravel, very loose, fine grained, brown, wet, clay till lenses observed within sandy material		2" Ø PVC Well Screen	6		30	5	
24 	between 0.5" to 4" in thickness		Sand	7		40	6	
26 				8		95	20	
28				9		50	9	
				10		30	4	
				11		50	17	
	SW-SAND, medium to coarse grained, trace	556.21		12		40	19	
	silt, compact, wet CL-CLAY TILL (clay, trace to with silt, trace gravel, trace sand), compact, grey, moist,	555.71 555.21		13		10	64	
	SILT & SAND, trace clay, trace gravel, very loose to loose, brown, wet, 1" to 3" thick		Bentonite	14		25	2	
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; R	EFER TO (	CURRENT ELEVATION TABLE					



Page 2 of 2

PROJECT NAME: ZION GENERATION STATION PROJECT NUMBER: 45136-30 CLIENT: EXELON GENERATION COMPANY LLC LOCATION: ZION, ILLINOIS HOLE DESIGNATION: MW-ZN-02S DATE COMPLETED: May 2, 2006 DRILLING METHOD: Vacuum/HSA FIELD PERSONNEL: D. NICHOLLS

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft	Monitoring Well		1	SAM	-	
IBGS		AMSL		NUMBER	INTERVAL	REC (%)	'N' VALUE	
42	of clay observed		Bentonite					
44				15		40	9	
46	END OF BOREHOLE @ 45.5ft BGS	545.71	WELL DETAILS Screened interval:	16		40	12	
48			576.21 to 556.21ft AMSL 15.00 to 35.00ft BGS Length: 20ft					
50			Diameter: 2in Slot Size: 10 Material: PVC					
52			Sand Pack: 577.91 to 556.21ft AMSL 13.30 to 35.00ft BGS					
54			Material: #5 Quartz Sand					
56								
-58 -60								
-62								
-64								
- 66								
-68								
·70								
72								
74								
76								
- 78								
I <u>NC</u>	DTES: MEASURING POINT ELEVATIONS MAY CHANGE; I	REFER TO	CURRENT ELEVATION TABLE	1	I	I	I	I




Page 1 of 2

PROJECT NAME: ZION GENERATION STATION PROJECT NUMBER: 45136-30 CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: ZION, ILLINOIS

HOLE DESIGNATION: MW-ZN-03S DATE COMPLETED: May 2, 2006 DRILLING METHOD: Vacuum/HSA FIELD PERSONNEL: D. NICHOLLS





Page 2 of 2

PROJECT NAME: ZION GENERATION STATION PROJECT NUMBER: 45136-30 CLIENT: EXELON GENERATION COMPANY LLC LOCATION: ZION, ILLINOIS HOLE DESIGNATION: MW-ZN-03S DATE COMPLETED: May 2, 2006 DRILLING METHOD: Vacuum/HSA FIELD PERSONNEL: D. NICHOLLS

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft	Monitoring Well			SAMF	PLE	
ft BGS		AMSL		BER	VAL	(%)	LUE	
				NUMBER	INTERVAL	REC (%)	'N' VALUE	
42			Diameter: 2in Slot Size: 10 Material: PVC Sand Pack:					
			578.54 to 555.54ft AMSL 13.00 to 36.00ft BGS Material: #5 Quartz Sand					
48								
50								
66								
- 68 -								
70								
72								
74 								
76								
78								
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; R	EFER TO (	URRENT ELEVATION TABLE					L



Page 1 of 2

PROJECT NAME: ZION GENERATION STATION PROJECT NUMBER: 45136-30 CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: ZION, ILLINOIS

HOLE DESIGNATION: MW-ZN-04S DATE COMPLETED: May 3, 2006 DRILLING METHOD: Vacuum/HSA FIELD PERSONNEL: D. NICHOLLS

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	Monitoring We			SAMF	
	TOP OF RISER GROUND SURFACE			Ø above bund btective sing	INTERVAL	REC (%)	'N' VALUE
	SAND & SILT (FILL), trace gravel, trace cobbles, fine grained, brown, dry		Co	ncrete			
	SM-SAND & SILT(FILL), trace clay, trace	583.01	Bei Cu 2" We	ntonite and ttings Ø PVC II Riser			
- 10	gravel, loose to compact, fine grained, brown, moist			1		40	1
-12	<ul> <li>- 3" thick layer of silty clay till (silty clay, trace sand &amp; gravel), compact grey, moist at 11.0ft BGS</li> <li>- getting wet at 12.0ft BGS</li> </ul>		Bei	ntonite 2 al 3		95 70	29 18
- 14	- thick layer of sandy organic material, very soft, black, wet (no odor presence of roots) at 13.8ft BGS			25" Ø rehole 4		80	35
				5		100	25
-20				6		90	23
-22				7		100	24
-24	<ul> <li>- 3" thick layer of silty clay till (silty clay, trace sand &amp; gravel), compact grey, moist at 23.0ft BGS</li> <li>- getting softer (very soft), saturated at 24.0ft</li> </ul>		Sa	nd		55	29
-26	BGS			9		90	41
- 28	- silt with sand, trace clay, compact, brown, wet at 29.0ft BGS			Ø PVC ell Screen 10		65	10
- 32	- 0.5" x 0.4" diagonal layer of dark grey to black organic material, very loose, fine grained, wet at 30.0ft BGS			11		80	15
- 34	ML-SILT, trace to with sand, trace clay, loose, grey wet	557.51		12		70	31
-36 =	CL-CLAY TILL (clay with silt, trace sand & gravel), dense, grey, dry	555.21 555.01	WELL DETAILS	13		100	20
	END OF BOREHOLE @ 36.0ft BGS		Screened interval: 576.01 to 556.01ft AI 15.00 to 35.00ft BGS Length: 20ft				



Page 2 of 2

PROJECT NAME: ZION GENERATION STATION PROJECT NUMBER: 45136-30 CLIENT: EXELON GENERATION COMPANY LLC LOCATION: ZION, ILLINOIS HOLE DESIGNATION: MW-ZN-04S DATE COMPLETED: May 3, 2006 DRILLING METHOD: Vacuum/HSA FIELD PERSONNEL: D. NICHOLLS

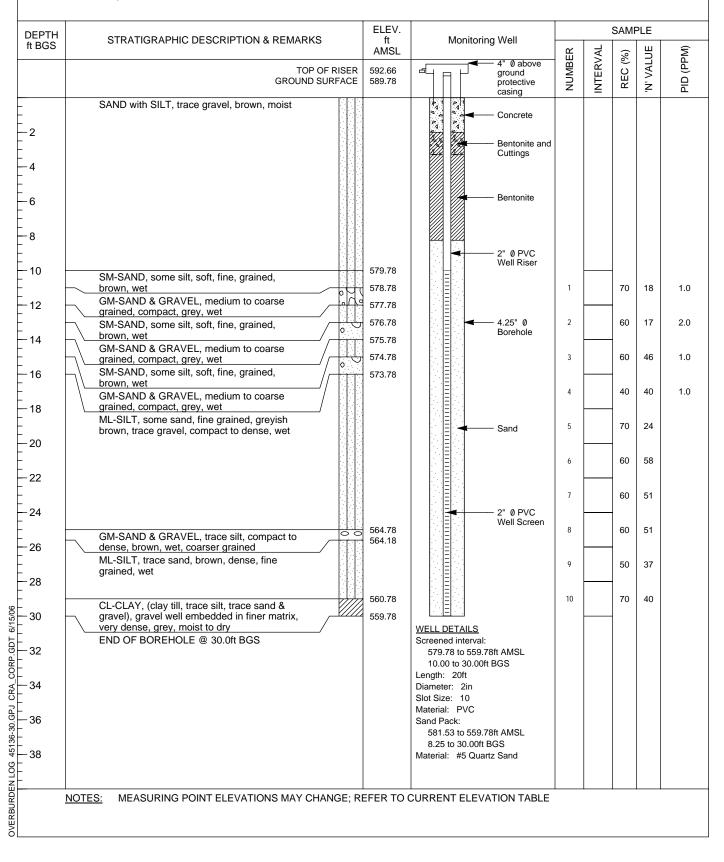
DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft	Monitoring Well			SAMF	SAMPLE		
ft BGS		AMSL		BER	:VAL	(%)	LUE		
				NUMBER	INTERVAL	REC (%)	'N' VALUE		
			Diameter: 2in						
- 42			Slot Size: 10 Material: PVC						
-			Sand Pack: 578.01 to 556.01ft AMSL						
44 			13.00 to 35.00ft BGS Material: #5 Quartz Sand						
- 46									
-									
48									
_ 50									
- -									
52									
-									
- 56									
- - 58									
-									
 62									
64									
-									
66									
-									
70 									
_ —72									
-									
74 									
_ 76									
-									
-									
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; R	EFER TO (	CURRENT ELEVATION TABLE		_	_	_		



Page 1 of 1

PROJECT NAME: ZION GENERATION STATION PROJECT NUMBER: 45136-30 CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: ZION, ILLINOIS


HOLE DESIGNATION: MW-ZN-05S DATE COMPLETED: May 4, 2006 DRILLING METHOD: Vacuum/HSA FIELD PERSONNEL: D. NICHOLLS

DEPTIN       STRATIGRAPHIC DESCRIPTION & REMARKS       ft       Monitoring Well         ft BGS       STRATIGRAPHIC DESCRIPTION & REMARKS       ft       AMSL       Monitoring Well         Constraint       TOP OF RISER       588.64       ft       ground       ground	INTERVAL REC (%)	'N' VALUE	(MAG) OIG
- SAND & SILT (FILL), trace gravel, fine grained brown dry	<u> </u>	Ż	<u> </u>
581.72 581.72 Country wet			
	40	1	3.0
GP-GRAVEL & SAND, trace silt, loose to	70	29	4.5
577.72 577.72 2" Ø PVC 3 SM-SAND, trace silt, compact, fine to medium grained, brown, wet, trace gravel	70	18	11
- finer, silt & sand, (4" thick layer, black) at 9.0ft BGS - 12 - finer, silt & sand, (4" thick layer, black) at	60	35	10.2
<ul> <li>11.5ft BGS</li> <li>- finer, silt &amp; sand, (4" thick layer, black) at</li> <li>13.0ft BGS</li> </ul>	65	25	9.8
- silt, grey at 15.0ft BGS 6	60		11
- 18 - 566.72 566.72 Sand 8	80		9.8
SP-SAND, trace silt, medium to coarse     500.72     Sand     o       20     grained, brown to grey, wet     565.72     565.72       SM-SAND, trace silt, compact, fine to medium grained, brown, wet, trace gravel     9	75		10.1
- 22 - finer, silt & sand at 21.5ft BGS	70	10	9.7
CL-CLAY, trace silt, trace sand, trace of brown to black organics, compact, wet SP-SAND, medium to coarse grained, grey	4.5	5 15	18
26     SP-SAND, medium to coarse grained, grey     559.72       compact, wet     558.72       SM-SAND, trace silt, compact, grey, fine     558.72       grained, wet     12	80	41	10.1
ML-SILT, trace sand, compact, grey, fine grained, moist	50	20	8.4
Length: 20ft - 34 Slot Size: 10			
NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE			



Page 1 of 1

PROJECT NAME: ZION GENERATION STATION PROJECT NUMBER: 45136-30 CLIENT: EXELON GENERATION COMPANY LLC LOCATION: ZION, ILLINOIS HOLE DESIGNATION: MW-ZN-06S DATE COMPLETED: May 5, 2006 DRILLING METHOD: Vacuum/HSA FIELD PERSONNEL: D. NICHOLLS





Page 1 of 1

PROJECT NAME: ZION GENERATION STATION PROJECT NUMBER: 45136-30 CLIENT: EXELON GENERATION COMPANY LLC LOCATION: ZION, ILLINOIS HOLE DESIGNATION: MW-ZN-07S DATE COMPLETED: May 8, 2006 DRILLING METHOD: Vacuum/HSA FIELD PERSONNEL: D. NICHOLLS

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	Monitoring Well	~		SAM		
	TOP OF RISER GROUND SURFACE	589.82 587.08	4" Ø above ground protective casing	NUMBER	INTERVAL	REC (%)	'N' VALUE	
2	SAND with SILT, trace gravel, fine grained, brown, moist		Concrete					
4	SM-SAND WITH SILT, trace gravel, very loose, fine grained, brown, wet	583.08	Cuttings	1		40	0	
6	GM-GRAVELLY SAND, trace silt, loose to	581.08	Bentonite Seal	2		50	16	
8	SM-SAND, trace silt, trace to with gravel, fine to coarse grained, compact, brown, wet	579.08	2" Ø PVC Well Riser	3		40	25	
10 12	- less gravel at 10.0ft BGS GM-GRAVELLY SAND, trace silt, loose to	575.58		4		50	50	
14	compact, medium grained, brown, wet		<ul> <li>✓ 4.25" Ø Borehole</li> </ul>	5		60	29	
16	ML-SILT & SAND, loose to compact, fine	571.28	4.25" Ø Borehole Sand 2" Ø PVC Well Screen	6		50	56	
18	SW-SAND, coarse grained, compact to dense, brown, wet ML-SILT & SAND, trace gravel, dense, brown,	570.08 569.58	Sand	8		50 70	43 35	
20	fine grained, wet			9		50	19	
22	ML-SILT, trace sand, compact, grey, wet, fine grained SM-SAND & SILT, compact, brown, wet, fine	565.28 565.08 563.58		10		50	82	
24	grained ML-SILT, trace sand, very dense, grey, wet SM-SAND & SILT, compact, brown, wet, fine	563.08 562.08 561.08	2" Ø PVC	11		50	31	
28	Grained ML-SILT, trace sand, grey, wet, fine grained SM-SAND & SILT, compact, brown, wet	560.08		12		80	28	
30	ML-SILT, trace sand, grey, wet, fine grained	557.08		13		0	50	
32			Screened interval: 577.08 to 557.08ft AMSL 10.00 to 30.00ft BGS					
34			Length: 20ft Diameter: 2in Slot Size: 10					
36			Material: PVC Sand Pack: 579.28 to 557.08ft AMSL 7.80 to 30.00ft BGS					
- 38			Material: #5 Quartz Sand					



Page 1 of 1

PROJECT NAME: ZION GENERATION STATION PROJECT NUMBER: 45136-30 CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: ZION, ILLINOIS

HOLE DESIGNATION: MW-ZN-08S DATE COMPLETED: May 5, 2006 DRILLING METHOD: Vacuum/HSA FIELD PERSONNEL: D. NICHOLLS

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	Monitoring Well	~		SAMF		
	TOP OF RISER GROUND SURFACE	588.73	4" Ø above ground protective casing	NUMBER	INTERVAL	REC (%)	'N' VALUE	(MAA) OIA
	SAND, trace silt, trace gravel, trace organics, fine grained, moist				_		-	
2			Bentonite and					
- 4			Concrete Bentonite and Cuttings Bentonite Seal					
			Bentonite					
6	SM-SAND, trace silt, trace gravel, compact, fine to coarse grained, brown, wet	579.85 578.85	Seal	1		60	25	10.
8	GP-GRAVEL, trace sand, medium to coarse grained, compact, brown, wet	577.85	2" Ø PVC Well Riser					I
10	ML-SILT, trace sand, loose to compact, fine grained, brown, wet	576.85		2		70	13	13.
12	SM-SAND, trace gravel, medium to coarse grained, loose to compact, brown, wet ML-SILT, trace fine sand, brown, compact to	574.35		3		85	28	11.
12	dense, wet SM-SAND & SILT, fine to medium grained,	573.00	4.25" Ø Borehole	4		60	11	11.
14	very loose to compact, brown, wet		4.25" Ø Borehole Sand	5		80	33	9.1
16	ML-SILT, trace sand, compact to dense, fine	570.35 569.85		-				
18	SM-SAND, trace, silt, fine to coarse grained, very loose to loose, brown, wet	568.35		6		70	19	9.7
20	ML-SILT, trace sand, compact, brownish-grey, wet SM-SAND, trace silt, medium to coarse	566.85	Sand	7		60	13	10.
20	grained, losse, brown, wet ML-SILT, trace sand, compact to dense, grey,			8		70	54	9.3
22	wet - SM, 6" thick layer of sand, medium to coarse			9		60	24	9.6
24	grained, compact brown, wet at 21.0ft BGS - SM, 6" thick layer of sand, medium to coarse grained, compact brown, wet at 23.0ft BGS		2" Ø PVC Well Screen	-				l
26	- CL, 2" thick layer of clay, trace silt, grey, wet, compact at 25.5ft BGS		Well Screen	10		60	11	10.
-28	- SM, 6" thick layer of sand, medium to coarse grained, compact brown, wet at 25.9ft BGS	557.85		11		80	23	10.
20	- SM, 6" thick layer of sand, medium to coarse grained, compact brown, wet at 27.6ft BGS ML-SAND & SILT, compact to very dense,			12			57	
30	fine to coarse grained, brown, wet END OF BOREHOLE @ 30.0ft BGS	555.85	WELL DETAILS					
-32			Screened interval: 575.85 to 555.85ft AMSL 10.00 to 30.00ft BGS					
34			Length: 20ft Diameter: 2in					
- 36			Slot Size: 10 Material: PVC Sand Pack:					
			578.15 to 555.85ft AMSL 7.70 to 30.00ft BGS					
- 38			Material: #5 Quartz Sand					
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; F	EFER TO	CURRENT ELEVATION TABLE					
-		-						



Page 1 of 1

PROJECT NAME: ZION GENERATION STATION PROJECT NUMBER: 45136-30 CLIENT: EXELON GENERATION COMPANY LLC LOCATION: ZION, ILLINOIS HOLE DESIGNATION: MW-ZN-09S DATE COMPLETED: May 3, 2006 DRILLING METHOD: Vacuum/HSA FIELD PERSONNEL: D. NICHOLLS

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	Monitoring Well		i	SAMI	PLE	
ft BGS	TOP OF RISER	AMSL 593.84	4" Ø above ground	NUMBER	INTERVAL	REC (%)	N' VALUE	(MPA) DIA
	SAND WITH SILT (FILL), trace gravel, trace cobbles, fine grained, moist	591.18 581.18 573.68		BWDN 1 2 3 4 5		20 75 20 5 90 50	25 10 1 3	<ul> <li>d) (14)</li> <li>5.2</li> <li>6.0</li> <li>6.0</li> <li>4.0</li> <li>4.0</li> </ul>
20 - 22 24 24 24 26	END OF BOREHOLE @ 20.0ft BGS	571.18	WELL DETAILS Screened interval: 582.18 to 572.18ft AMSL 9.00 to 19.00ft BGS Length: 10ft Diameter: 2in Slot Size: 10 Material: PVC Sand Pack: 584.43 to 572.18ft AMSL					
- 28			6.75 to 19.00ft BGS Material: #5 Quartz Sand					
34 34								
<u>1</u> 1	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; R	EFER TO	L CURRENT ELEVATION TABLE		<u> </u>			



Page 1 of 2

PROJECT NAME: ZION GENERATION STATION PROJECT NUMBER: 45136-30 CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: ZION, ILLINOIS

HOLE DESIGNATION: MW-ZN-10 DATE COMPLETED: July 13, 2006 DRILLING METHOD: Vacuum/HSA FIELD PERSONNEL: D. NICHOLLS

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	Monitoring Well			SAM	PLE	
ft BGS		AMSL		ER	VAL	(%	-UE	(Mq
	TOP OF RISEF GROUND SURFACE			NUMBER	INTERVAL	REC (%)	'N' VALUE	(MPP) dia
_	Vac cleared to 11.0ft BGS							
2	Sand, fine grained, trace to some silt, some gravel, dry to moist, brown		Concrete					
4			Soil Cuttings					
6			and Bentonite					
8			4" Ø Steel Well Casing					
10		580.0	Bentonite					
	Sand, some silt and gravel, fine grained, loose, dark brown, wet	579.0						0
_ 14	Silty and fine sand, trace gravel, trace clay, loose to compact, lighter brown, moist							0
-	- saturated at 15.0ft BGS		Sand			-		
16 	- trace organics, black, fine grained at 16.5ft BGS							0
- 18 -	- 4" thick layer of silty clay, soft, trace organics, trace silt, trace of gravel embedded within finer matrix at 18.0ft BGS					-		0
20			2" Ø PVC Well Screen					0
22		568.0						0
24	Sand, trace silt, fine to medium grained, loose, grayish brown, wet							0
26	Silt and fine sand, loose, fine grained, brownish gray, wet	566.0						0
	Sand, trace gravel, trace silt, loose, brown, wet	564.5						0
28								0
90/9% 	- compact at 30.0ft BGS							0
		558.5						0
₩ 00 4 	Silt, trace sand, compact, fine grained, wet, brownish gray	557.0						0
⊴ — 34 	END OF BOREHOLE @ 34.0ft BGS	557.0						0
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; F	REFER TO (	CURRENT ELEVATION TABLE					



Page 2 of 2

PROJECT NAME: ZION GENERATION STATION PROJECT NUMBER: 45136-30 CLIENT: EXELON GENERATION COMPANY LLC

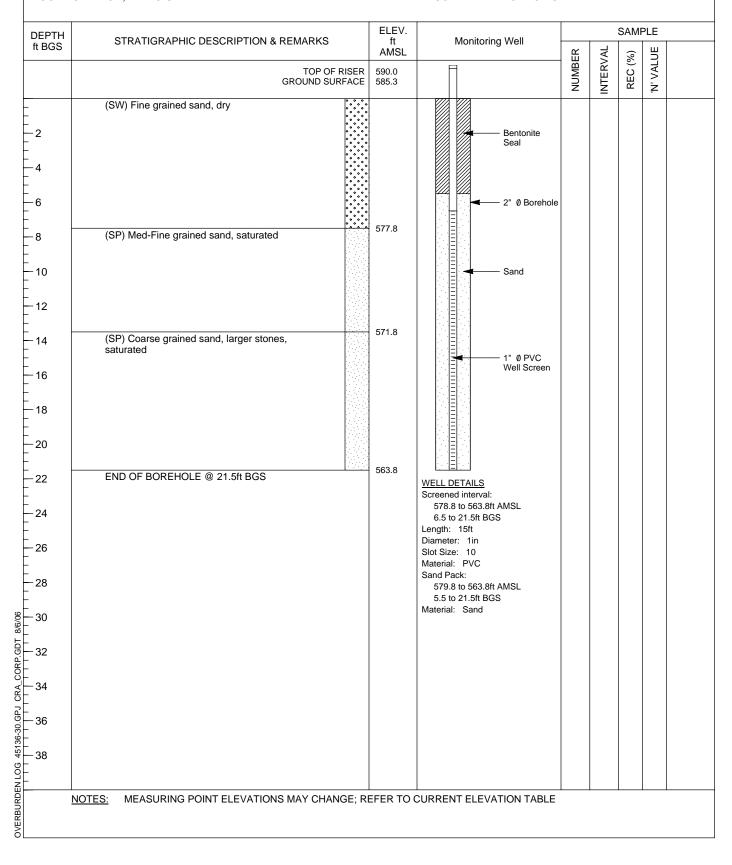
LOCATION: ZION, ILLINOIS

HOLE DESIGNATION: MW-ZN-10 DATE COMPLETED: July 13, 2006 DRILLING METHOD: Vacuum/HSA FIELD PERSONNEL: D. NICHOLLS

42 44 46		AMSL	WELL DETAILS	NUMBER	INTERVAL	REC (%)	'N' VALUE	(MAA) OIA
44			WELL DETAILS					
			Screened interval: 577.0 to 557.0ft AMSL 14.0 to 34.0ft BGS Length: 20ft					
46			Diameter: 2in Slot Size: 10 Material: PVC					
			Sand Pack: 579.0 to 557.0ft AMSL 12.0 to 34.0ft BGS					
48			Material: Silica Sand #5					
50								
52								
54								
56 58								
60								
62								
64								
66								
68								
70								
72								
74								
76								
78								
NOTES	E MEASURING POINT ELEVATIONS MAY CHANGE; F	REFER TO (	URRENT ELEVATION TABLE	 :				



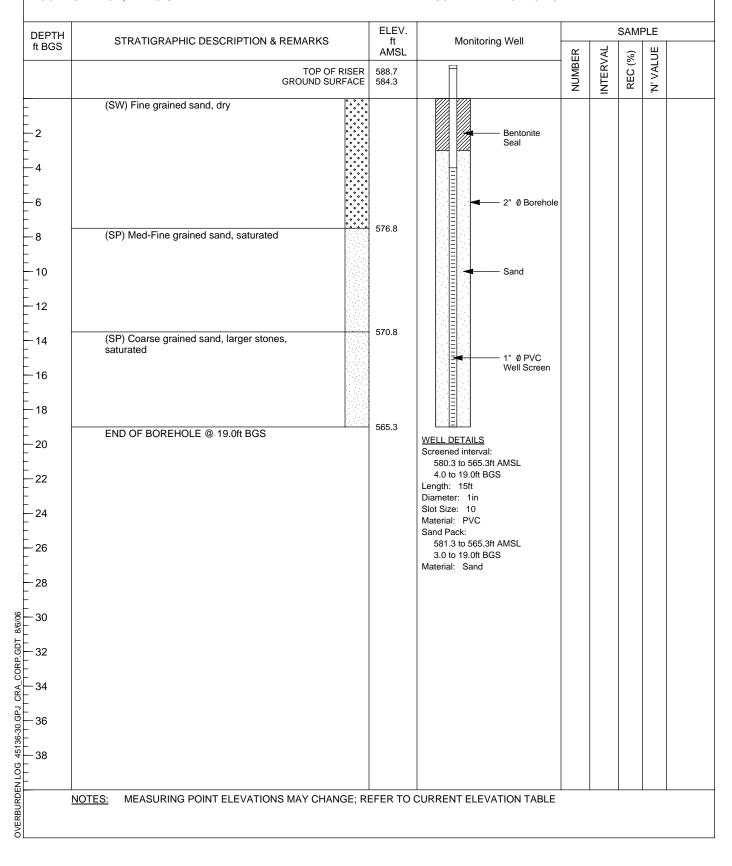
Page 1 of 1


PROJECT NAME: ZION GENERATION STATION PROJECT NUMBER: 45136-30 CLIENT: EXELON GENERATION COMPANY LLC LOCATION: ZION, ILLINOIS HOLE DESIGNATION: MW-ZN-11 DATE COMPLETED: July 14, 2006 DRILLING METHOD: Vacuum/HSA FIELD PERSONNEL: D. NICHOLLS

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	Monitoring Well	ĸ		SAMI		Ω
	TOP OF RISE GROUND SURFAC			NUMBER	INTERVAL	REC (%)	'N' VALUE	(MAA) QIA
-2 -4 -6 -7 -10 -12 -14 -16 -7 -18 -7 -20 -7 -22 -7 -24 -7 -26 -7 -28	GROUND SURFAC         Vac cleared to 10.0ft BGS         Sand, some gravel, trace of silt, fine grained, brown, moist         - wet at 9.0ft BGS         Sand, trace silt, trace gravel, fine to medium grained, compact, brown, wet         - 7" thick layer of gravel with coarse sand, dense, wet, brown at 16.0ft BGS         - 8" thick layer of gravel with coarse sand, dense, wet, brown at 17.0ft BGS         - 6" thick layer of silt, trace sand, dense, fine grained, grayish-brown, wet at 19.5ft BGS         - 6" thick layer of gravel with coarse sand, dense, fine grained, grayish-brown, wet at 19.5ft BGS         - 6" thick layer of silt, trace sand, dense, fine grained, grayish-brown, wet at 23.0ft BGS         - 6" thick layer of coarse sand, dense, wet, brown at 23.0ft BGS         - 6" thick layer of silt, trace sand, dense, fine grained, grayish-brown, wet at 23.5ft BGS         Silt, trace sand, compact, fine grained, grayish-brown, wet		Soil Cuttings and Bentonite 4" 0 Steel Well Casing Bentonite Sand 2" 0 PVC Well Screen			REC (	N, N4	Ha) (IIA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- 30 - 32 - 34 - 36 - 38	Sand, trace silt, trace gravel, fine to medium grained, compact, brown, wet Silt, trace sand, compact, fine grained, grayish-brown, wet END OF BOREHOLE @ 30.0ft BGS	556.5	WELL DETAILS Screened interval: 576.5 to 556.5ft AMSL 10.0 to 30.0ft BGS Length: 20ft Diameter: 2in Slot Size: 10 Material: PVC Sand Pack: 578.5 to 556.5ft AMSL 8.0 to 30.0ft BGS Material: Silica Sand #5			-		0
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE;	REFER TO	CURRENT ELEVATION TABLE					



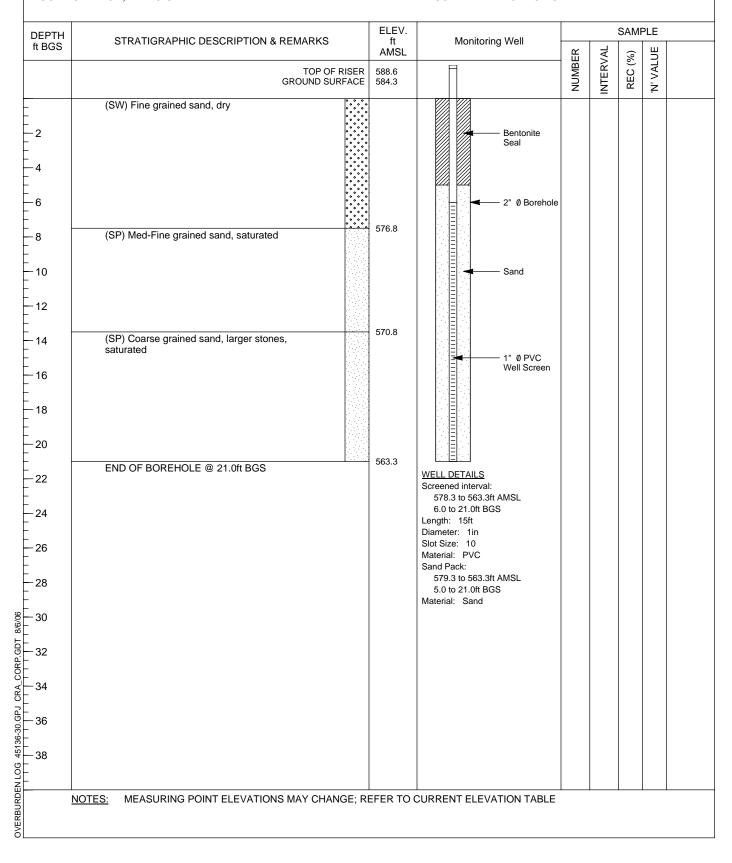
Page 1 of 1


PROJECT NAME: ZION GENERATION STATION PROJECT NUMBER: 45136-30 CLIENT: EXELON GENERATION COMPANY LLC LOCATION: ZION, ILLINOIS HOLE DESIGNATION: TW-ZN-100 DATE COMPLETED: July 7, 2006 DRILLING METHOD: Geoprobe FIELD PERSONNEL: M. BORKOWSKI





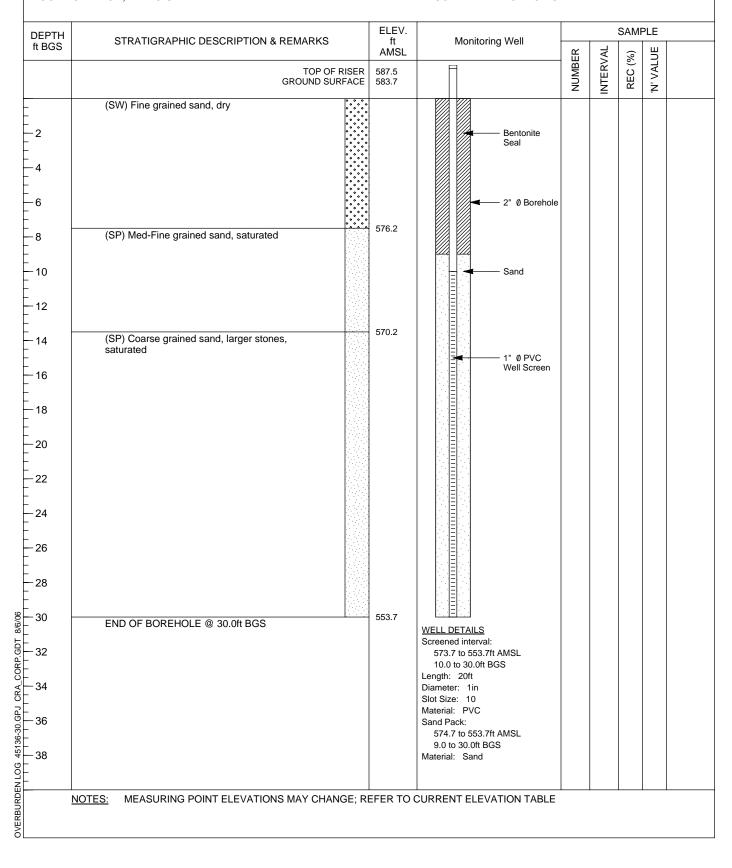
Page 1 of 1


PROJECT NAME: ZION GENERATION STATION PROJECT NUMBER: 45136-30 CLIENT: EXELON GENERATION COMPANY LLC LOCATION: ZION, ILLINOIS HOLE DESIGNATION: TW-ZN-101 DATE COMPLETED: July 7, 2006 DRILLING METHOD: Geoprobe FIELD PERSONNEL: M. BORKOWSKI



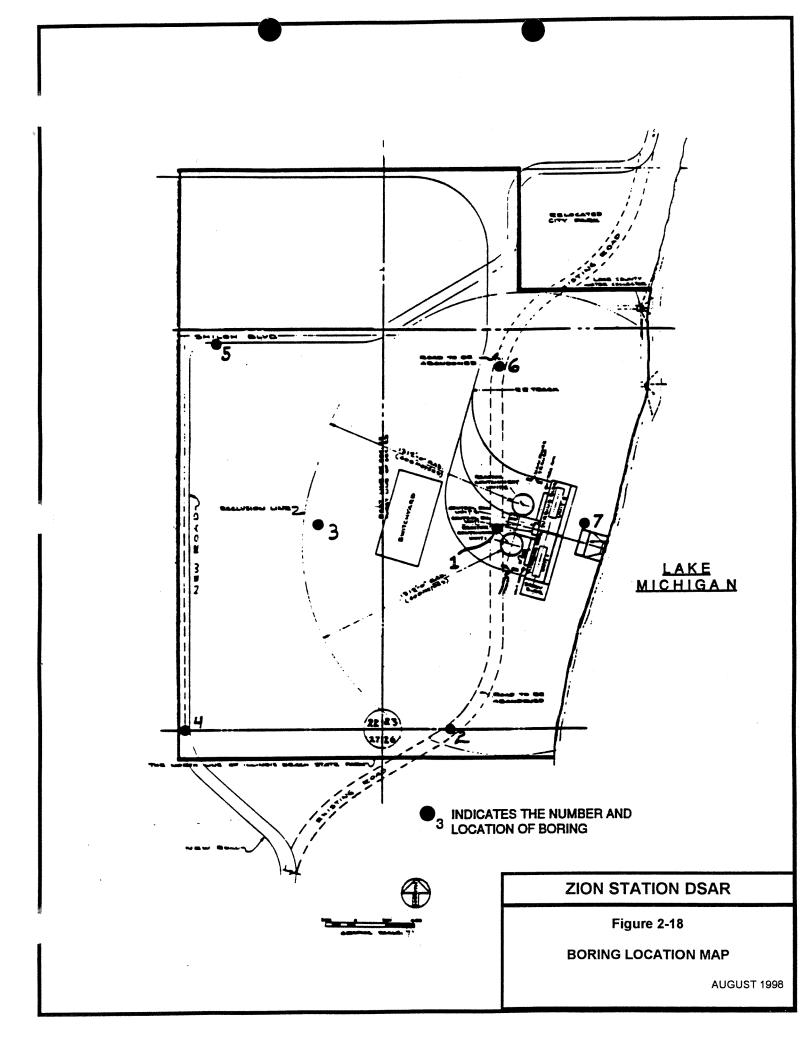


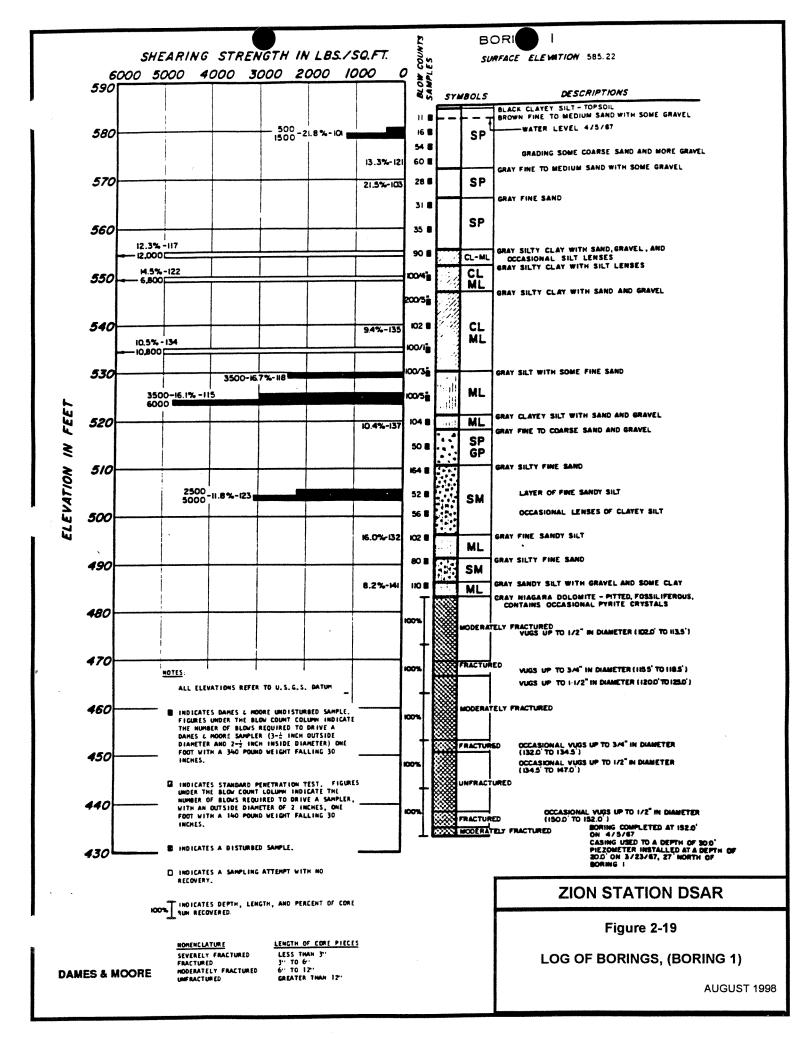
Page 1 of 1

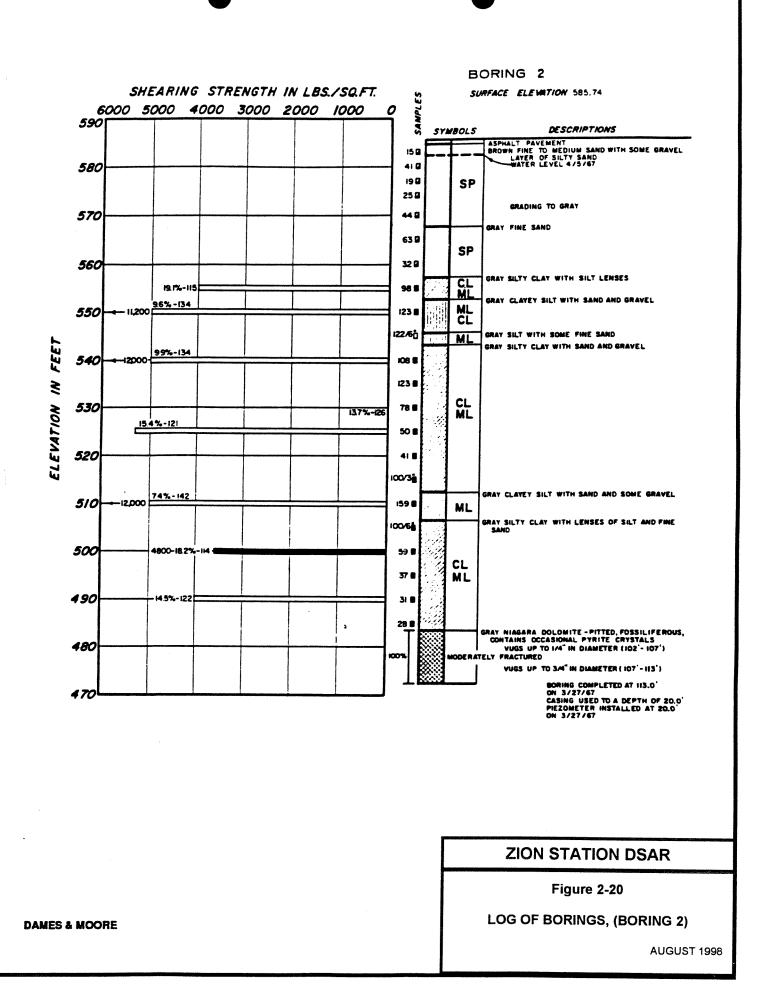

PROJECT NAME: ZION GENERATION STATION PROJECT NUMBER: 45136-30 CLIENT: EXELON GENERATION COMPANY LLC LOCATION: ZION, ILLINOIS HOLE DESIGNATION: TW-ZN-102 DATE COMPLETED: July 7, 2006 DRILLING METHOD: Geoprobe FIELD PERSONNEL: M. BORKOWSKI






Page 1 of 1


PROJECT NAME: ZION GENERATION STATION PROJECT NUMBER: 45136-30 CLIENT: EXELON GENERATION COMPANY LLC LOCATION: ZION, ILLINOIS HOLE DESIGNATION: TW-ZN-103 DATE COMPLETED: July 7, 2006 DRILLING METHOD: Geoprobe FIELD PERSONNEL: M. BORKOWSKI




**Revision** 0

### B.2 HISTORICAL GEOTECHNICAL LOGS







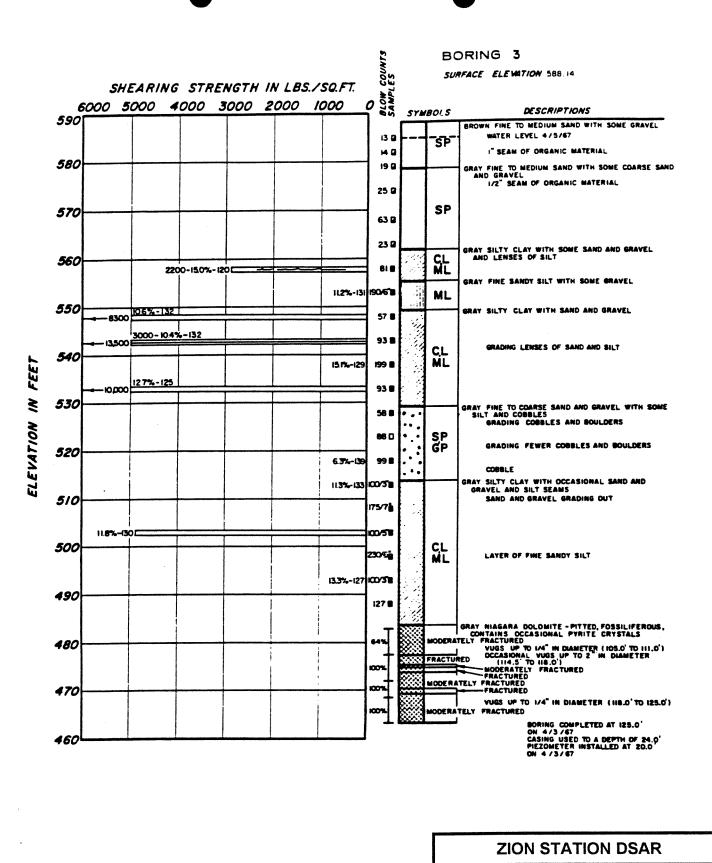
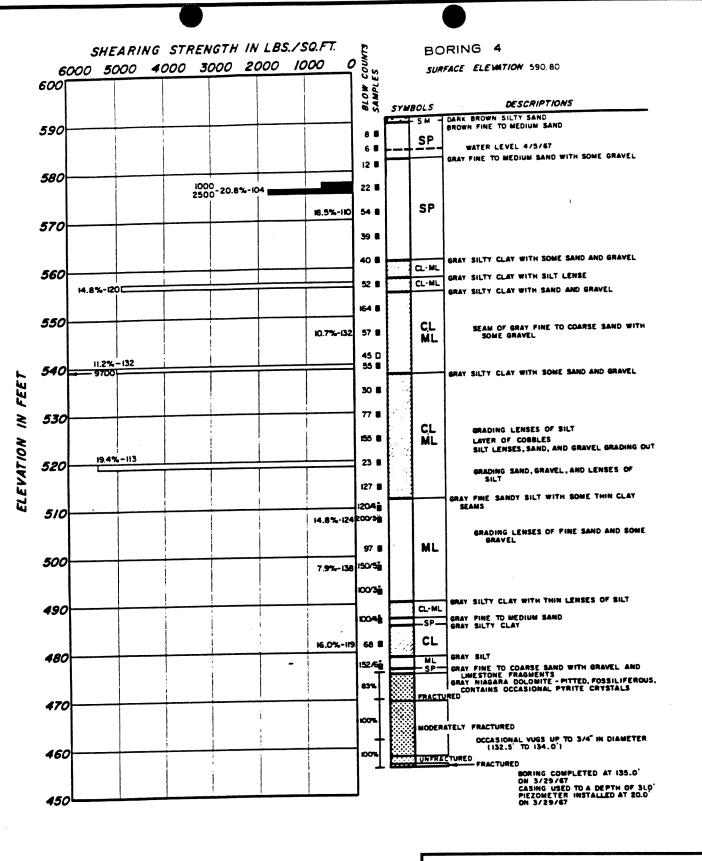
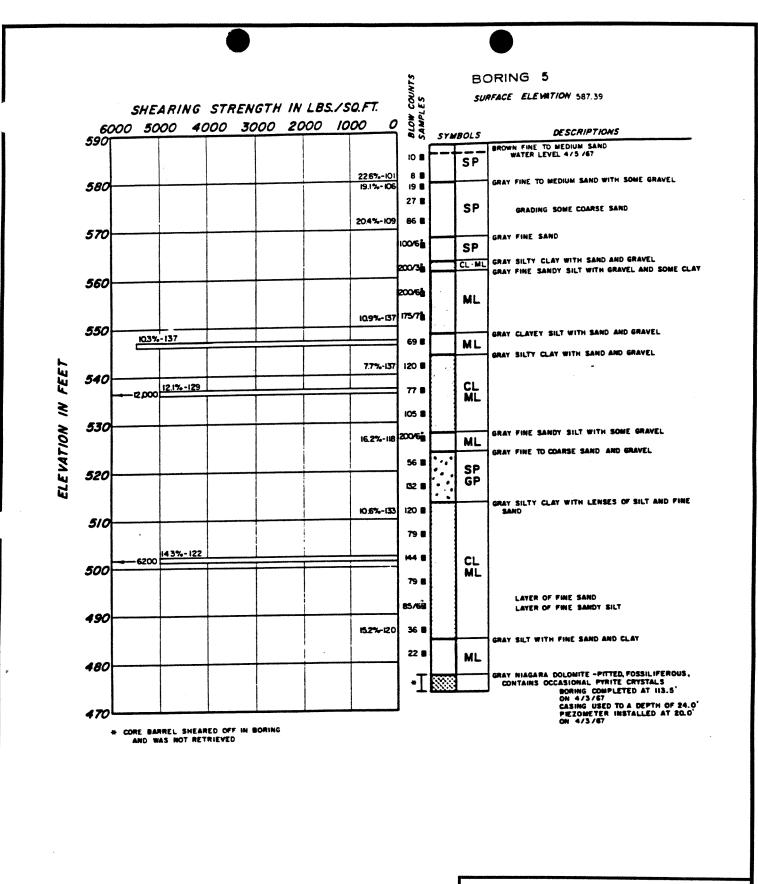




Figure 2-21

LOG OF BORINGS, (BORING 3)

DAMES & MOORE

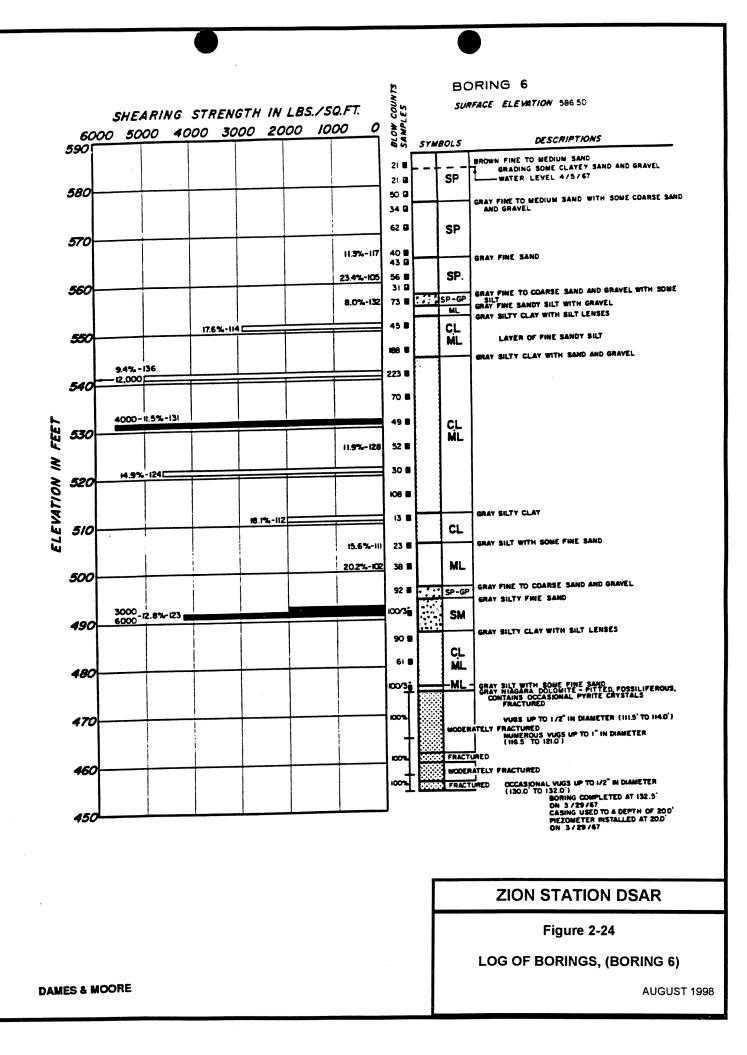



#### ZION STATION DSAR

Figure 2-22

LOG OF BORINGS, (BORING 4)

DAMES & MOORE



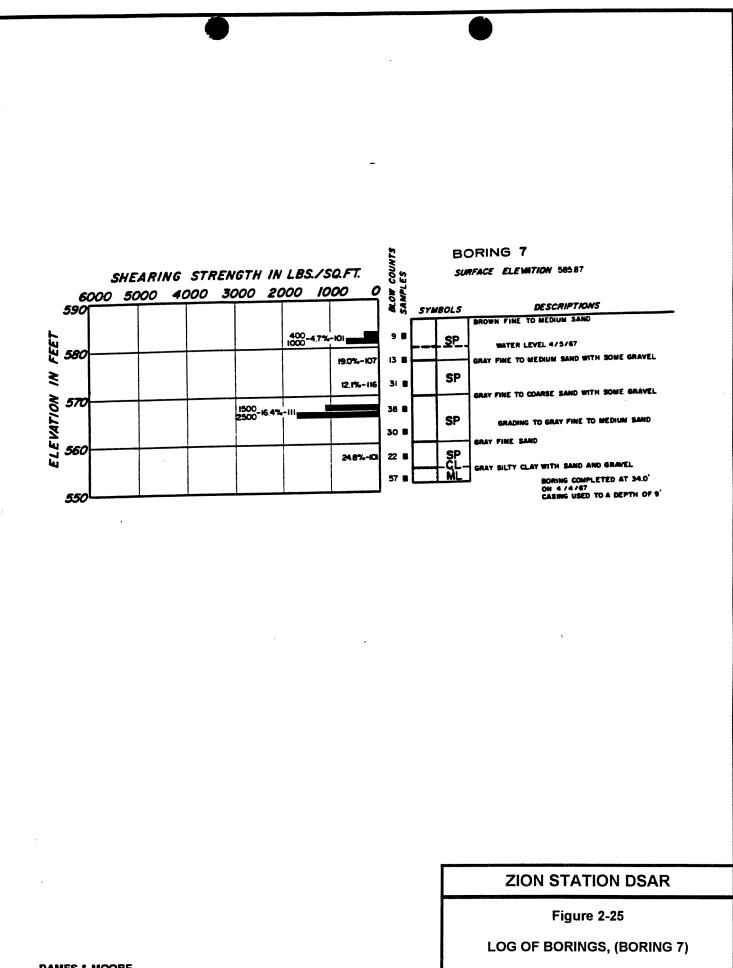


ZION STATION DSAR

Figure 2-23

LOG OF BORINGS, (BORING 5)

**DAMES & MOORE** 





DAMES & MOORE

**Revision** 0

# APPENDIX C

# QUALITY ASSURANCE PROGRAM - TELEDYNE BROWN ENGINEERING, INC.

T	TELEDYNE BROWN ENGINEERING, INC.	
	A Teledyne Technologies Company	

Rev. 8 Effective October 26, 2005 Document K-QAM-1

vita dana	al e share an pa		
Qualit	ty Assurance M	anual	
	For	e set its	
₹.11		te en	
-	ne Brown Engir	•	
	ronmental Serv		
	2508 Quality Lane		
e Cos Knoxvi	ille, Tennessee 3793 865-690-6819		
Generated by:	Sume Pe	games)	
-	Lynne Perry, QA M	Mamager	
Approved by:	Keith C	etemoreuc	
	Keith Jeter, Opera	tions Manager	
	endore i t		

Copy No.: <u>Original</u> Issued To: <u>Semme Peru</u>

Date:

l

# TABLE OF CONTENTS

<u>Section</u>	Title	<u>Page</u>
1.0	KNOXVILLE QAM SECTION INTRODUCTION	7
2.0	QUALITY SYSTEM	10
2.1	Policy	10
2.2	Quality System Structure	10
2.3	Quality System Objectives	10
2.4	Personnel Orientation, Training, and Qualification	11
3.0	ORGANIZATION, AUTHORITY, AND RESPONSIBILITY	12
4.0	PERSONNEL ORIENTATION, DATA INTEGRITY, TRAINING, AND QUALIFICATION	13
4.1	Orientation	13
4.2	Data Integrity	13
4.3	Training	13
4.4	Qualification	13
4.5	Records	13
5.0	CUSTOMER INTERFACES	14
5.1	Interface Personnel	14
5.2	Bid Requests and Tenders	14
5.3	Contracts	14
5.4	TBE's Expectation of Customers	14
5.5	Customer Satisfaction	15
	5.5.1 Customer Complaints	15
	5.5.2 Customer Confidentiality	15
6.0	DOCUMENTATION GENERATION AND CONTROL	16
6.1	General	16
6.2	New Documentation	16
6.3	Documentation Changes	16

# **TABLE OF CONTENTS - Continued**

6.4	Docum	nentation Lists and Distributions	16
6.5	Other	Documentation	16
6.6	Docum	nentation Reviews	16
7.0	DESIG	IN OF LABORATORY CONTROLS	17
7.1	Genera	al	17
7.2	Facility	/	17
7.3	Techni	ical Processes and Methods	17
	7.3.1	Operational Flow	17
	7.3.2	Methods	18
	7.3.3	Data Reduction and Analysis	18
7.4	Verifica	ation of Technical Processes, Methods, and Software	18
	7.4.1	Operational Flow Verification	18
	7.4.2	Method Verifications	18
	7.4.3	Data Reduction and Analysis Verification	18
7.5	Desigr	n of Quality Controls	18
	7.5.1	General	19
	7.5.2	Demonstration of Capability (D of C)	19
	7.5.3	Process Control Checks	19
7.6	Counti	ng Instrument Controls	20
8.0	PURC	HASING AND SUBCONTRACT CONTROLS	21
8.1	Genera	al	21
8.2	Source	e Selection	21
8.3	Procur	ement of Supplies and Support Services	21
	8.3.1	Catalog Supplies	21
	8.3.2	Support Services	21
	8.3.3	Equipment and Software	22
8.4	Subco	ntracting of Analytical Services	22
8.5	Accept	tance of Items or Services	22

# **TABLE OF CONTENTS - Continued**

9.0	TEST SAMPLE IDENTIFICATION AND CONTROL	23
9.1	Sample Identification	23
9.2	LIMS	23
9.3	Sample Control	23
10.0	SPECIAL PROCESSES, INSPECTION, AND TEST	24
10.1	Special Processes	24
10.2	Inspections and Tests	24
	10.2.1 Intra Laboratory Checks (QC Checks)	24
	10.2.2 Inter Laboratory Checks	24
	10.2.3 Data Reviews	24
10.3	Control of Sampling of Samples	24
10.4	Reference Standards / Material	24
	10.4.1 Weights and Temperatures	25
	10.4.2 Radioactive Materials	25
11.0	EQUIPMENT MAINTENANCE AND CALIBRATION	26
11.1	General	26
11.2	Support Equipment	26
11.3	Instruments	26
11.4	Nonconformances and Corrective Actions	26
11.5	Records	27
12.0	NONCONFORMANCE CONTROLS	28
12.1	General	28
12.2	Responsibility and Authority	28
12.3	10CFR21 Reporting	28

# **TABLE OF CONTENTS - Continued**

13.0	CORRECTIVE AND PREVENTIVE ACTIONS	29
13.1	General	29
13.2	Corrective Actions	29
13.3	Preventive Actions	29
14.0	RESULTS ANALYSIS AND REPORTING	30
14.1	General	30
14.2	Results Review	30
14.3	Reports	30
15.0	RECORDS	31
15.1	General	31
15.2	Type of Records	31
15.3	Storage and Retention	31
15.4	Destruction or Disposal	31
16.0	ASSESSMENTS	32
16.1	General	32
16.2	Audits	32
16.3	Management Reviews	32

# **REVISION HISTORY**

Revision 7	Complete re-write	January 1, 2005	Bill Meyer
Revision 8	Updated organization chart, minor change to 1.0, 4.4, 7.5.3.2, 10.2.3, and 12.3		

#### Knoxville QAM Section Introduction

1.0

This Quality Assurance Manual (QAM) and related Procedures describes the Knoxville Environmental Services Laboratory's QA system. This system is designed to meet multiple quality standards imposed by Customers and regulatory agencies including:

NRC's 10 CFR 50 Appendix B NRC's Regulatory Guide 4.15 DOE's Order 414.1 DOE's QSAS ANSI N 42.23 ANSI N 13.30 NELAC Standard, Chapter 5

The Environmental Services (ES) Laboratory does low level radioactivity analyses for Power Plants and other customers. It primarily analyzes environmental samples (natural products from around plants such as milk), in-plant samples (air filters, waters), bioassay samples from customer's employees, and waste disposal samples (liquids and solids).

Potable and non-potable water samples are tested using methods based on EPA standards as cited in State licenses (see Procedure 4010). The listing [current as of initial printing of this Manual – see current index for revision status and additions / deletions] of implementing Procedures (SOPs) covering Administration, Methods, Counting Instruments, Technical, Miscellaneous, and LIMS is shown in Table 1-1. Reference to these Procedures by number is made throughout this QAM.

Number	Title
Part 1	Administrative Procedures
1001	Validation and Verification of Computer Programs for Radiochemistry Data Reduction
1002	Organization and Responsibility
1003	Control, Retention, and Disposal of Quality Assurance Records
1004	Definitions
1005	Data Integrity
1006	Job Descriptions
1007	Training and Certifications
1008	Procedure and Document Control
1009	Calibration System
1010	Nonconformance Controls
1011	10CFR21 Reporting
1012	Corrective Action and Preventive Action

#### Table 1-1

Number	Title
1013	Internal Audits and Management Reviews
1014	RFP, Contract Review, and Order Entry (formerly 4001)
1015	Procurement Controls
Part 2	Method Procedures
2001	Alpha Isotopic and Plutonium-241
2002	Carbon-14 Activity in Various Matrices
2003	Carbon-14 and Tritium in Soils, Solids, and Biological Samples; Harvey Oxidizer Method
2004	Cerium-141 and Cerium-144 by Radiochemical Separation
2005	Cesium-137 by Radiochemical Separation
2006	Iron-55 Activity in Various Matrices
2007	Gamma Emitting Radioisotope Analysis
2008	Gross Alpha and/or Gross Beta Activity in Various Matrices
2009	Gross Beta Minus Potassium-40 Activity in Urine and Fecal Samples
2010	Tritium and Carbon-14 Analysis by Liquid Scintillation
2011	Tritium Analysis in Drinking Water by Liquid Scintillation
2012	Radioiodine in Various Matrices
2013	Radionickel Activity in Various Matrices
2014	Phosphorus-32 Activity in Various Matrices
2015	Lead-210 Activity in Various Matrices
2016	Radium-226 Analysis in Various Matrices
2017	Total Radium in Water Samples
2018	Radiostrontium Analysis by Chemical Separation
2019	Radiostrontium Analysis by Ion Exchange
2020	Sulfur-35 Analysis
2021	Technetium-99 Analysis by Eichrom Resin Separation
2022	Total Uranium Analysis by KPA
2023	Compositing of Samples
2024	Dry Ashing of Environmental Samples
2025	Preparation and Standardization of Carrier Solutions
2026	Radioactive Reference Standard Solutions and Records
2027	Glassware Washing and Storage
2028	Moisture Content of Various Matrices
2029	Polonium-210 Activity in Various Matrices
2030	Promethium-147 Analysis

Number	Title
Part 3	Instrument Procedures
3001	Calibration and Control of Gamma-Ray Spectrometers
3002	Calibration of Alpha Spectrometers
3003	Calibration and Control of Alpha and Beta Counting Instruments
3004	Calibration and Control of Liquid Scintillation Counters
3005	Calibration and Operation of pH Meters
3006	Balance Calibration and Check
3008	Negative Results Evaluation Policy
3009	Use and Maintenance of Mechanical Pipettors
3010	Microwave Digestion System Use and Maintenance
Part 4	Technical Procedures
4001	Not Used
4002	QC Checks on Data
4003	Sample Regent and Control
4004	Data Package Preparation and Reporting
4005	Blank, Spike, and Duplicate Controls
4006	Inter-Laboratory Comparison Study Process
4007	Method Basis and Initial Validation Process
4008	Not Used
4009	MDL Controls
4010	State Certification Process
4011	Accuracy, Precision, Efficiency, and Bias Controls and Data Quality Objectives
4012	Not Used
4013	Not Used
4014	Facility Operation and Control
4015	Documentation of Analytical Laboratory Logbooks (formerly 1002)
4016	Total Propagated Uncertainty (formerly 1004)
4017	LIMS Operation
4018	Instrument Calibration System
4019	Radioactive Reference Material Standards
Part 5	Miscellaneous Procedures
5001	Laboratory Hood Operations
5002	Operation and Maintenance of Deionized Water System
5003	Waste Management
5004	Acid Neutralization and Purification System Operation Procedure

Part 6	LIMS
6001	LIMS Raw Data Processing and Reporting
6002	Software Development and/or Pilots of COTS Packages
6003	Software Change and Version Control
6004	Backup of Data and System Files
6005	Disaster Recovery Plan
6006	LIMS Hardware
6007	LIMS User Access
6008	LIMS Training
6009	LIMS Security

# 2.0 QUALITY SYSTEM

The TBE-ES QA system is designed to comply with multiple customer- and regulatory agency-imposed specifications related to quality. This quality system applies to all activities of TBE-ES that affect the quality of analyses performed by the laboratory.

#### 2.1 <u>Policy</u>

The TBE quality policy, given in Company Policy P-501, is "TBE will continually improve our processes and effectiveness in providing products and services that exceed our customer's expectations."

This policy is amplified by this Laboratory's commitment, as attested to by the title page signatures, to perform all work to good professional practices and to deliver high quality services to our customers with full data integrity. (See Section 4.0 and Procedure 1005).

#### 2.2 <u>Quality System Structure</u>

The Quality System is operated by the organizations described in Section 3.0 of this Manual. The Quality System is described in this Manual and in the Procedures Manual, both of which are maintained by the QA Manager. Procedures are divided into 6 sections – Administrative, Methods, Equipments, Technical, Miscellaneous, and LIMS. This Manual is structured as shown in the Table of Contents and refers to Procedures when applicable. Cross references to the various imposed quality specifications are contained in Appendices to this Manual.

#### 2.3 Quality System Objectives

The Quality System is established to meet the objective of assuring all operations are planned and executed in accordance with system requirements. The Quality System also assures that performance evaluations are performed (see Procedure 4006), and that appropriate verifications are performed (see Procedures in the 1000 and 4000 series) to further assure compliance. Verification includes

examination of final reports (prior to submittal to customers) to determine their quality (see Procedure 4004).

To further these objectives, various in-process assessments of data, as well as assessments of the system, via internal audits and management reviews, are performed. Both internal experts and customer / regulatory agencies perform further assessments of the system and compliance to requirements.

# 2.4 <u>Personnel Orientation, Training, and Qualification</u>

TBE provides indoctrination and training to employees and performs proficiency evaluation of technical personnel. This effort is described in Section 4.0.

#### 3.0 ORGANIZATION, AUTHORITY, AND RESPONSIBILITY

TBE has established an effective organization for conducting laboratory analyses at the Knoxville Environmental Services Laboratory. The basic organization is shown in Figure 3-1. Detail organization charts with names, authorities, and responsibilities are given in Procedure 1002. Job descriptions are given in Procedure 1006.

This organization provides clearly established Quality Assurance authorities, duties, and functions. QA has the organizational freedom needed to:

- (1) Identify problems
- (2) Stop nonconforming work
- (3) Initiate investigations
- (4) Recommend corrective and preventive actions
- (5) Provide solutions or recommend solutions
- (6) Verify implementation of actions

All Laboratory personnel have the authority and resources to do their assigned duties and have the freedom to act on problems. The QA personnel have direct, independent access to Company management as shown in Figure 3-1.

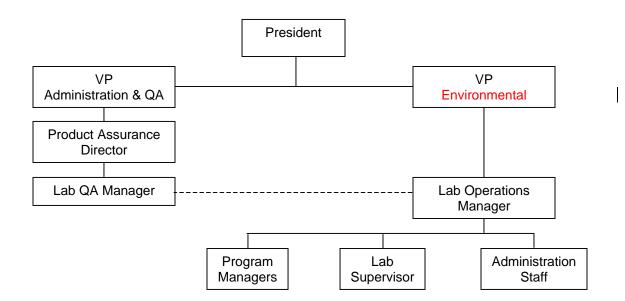



Figure 3.1. Laboratory Organization

# 4.0 PERSONNEL ORIENTATION, DATA INTEGRITY, TRAINING, AND QUALIFICATION

## 4.1 <u>Orientation</u>

All laboratory personnel must receive orientation to the quality program if their work can affect quality. Orientation includes a brief review of customer- and regulatory agency-imposed quality requirements, the structure of the QAM, and the implementing procedures. The goal of orientation is to cover the nature and goals of the QA program.

## 4.2 Data Integrity

The primary output of the Laboratory is data. Special emphasis and training in data integrity is given to all personnel whose work provides or supports data delivery. The Laboratory Data Integrity Procedure (Procedure 1005) describes training, personnel attestations, and monitoring operations. Annual reviews are required.

#### 4.3 <u>Training</u>

The Quality Assurance Manager (QAM) maintains a training matrix indicating which laboratory personnel need training in which specific Procedures. This matrix is updated when personnel change or change assignments. All personnel are trained per these requirements and procedures. This training program is described in Procedure 1007. The assigned responsibilities for employees are described in Procedure 1002 (See Section 3.0) on Organization and in Procedure 1006, Job Descriptions. Refresher training or re-training is given annually as appropriate.

#### 4.4 **Qualification**

Personnel are qualified as required by their job description. Management and non-analysts are evaluated based on past experience, education, and management's assessment of their capabilities. Formal qualification is required of analysts and related technical personnel who perform laboratory functions. Each applicable person is given training and then formally evaluated by the Operations Manager (or his designees) and by QA. Each analyst must initially demonstrate capability to perform each assigned analytical effort. Each year, thereafter, he or she must perform similar analyses on Interlab Comparison Samples (see Procedure 4006) or on equivalent blanks and spikes samples. Acceptable results extend qualifications (certification). Unacceptable results require retraining in the subject method / Procedures. (See Procedure 1007 for added information, records, forms, etc. used.)

#### 4.5 <u>Records</u>

Records of training subjects, contents, attendees, instructors, and certifications are maintained by QA.

# 5.0 CUSTOMER INTERFACES

# 5.1 Interface Personnel

The Laboratory has designated Program Managers as the primary interface with all customers. Other interfaces may be the QA Manager or the Lab Operations Manager.

#### 5.2 Bid Requests and Tenders

The Program Managers respond to customer requests for bids and proposals per Procedure 1014 for bids, proposals, and contract reviews. They clarify customer requests so both the customer and the lab staff understand requests. As responses are developed, internal reviews are conducted to ensure that requirements are adequately defined and documented and to verify that the Laboratory has adequate resources in physical capabilities, personal skills, and technical information to perform the work. Accreditation needs are reviewed. If subcontracts are required to perform any analysis, the subcontractor is similarly evaluated and the client notified in writing of the effort. Most qualifications are routine with standard pricing and the review of these quotes is performed by the Program Manager. Larger or more complex quotes are reviewed by the Operations Manager and the QA Manager (or designees). Evidence of review is by initialing and dating applicable papers, signatures on quotations, or by memo.

## 5.3 <u>Contracts</u>

The Program Manager's receive contract awards (oral or written) and generate the work planning for initiation preparation (charge numbers, data structure or contents in LIMS, etc.). They review contracts for possible differences from quotations and, if acceptable, contracts are processed. Documentation of the review is by initials and date as a minimum. Contract changes receive similar reviews and planning.

#### 5.4 <u>TBE's Expectation of Customers</u>

TBE expects customers to provide samples suitable for lab analysis. These expectations include:

- Accurate and unambiguous identification of samples
- Proper collection and preservation of samples
- Use of appropriate containers free from external and internal contamination
- Integrity preservation during shipment and timely delivery of samples that are age sensitive
- Adequate sized samples that allow for retest, if needed
- Specification of unique MOA/MDC requirements
- Alerting the lab about abnormal samples (high activity, different chemical contents, etc.)
- Chain of custody initiation, when required.

#### 5.5 <u>Customer Satisfaction</u>

TBE's quality policy centers on customer satisfaction (See 2.0). TBE will work to satisfy customers through full compliance with contract requirements, providing accurate data and properly responding to any questions or complaints. Customers are provided full cooperation in their monitoring of Laboratory performance. Customers are notified if any applicable State Accreditation is withdrawn, revoked, or suspended.

#### 5.5.1 Customer Complaints

Any customer complaints are documented and tracked to closure. Most complaints concern analysis data and are received by Program Managers. They log each such complaint, order retests for verification, and provide documented results to customers. Complaints may also be received by QA or Operations.

If complaints are other than re-test type, the nonconformance and corrective action systems (Sections 12 and 13) are used to resolve them and record all actions taken.

#### 5.5.2 Customer Confidentiality

All laboratory personnel maintain confidentiality of customer-unique information.

# 6.0 DOCUMENTATION GENERATION & CONTROL

#### 6.1 <u>General</u>

The documentation generation and control system is detailed in Procedure 1008. An overview is given below. The basic quality system documents are described in Section 2.0.

#### 6.2 <u>New Documentation</u>

Each Procedure and this QAM is written by appropriate personnel, validated if applicable (see Section 7.0), reviewed for adequacy, completeness, and correctness, and, if acceptable, accepted by the authorized approver [QA Manager, Operations Manager (or their designee)]. Both approvals are required if a Procedure affects both QA and Operations. (See Responsibilities in Section 3.0). These procedures control the quality measurements and their accuracy.

Each document carries a unique identification number, a revision level, dates, page numbers and total page count, and approver identification and sign off. If TBE writes code for software, the software is version identified and issued after Verification and Validation per Section 7.0.

#### 6.3 **Documentation Changes**

Each change is reviewed in the same manner and by the same people as new documentation. Revision identifications are updated and changes indicated by side bars, italicized words, or by revision description when practical. Obsolete revisions are maintained by QA after being identified as obsolete.

#### 6.4 **Documentation Lists and Distributions**

Computer indexes of documents are maintained by Quality showing the current authorized revision level of each document. These revisions are placed on the Laboratory server and obsolete ones are removed so that all personnel have only the current documents. If hard copies are produced and distributed, separate distribution lists are maintained indicating who has them and their revision level(s). Copies downloaded off the server are uncontrolled unless verified by the user (on the computer) to be the latest revision.

#### 6.5 <u>Other Documentation</u>

In addition to TBE-generated documentation, QA maintains copies of applicable specifications, regulations, and standard methods.

#### 6.6 **Documentation Reviews**

Each issued document is reviewed at least every third year by the approving personnel. This review determines continued suitability for use and compliance with requirements.

# 7.0 DESIGN OF LABORATORY CONTROLS

## 7.1 <u>General</u>

The Laboratory and its operating procedures are designed specifically for low level (environmental and in-plant) radioactive sample analysis. The various aspects of the laboratory design include the following which are discussed in subsequent paragraphs of this Section:

- (a) Facility
- (b) Technical Processes and Methods
- (c) Verification of Design of Processes, Methods, and Software.
- (d) Design of Quality Controls
- (e) Counting Instrument Controls

#### 7.2 <u>Facility</u>

The facility was designed and built in 2000 to facilitate correct performance of operations in accordance with good laboratory practices and regulatory requirements. It provides security for operations and samples. It separates sample storage areas based on activity levels, separates wet chemistry from counting instrumentation for contamination control, and provides space and electronic systems for documentation, analysis, and record storage. Procedure 4014 describes the facility, room uses, layouts, etc.

# 7.3 <u>Technical Processes and Methods</u>

#### 7.3.1 Operational Flow

The laboratory design provides for sample receipt and storage (including special environmental provisions for perishable items) where samples are received from clients and other labs (see Section 9.0). The samples are logged into the computer based Laboratory Information Management System (LIMS) and receive unique identification numbers and bar code labels. (See Procedure 4017 for LIMS description and user procedures). The Program Managers then plan the work and assure LIMS contains any special instructions to analysts. Samples then go to sample preparation, wet chemistry (for chemical separation), and counting based on the radionuclides. See Procedures in the 2000 and 3000 series. Analysts perform the required tasks with data being entered into logbooks, LIMS, and counting equipment data systems as appropriate. Results are collected and reviewed by the Operations Manager and Program Managers and reports to clients are generated (See Section 14.0). All records (electronic or hard copy) are maintained in files or in back-up electronic copies (see Section 15.0). After the required hold periods and client notification and approval, samples are disposed of in compliance with regulatory requirements (see Procedures 5003 and 5004).

# 7.3.2 Methods

The laboratory methods documented in the 2000 and 3000 series of Procedures were primarily developed by senior TBE laboratory personnel based on years of experience at our prior facility in New Jersey. They have been improved, supplemented and implemented here. Where EPA or other accepted national methods exist (primarily for water analyses under State certification programs - see Procedure 4010), the TBE methods conform to the imposed requirements or State accepted alternate requirements. Any method modifications are documented and described in the Procedure. There are no nationally recognized methods for most other analysis methods but references to other method documents are noted where applicable.

#### 7.3.3 Data Reduction and Analysis

Whenever possible automatic data capture and computerized data reduction programs are used. Calculations are either performed using commercial software (counting system operating systems) or TBE developed and validated software is used (see 7.4 below). Analysis of reduced data is performed as described in Section 14.0 and Procedure 4004.

#### 7.4 Verification of Technical Processes, Methods, and Software

#### 7.4.1 Operational Flow Verification

The entire QA Manual and related procedures describe the verification of elements of the technical process flow and the establishment of quality check points, reviews, and controls.

#### 7.4.2 Method Verifications

Methods are verified and validated per Procedure 4007 prior to use unless otherwise agreed to by the client. For most TBE methods initial validation occurred well in the past. New or significantly revised Methods receive initial validation by demonstration of their performance using known analytes (NIST traceable) in appropriate matrices. Sufficient samples are run to obtain statistical data that provides evidence of process capability and control, establishes detection levels (see procedure 4009), bias and precision data (see Procedure 4011). All method procedures and validation data are available to respective clients. Also see Section 7.5 below for the Demonstration of Capability program.

#### 7.4.3 Data Reduction and Analysis Verification

Data reduction and analysis verification is performed by personnel who did not generate the data. (See Section 14.0).

# 7.5 Design of Quality Controls

## 7.5.1 General

There are multiple quality controls designed into the laboratory operations. Many of these are described elsewhere in this manual and include personnel qualification (Section 4.0), Document control (6.0), Sample identification and control (9.0), Use of reference standards (10.0), intra- and inter- laboratory tests (10.0), etc. This Section describes the basic quality control systems used to verify Method capability and performance.

#### 7.5.2 Demonstration of Capability (D of C)

The demonstration of capability system verifies and documents that the method, analyst, and the equipment can perform within acceptable limits. The D of C is certified for each combination of analyte, method, and instrument type. D of C's are certified based on objective evidence at least annually. This program is combined with the analyst D of C program (See Section 4.0). Initial D of C's use the method validation effort as covered above. Subsequent D of C's use Inter-Laboratory samples (Procedure 4006) or, if necessary, laboratory generated samples using NIST traceable standards. If results are outside of control limits, redemonstration is required after investigation and corrective action is accomplished (See Sections 12.0 and 13.0)

#### 7.5.3 Process Control Checks

Process control checks are designed to include Inter-Lab samples, Intra-lab QC check samples, and customer provided check samples. 10% of laboratory analysis samples are for process control purposes.

**7.5.3.1 Inter- Lab Samples.** Inter-lab samples are procured or obtained from sources providing analytes of interest in matrices similar to normal client samples. These samples may be used for Demonstration of Capability of analyst's, equipment and methods. They also provide for independent insight into the lab's process capabilities. Any value reported as being in the warning zone (over 2 sigma) is reviewed and improvements taken. Any value failing (over 3 sigma) is documented on an NCR and formal investigation per Section 12.0 and 13.0 is performed. If root causes are not clearly understood and fixed, re-tests are required using lab prepared samples (See Procedure 4006).

**7.5.3.2 QC Samples.** QC samples, along with Inter-lab samples and customer check samples, are 10% of the annual lab workload for the applicable analyte and method. If batch processing is used, some specifications require specific checks with each batch or each day rather than as continuous process controls. (See Procedure 4005)

QC samples consist of multiple types of samples including:

- (a) Method blanks
- (b) Blank spikes
- (c) Matrix spikes

- (d) Duplicates
- (e) Tracers and carriers

Acceptance limits for these samples are given in Procedures or in lab standards. The number, frequency, and use of these sample types varies with the method, matrix, and supplemental requirements. The patterns of use versus method and the use of the resulting test data is described in Procedure 4005.

**7.5.3.3 Customer Provided Check Samples.** Customers may provide blind check samples and duplicates to aid in their evaluation of the Laboratory. When the lab is notified that samples are check samples their results are included in the QC sample percentage counts. Any reported problems are treated as formal complaints and investigated per Section 5.

#### 7.6 <u>Counting Instrument Controls</u>

The calibration of instruments is their primary control and is described in Section 11.0. In addition, counting procedures (3000 series) also specify use of background checks (method blank data is not used for this) to evaluate possible counting equipment contamination. Instrument calibration checks using a lab standard from a different source than the one used for calibration are also used. Background data can be used to adjust client and test data. Checks with lab standards indicate potential calibration changes.

# 8.0 PURCHASING AND SUBCONTRACT CONTROLS

## 8.1 <u>General</u>

Procurement and Subcontracts efforts use the Huntsville-based Cost Point computer system to process orders. The Laboratory-generated Purchase Requisitions are electronically copied into Purchase Orders in Huntsville. The Laboratory also specifies sources to be used. Procured items and services are received at the Laboratory where receiving checks and inspections are made. Laboratory Procedure 1015 provides details on the procurement control system at the Laboratory and references the Huntsville procedures as applicable.

#### 8.2 <u>Source Selection</u>

Sources for procurements of items and services are evaluated and approved by QA as described in Procedure 1015. Nationally recognized catalog item sources are approved by the QA Manager based on reputation. Maintenance services by an approved distributor or the equipment manufacturing company are pre-approved. Sources for other services are evaluated by QA, based on service criticality to the quality system, by phone, mail out, or site visit.

Subcontract sources for laboratory analysis services are only placed with accredited laboratories (by NELAP, NUPIC, State, Client, etc.) as applicable for the type of analysis to be performed. QA maintains lists of approved vendors and records of evaluations performed.

# 8.3 **Procurement of Supplies and Support Services**

# 8.3.1 Catalog Supplies

The Laboratory procures reagents, processing chemicals, laboratory "glassware," consumables, and other catalog items from nationally known vendors and to applicable laboratory grades, purities, concentrations, accuracy levels, etc. Purchase Requisitions for these items specify catalog numbers or similar call-outs for these off-the-shelf items. Requisitions are generated by the personnel in the lab needing the item and are approved by the Operations or Production Manager. Reagents are analytical reagent grade only.

# 8.3.2 Support Services

Purchase Requisitions for support services (such as balance calibration, equipment maintenance, etc.) are processed as in 8.3.1 but technical requirements are specified and reviewed before approvals are given.

#### 8.3.3 Equipment and Software

Purchase Requisitions for new equipment, software programs, and major facility modifications affecting the quality system are reviewed and approved by the Operations Manager and the QA Manager.

#### 8.4 <u>Subcontracting of Analytical Services</u>

When necessary, the Laboratory may subcontract analytical services required by a client. This may be because of special needs, infrequency of analysis, etc. Applicable quality and regulatory requirements are imposed in the Purchase Requisition and undergo a technical review by QA. TBE reserves the right of access by TBE and our client for verification purposes.

#### 8.5 Acceptance of Items or Services

Items and services affecting the quality system are verified at receipt based on objective evidence supplied by the vendor. Supply items are reviewed by the requisitioner and, if acceptable, are accepted via annotation on the vendor packing list or similar document. Similarly, equipment services are accepted by the requisitioning lab person. Calibration services are accepted by QA based on certification reviews. (See Section 11.0.)

Data reports from analytical subcontractors are evaluated by Program Managers and subsequently by the Operations Manager (or designee) as part of client report reviews.

Items are not used until accepted and if items or services are rejected, QA is notified and nonconformance controls per Section 12.0 are followed. Vendors may be removed from the approved vendor's list if their performance is unacceptable.

# 9.0 TEST SAMPLE IDENTIFICATION AND CONTROL

#### 9.1 Sample Identification

Incoming samples are inspected for customer identification, container condition, chain of custody forms, and radioactivity levels. If acceptable, the sample information is entered into LIMS which generates bar coded labels for attachment to the sample(s). The labels are attached and samples stored in the assigned location. If environmental controls are needed (refrigeration, freezing, etc.), the samples are placed in these storage locations. If not acceptable, the Program Manager is notified, the customer contacted, and the problem resolved (return of sample, added data receipts, etc.). See Procedure 4003 for more information on sample receipt.

#### 9.2 <u>LIMS</u>

The LIMS is used to schedule work, provide special information to analysts, and record all actions taken on samples. See Procedure 4017 and the 6000 series of procedures for more information on LIMS operations.

#### 9.3 <u>Sample Control</u>

The sample, with its bar coded label, is logged out to the applicable lab operation where the sample is processed per the applicable methods (Procedures 2000 and 3000). The LIMS-assigned numbers are used for identification through all operations to record data. Data is entered into LIMS, log books (kept by the analysts) or equipment data systems to record data. The combination of LIMS, logbooks, and equipment data systems provide the Chain of Custody data and document all actions taken on samples. Unused sample portions are returned to its storage area for possible verification use. Samples are discarded after required time limits are passed and after client notification and approval, if required.

## 10.0 SPECIAL PROCESSES, INSPECTION, AND TEST

#### 10.1 <u>Special Processes</u>

The Laboratory's special processes are the methods used to analyze a sample and control equipment. These methods are defined in Procedures in the 2000 and 3000 series. These processes are performed to the qualified methods (see Section 7.0) by qualified people (see 4.0).

#### 10.2 Inspections and Tests

The quality of the process is monitored by indirect means. This program involves calibration checks on counting equipments (see Section 11.0), intralaboratory checks, and inter-laboratory checks. In addition, some customers submit quality control check samples (blinds, duplicates, external reference standards). All generated data gets independent reviews.

#### 10.2.1 Intra Laboratory Checks (QC Checks)

The quantity and types of checks varies with the method, but basic checks which may include blanks, spiked blanks, matrix spikes, matrix spike duplicates, and duplicates are used as appropriate for customer samples. This process is described in Procedure 4005 and in Section 7.0.

#### 10.2.2 Inter Laboratory Checks

TBE participates in Inter-lab performance evaluation (check) programs with multiple higher level labs. These programs provide blind matrices for the types of matrix/analyte combinations routinely processed by the Lab, if available. This program is described in Procedure 4006.

#### 10.2.3 Data Reviews

Raw data and reports are reviewed by the Operations Manager, or designees. This review checks for data logic, expected results, procedure compliance, etc. (See Section 14.0).

#### 10.3 Control of Sampling of Samples

Samples for analysis are supplied by customers preferably in quantities sufficient to allow re-verification analyses if needed. The samples are prepared for analysis by analysts and then an aliquot (partial sample extraction) is taken from the homogeneous customer sample for the initial analysis. Methods specify standard volumes of sample material required. Sampling data is recorded in LIMS and/or logbooks.

#### 10.4 <u>Reference Standards / Material</u>

#### 10.4.1 <u>Weights and Temperatures</u>

Reference standards are used by the Laboratory's calibration vendor to calibrate the Labs working instruments measuring weights and thermometers.

#### 10.4.2 Radioactive Materials

Reference radioactive standards, traceable to NIST, are procured from higher level laboratories. These reference materials are maintained in the standards area and are diluted down for use by laboratory analysts. All original and diluted volumes are fully traceable to source, procedure, analyst, dilution, and acquisition dates. See Section 11.0 and Procedure 1009.

#### 11.0 EQUIPMENT MAINTENANCE AND CALIBRATION

#### 11.1 <u>General</u>

There are two types of equipment used by the Laboratory: support equipment (scales, glassware, weights, thermometers, etc.) and instruments for counting. Standards traceable to NIST are used for calibration and are of the needed accuracy for laboratory operations. Procedures 1009, 4018, and 4019 describe the calibration and maintenance programs.

#### 11.2 <u>Support Equipment</u>

Analytical support equipment is purchased with the necessary accuracies and appropriate calibration data. If needed, initial calibration by the Laboratory or its calibration vendor is performed. Recalibration schedules are established and equipment recalibrated by the scheduled date by a calibration vendor or by Laboratory personnel. Maintenance is performed, as needed, per manufacturer's manuals or lab procedures.

In addition to calibrations and recalibrations, checks are made on the continued accuracy of items as described in Procedure 1009. Records are maintained of calibration and specified checks.

#### 11.3 Instruments

Instruments receive initial calibration using radioactive sources traceable to NIST. The initial calibration establishes statistical limits of variation that are used to set control limits for future checks and recalibration. This process is described in Procedure 4018. Instruments are maintained per Instrument Manual requirements. Recalibrations are performed per the Procedure.

Between calibrations, check sources are used to assure no significant changes have occurred in the calibration of items. Background checks are performed to check for possible radioactive contamination. Background values are used to adjust sample results. Hardware and software are safeguarded from adjustments that could invalidate calibrations or results.

#### 11.4 Nonconformances and Corrective Actions

If calibrations or checks indicate a problem, the nonconformance system (Section 12.0) and corrective action system (Section 13.0) are initiated to document the problem and its resolution. Equipment is promptly removed from service if questionable.

## 11.5 <u>Records</u>

Records of calibrations are maintained. Calibration certificates from calibration vendors are maintained by QA. Other calibration data and check data is maintained in log books, LIMS, or instrument software as appropriate and as described in Procedures 1009, 4018, and 4019.

#### 12.0 NONCONFORMANCE CONTROLS

#### 12.1 <u>General</u>

The nonconformance control system is implemented whenever a nonconforming condition on any aspect of Laboratory analysis, testing, or results exist. The system takes graded actions based on the nature and severity of the nonconformance. Nonconforming items or processes are controlled to prevent inadvertent use. Nonconformances are documented and dispositioned. Notification is made to affected organizations, including clients. Procedure 1010 describes the procedures followed. Sample results are only reported after resolution.

#### 12.2 <u>Responsibility and Authority</u>

Each Laboratory employee has the responsibility to report nonconformances and the authority to stop performing nonconforming work or using nonconforming equipment. Laboratory supervision can disposition and take corrective actions on minor problems. Any significant problem is documented by QA using the Laboratory's NCR system per Procedure 1010. QA conducts or assures the conduct of cause analyses, disposition of items or data, and initiation of corrective action if the nonconformance could recur.

#### 12.3 10CFR21 Reporting

The QA Manager reviews NCRs for possible need of customer and/or NRC notification per the requirements of 10CFR21. Procedure 1011 is followed in this review and for any required reporting.

#### 13.0 CORRECTIVE AND PREVENTIVE ACTIONS

#### 13.1 <u>General</u>

The Laboratory takes corrective actions on significant nonconformances (see Section 12.0). It also initiates preventive and improvement actions per the Company Quality Policy (see Section 2.0). The procedures for Corrective Action/Preventive Action systems are contained in Procedure 1012.

#### 13.2 Corrective Actions

Corrective actions are taken by Operations and Quality to promptly correct significant conditions adverse to quality. The condition is identified and cause analysis is performed to identify root causes. Solutions are evaluated and the optimum one selected that will prevent recurrence, can be implemented by the Laboratory, allows the Laboratory to meet its other goals, and is commensurate with the significance of the problem. All steps are documented, action plans developed for major efforts, and reports made to Management. QA verifies the implementation effectiveness. Procedure 1012 provides instructions and designates authorities and responsibilities.

#### 13.3 <u>Preventive Actions</u>

Preventive actions are improvements intended to reduce the potential for nonconformances. Possible preventive actions are developed from suggestions from employees and from analysis of Laboratory technical and quality systems by management. If preventive actions or improvements are selected for investigation, the issues, investigation, recommendations, and implementation actions are documented. Follow up verifies effectiveness.

# 14.0 RESULTS ANALYSIS AND REPORTING

#### 14.1 General

The Laboratory's role is to provide measurement-based information to clients that is technically valid, legally defensible, and of known quality.

#### 14.2 <u>Results Review</u>

The results obtained from analytical efforts are collected and reviewed by the Operations Manager and the Program Manager. This review verifies the reasonableness and consistency of the results. It includes review of sample and the related QC activity data. Procedure 4002 describes the process. Any deficiencies are corrected by re-analyses, recalculations, or corrective actions per Sections 12.0 and 13.0. Use of the LIMS with its automatic data loading features (see Procedure 4017) minimizes the possibility of transcription or calculation errors.

#### 14.3 Reports

Reports range from simple results reporting to elaborate analytical reports based on the client requirements and imposed specifications and standards. (See Procedure 4004.) Reports present results accurately, clearly, unambiguously, objectively, and as required by the applicable Method(s). Reports include reproduction restrictions, information on any deviations from methods, and any needed data qualifiers based on QC data. If any data is supplied by analytical subcontractors (see Section 8.0), it is clearly identified and attributed to that Laboratory by either name or accreditation number.

If results are faxed or transmitted electronically, confidentiality statements are included in case of receipt by other than the intended client.

Reports are approved by the Program Manager and Operations Manager and record copies kept in file (See Section 15.0).

#### 15.0 RECORDS

#### 15.1 <u>General</u>

The Laboratory collects generated data and information related to quality or technical data and maintains them as records. Records are identified, prepared, reviewed, placed in storage, and maintained as set forth in Procedure 1003.

#### 15.2 <u>Type of Records</u>

All original observations, calculations, derived data, calibration data, and test reports are included. In addition QA data such as audits, management reviews, corrective and preventive actions, manuals, and procedures are included.

#### 15.3 Storage and Retention

Records are stored in files after completion in the lab. Files are in specified locations and under the control of custodians. Filing systems provide for retrieval. Electronic files are kept on Company servers (with regular back up) or on media stored in fireproof file cabinets. Records are kept in Laboratory files for at least 2 years after the last entry and then in Company files for another year as a minimum. Some customers specify larger periods – up to 7 years – which is also met. Generic records supporting multiple customers are kept for the longest applicable period.

#### 15.4 <u>Destruction or Disposal</u>

Records may be destroyed after the retention period and after client notification and acceptance, if required. If the Laboratory closes, records will go in to company storage in Huntsville unless otherwise directed by customers. If the Laboratory is sold, either the new owner will accept record ownership or the records will go into Company storage as stated above.

#### 16.0 ASSESSMENTS

#### 16.1 <u>General</u>

Assessments consist of internal audits and management reviews as set forth in Procedure 1013.

#### 16.2 <u>Audits</u>

Internal audits are planned, performed at least annually on all areas of the quality system, and are performed by qualified people who are as independent as possible from the activity audited. (The Laboratory's small size inhibits full independence in some technical areas.) Audits are coordinated by the Quality Manager who assures audit plans and checklists are generated and the results documented. Reports include descriptions of any findings and provide the auditor's assessment of the effectiveness of the audited activity. Report data includes personnel contacted.

Audit findings are reviewed with management and corrective actions agreed to and scheduled. Follow up is performed by QA to verify accomplishment and effectiveness of the corrective action.

#### 16.3 <u>Management Reviews</u>

The Annual Quality Assurance Report, prepared for some clients, is the Management Review vehicle. These reports cover audit results, corrective and preventive actions, external assessments, and QC and inter-laboratory performance checks. The report is reviewed with Management by the QA Manager for the continued suitability of the Quality Program and its effectiveness. Any needed improvements are defined, documented, and implemented. Follow ups are made to verify implementation and effectiveness.

**Revision 1** 

# APPENDIX D

# LABORATORY ANALYTICAL REPORTS

L28833 R2 / 1 of 162

TELEDYNE BROWN ENGINEERING A Teledyne Technologies Company 2508 Quality Lane Knoxville, TN 37931 865-690-6819 (Phone)
Work Order #: L28833 R2 Exelon July 18, 2006



Kathy Shaw Conestoga-Rovers & Associates 45 Farmington Valley Road Plainville CT 06062

> Case Narrative - L28833 EX001-3ESPZION-06

> > 07/18/2006 16:27

#### Sample Receipt

The following samples were received on June 2, 2006 in good condition, unless otherwise noted.

Revision 1:

Includes the rerun strontium results for L28833-19. The ID was also corrected.

**Revision 2:** 

Includes the recount for Total Strontium of sample WS-ZION-LAKE-052606-MS-015 (L28833-19). This sample was recounted to meet the client required MDC of 2.0 pCi/L.

	Cross Reference Table	
Client ID	Laboratory ID	Station ID(if applicable)
WG-ZION-MW-4U-052406-MB-002	L28833-1	
WG-ZION-MW-4L-052406-MB-004	L28833-2	
WG-ZION-MW-7L-052506-MS-007	L28833-3	
WG-ZION-MW-6L-052506-MS-009	L28833-4	
WG-ZION-MW-8U-052406-MS-003	L28833-5	
WG-ZION-MW-8L-052406-MS-001	L28833-6	
WG-ZION-MW-7U-052406-MS-005	L28833-7	
WG-ZN-MW-ZN-03U-052506-DS-01	L28833-8	
WG-ZN-MW-ZN-03U-052506-DS-02	L28833-9	
WG-ZN-MW-ZN-03L-052506-DS-03	L28833-10	
WG-ZN-MW-ZN-02U-052606-DS-04	L28833-11	
WG-ZN-MW-ZN-02L-052606-DS-06	L28833-12	
WG-ZN-MW-ZN-01U-052606-DS-05	L28833-13	
WG-ZN-MW-ZN-01L-052606-DS-07	L28833-14	
WG-ZN-MW-ZN-09-052606-DS-08	L28833-15	
WG-ZN-MW-ZN-09-052606-DS-09	L28833-16	
WG-ZION-MW-6U-052606-MS-011	L28833-17	
WG-ZION-MW-5L-052606-MS-013	L28833-18	
WS-ZION-LAKE-052606-MS-015	L28833-19	
WG-ZION-MW-5U-052606-MS-017	L28833-20	

#### Analytical Method Cross Reference Table

Radiological Parameter	TBE Knoxville Method	Reference Method
Gamma Spectrometry	TBE-2007	EPA 901.1
H-3	TBE-2010	EPA 906.0
TOTAL SR	TBE-2018	EPA 905.0



### Case Narrative - L28833 EX001-3ESPZION-06

07/18/2006 16:27

#### **Gamma Spectroscopy**

#### **Quality Control**

Quality control samples were analyzed as WG4095,WG4096.

**Duplicate Sample** 

Duplicates were analyzed for the following samples. All duplicate results were within acceptance limits, unless otherwise noted.

Client ID	Laboratory ID	QC Sample #
WG-DN-DSP-121-052606-JH-014	L28821-1	WG4095-3
WG-ZN-MW-ZN-01U-052606-DS-05	L28833-13	WG4096-3

#### <u>H-3</u>

#### **Quality Control**

Quality control samples were analyzed as WG4107.

#### Method Blank

All blanks were within acceptance limits, unless otherwise noted.

#### Laboratory Control Sample

All laboratory control samples were within acceptance limits, unless otherwise noted.

#### **Duplicate Sample**

Duplicates were analyzed for the following samples. All duplicate results were within acceptance limits, unless otherwise noted.

Client ID	Laboratory ID	QC Sample #
WG-ZION-MW-4U-052406-MB-002	L28833-1	WG4107-3



TELEDYNE BROWN ENGINEERING, INC. A Teledyne Technologies Company 2508 Quality Lane Knoxville, TN 37931-3133

### Case Narrative - L28833 EX001-3ESPZION-06

07/18/2006 16:27

### TOTAL SR

Quality Control

Quality control samples were analyzed as WG4121.

<u>Method Blank</u> All blanks were within acceptance limits, unless otherwise noted.

<u>Laboratory Control Sample</u> All laboratory control samples were within acceptance limits, unless otherwise noted.

**Duplicate Sample** 

Duplicates were analyzed for the following samples. All duplicate results were within acceptance limits, unless otherwise noted.

Client ID WG-ZION-MW-4U-052406-MB-002 Laboratory ID QC Sample # L28833-1 WG4121-3

#### **<u>Certification</u>**

This is to certify that Teledyne Brown Engineering - Environmental Services, located at 2508 Quality Lane, Knoxville, Tennessee, 37931, has analyzed, tested and documented samples as specified in the applicable purchase order.

This also certifies that requirements of applicable codes, standards and specifications have been fully met and that any quality assurance documentation which verified conformance to the purchase order is on file and may be examined upon request.

I hereby certify that the above statements are true and correct.

Keith Jeter **Operations Manager** 

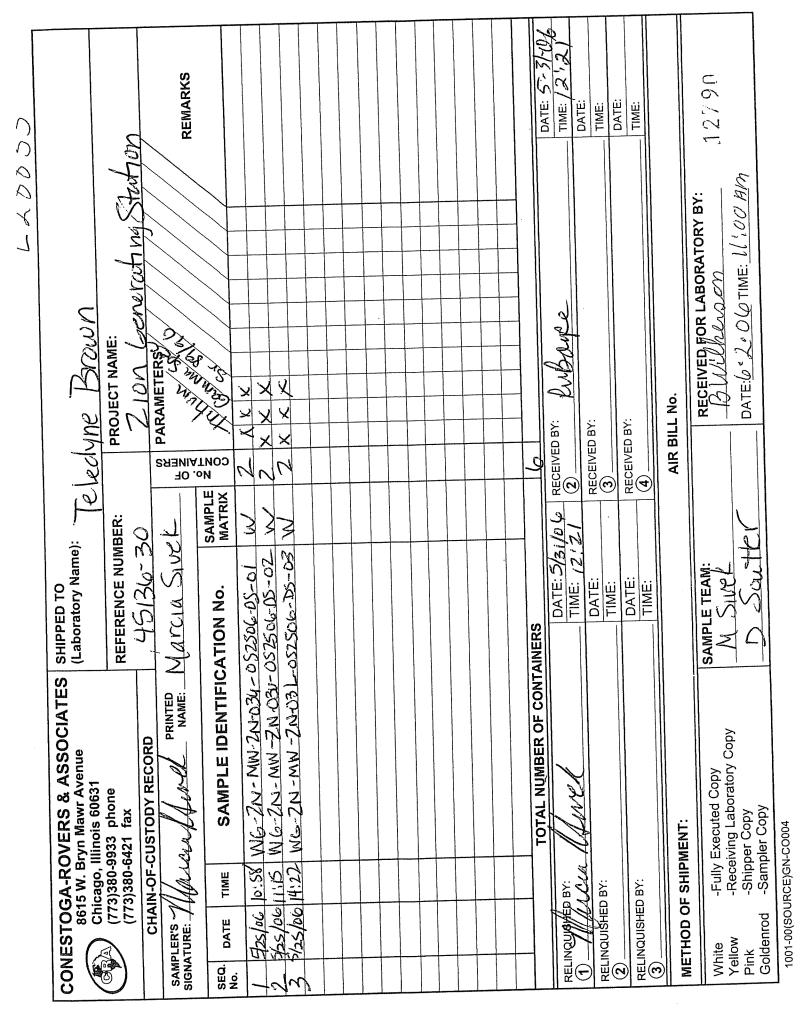
### Sample Receipt Summary

,

L 200J	
RS & ASSOCIATES SHIPPED TO Mawr Avenue (Laboratory Name): Teledyne BYOWN is 60631 phone REFERENCE NUMBER: PROJECT NAME: Cill	
4512630 DARAMETER	
NAME: DISONALE	 ه
SAMPLE ZO MATRIX CO	
The parties We -ZN - MW - ZN - 09-05 - 05 2606-05 - 08	
3	
	-31-06
DATE: 2/2/00 RECEIVED BY: LUDOLO 2 TIME: /	5
OLE NUMBER DATE: ALLO RECEIVED BY:	
RELINQUISHED BY:	
AIR BILL No.	
	7
COPY COPY DATE: 6.2. OLTIME: 11:00 AM	-
enrod -Sampler Copy	

### L28833 R2 / 6 of 162

Π

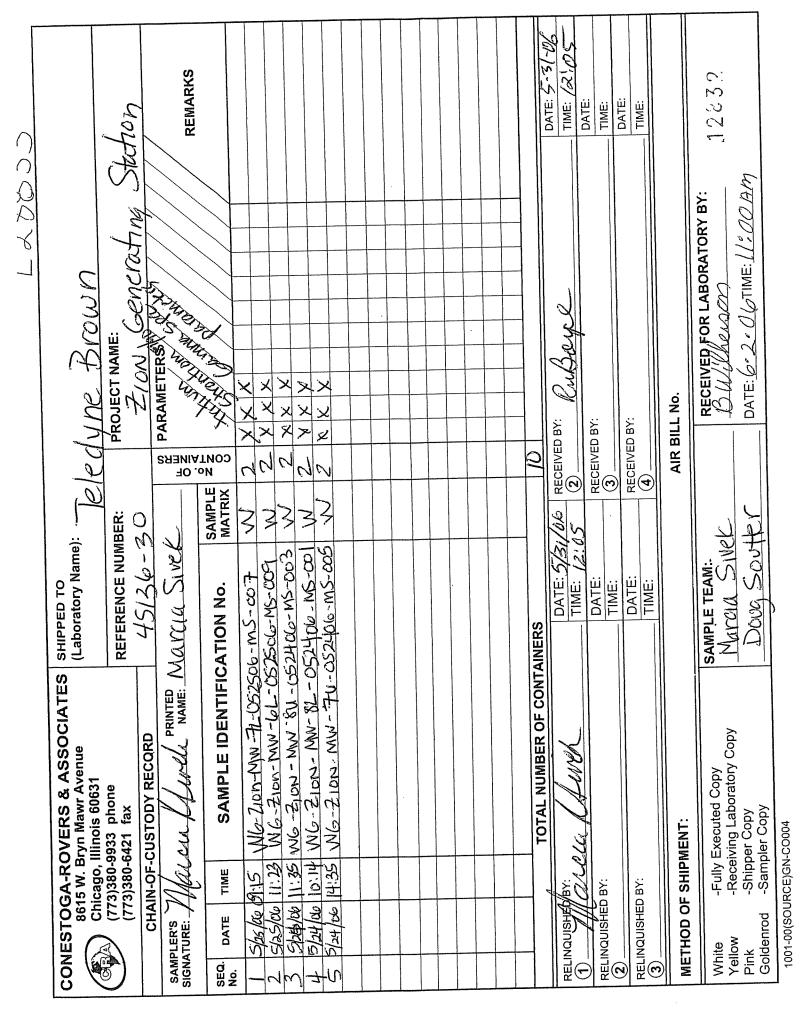

٦

1001-00(SOURCE)GN-CO004

CONESTOGA-ROVERS & ASSOCIATES SHIPPED TO 8615 W. Bryn Mawr Avenue 1. Teledy we ろいうょう	R: PROJ	ALCIA HANG PRINTED MARCIA & SIVEL DEE	TIME SAMPLE IDENTIFICATION No. SAMPLE 2 3 3	3 Wither 2 VV	4)6-ZIAN-MW 4-5U-052606 -MS-017 61242-				101AL NUMBER OF COMPANY DATE: S/3/ / DC RECEIVED BY: P. L. R. Q. L. R. D. L. R. R. D. L. R. D. R. R. D. L. R. D. R. D. L. R. D. R. D. L. R. D. R. D	Le Report TIME: 12,67 2 DECENTED BY	TIME:	DATE:         RECEIVED BY:         TIME:           SHED BY:         (4)         TIME:	AIR BILL No.		Sivel	-Sampler Copy	1001-00(SOURCE)GN-CO004
CONESTOGA-RO	Chicago, III (773)380-96 (773)380-64 CHAIN-OF-C	SAMPLER'S MALA AU	SEQ. DATE TIME No.		572406 1620						RELINQUISHED BY:	RELINQUISHED BY:	(9)	METHOD OF SHIPMENT:	White -Fully Yellow -Rece Pink -Shipt	enrod	1001-00(SOURCE)GN

### L28833 R2 / 7 of 162

5  $\zeta$ 




#### L28833 R2 / 8 of 162

							L 2 2 2 3 J
CON	NESTO(	GA-RO 15 W. Br iicago, II	ASSOCIATES venue	SHIPPED TO (Laboratory Name): -דבלכטאיני אל ניטנטיני	: Telcdy	re Brown	
5		(773)380-9933 pho (773)380-6421 fax	CORD	REFERENCE NUMBER: サジーろと ーろつ	BER:	PROJECT NAME: ビチェノロム - Zィロリ	
SAI	CHA SAMPLER'S	Ren CI-L		ugles & souther	VINERS	PA	REMARKS
SEQ. No.		TIME	SAMPLE IDENTIFICATION	No.	SAMPLE 2	(2) 44 4 4 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	
	21/22/25	9.53	W6-ZN-M4 - ZN-02U-052606	102-04			
		12/36	W6-2N-MW-2N-02L-05726	05.06		) ; ) ; ) )	
	1/24/06	11:02	W-ZN-M-MU-ZN-010-052606 × 15-05		where 2	23	
	1 1	2					
			TOTAL NIMBER OF CONTAINERS	INERS	8		
W(C	RELINQUISHE	ED BY:	(Lined	DATE: 5/3/ TIME: 11/4	106 RECEI	RECEIVED BY: Rinboy	DATE: 5 - 5/100 TIME: //,'45
기뿐(	RELINQUISHED BY:	31		DATE: TIME:	RECEI	RECEIVED BY:	TIME:
	RELINQUISHED BY:	ED BY:		DATE: TIME:	RECEI	RECEIVED BY:	DATE: TIME:
2	METHOD OF SHIPMENT:	JF SHIPN	AENT:		A	AIR BILL No.	
< >	White	-Fully E	ed Copy aboratory Copy	SAMPLE TEAM: 0.50 Her, M.	suk	RECEIVED FOR LABORATORY BY:	<mark>хву:</mark> 12791
- <u>с</u> О	Telluw Pink Goldenrod	-Shipp -Samp				DATE: 6.2.00 TIME: 11:00 AM	CAM
Ţ	1001-00(SOURCE)GN-CO004	URCE)GN-	.CO004				

L28833 R2 / 9 of 162

2000



#### L28833 R2 / 11 of 162

L28833 R2 / 12 of 162

LIMS #: L28833

06/05/06 13:15

SR08705

SR #:

Client: Exelon

Teledyne Brown Engineering Sample Receipt Verification/Variance Report

Project #: EX001-3ESPZION-06

Initiated By: BWILKERSON Receive Date: 06/05/06 Init Date: 06/05/06 Notification of Variance Contacted By: Person Notified: Notify Date: Notify Method: Notify Comment: Client Response Person Responding: Response Date: Response Method: Response Comment Comment Yes No NA Criteria 1 Shipping container custody seals present NA and intact. 2 Sample container custody seals present NA and intact. 3 Sample containers received in good Υ condition 4 Chain of custody received with samples Y 5 All samples listed on chain of custody Y received 6 Sample container labels present and Y legible. 7 Information on container labels Y correspond with chain of custody Ph at or below 2 8 Sample(s) properly preserved and in Y appropriate container(s) NA 9 Other (Describe)

L28833 R2 / 13 of 162

### Internal Chain of Custody

07/18/06 12:48 Teledyne Brown Engineering Page: 1 of 8 Internal Chain of Custody Sample # L28833-1 Containernum 1 Analyst Prod GELI EJ H-3 SO SR-90 (FAST) LCB Relinquish Date Relinquish By Received By 06/02/2006 00:00 099999 Sample Custodian Susan Ogletree 06/08/2006 13:55 Sample Custodian 029709 099999 06/08/2006 13:59 Susan Ogletree 099999 029709 Sample Custodian Sample # L28833-1 Containernum 2 Prod Analyst GELI EJ H-3 so SR-90 (FAST) LCB Relinquish Date Relinquish By Received By 06/02/2006 00:00 099999 Sample Custodian Sample # L28833-2 Containernum 1 Prod Analyst GELI EJ н-3 SO SR-90 (FAST) LCB Relinquish Date Relinquish By Received By 099999 06/02/2006 00:00 Sample Custodian 06/08/2006 13:55 Sample Custodian 029709 099999 Susan Ogletree Susan Ogletree 06/08/2006 13:59 099999 029709 Sample Custodian Sample # L28833-2 Containernum 2 Prod Analyst GELI ЕJ H-3 so SR-90 (FAST) LCB Relinquish Date Relinquish By Received By 06/02/2006 00:00 099999 Sample Custodian Sample # L28833-3 Containernum 1 Prod Analyst GELI EJ H-3 SO SR-90 (FAST) LCB Relinquish Date Relinquish By Received By 06/02/2006 00:00 099999 Sample Custodian 06/08/2006 13:55 099999 Sample Custodian 029709 Susan Ogletree 06/08/2006 13:59 Susan Ogletree 099999 029709 Sample Custodian 

L28833 R2 / 14 of 162

Sample # L28833-3

Containernum 2

L28833 R2 / 15 of 162 2 of 8 07/18/06 12:48 Page: Teledyne Brown Engineering Internal Chain of Custody Sample # L28833-3 Containernum 2 Prod Analyst GELI EJ Н-З so SR-90 (FAST) LCB Relinquish Date Relinquish By Received By 099999 Sample Custodian 06/02/2006 00:00 Sample # L28833-4 Containernum 1 Prod Analyst GELI EJ н-3 so SR-90 (FAST) LCB Relinquish Date Relinquish By Received By 06/02/2006 00:00 099999 Sample Custodian 06/08/2006 13:55 099999 Sample Custodian 029709 Susan Ogletree Susan Ogletree 099999 Sample Custodian 06/08/2006 13:59 029709 Sample # L28833-4 Containernum 2 Prod Analyst GELI EJH-3 SO SR-90 (FAST) LCB Relinquish Date Relinquish By Received By 099999 06/02/2006 00:00 Sample Custodian Sample # L28833-5 Containernum 1 Prod Analyst GELI ЕJ н-3 so SR-90 (FAST) LCB Relinquish Date Relinquish By Received By 099999 Sample Custodian 06/02/2006 00:00 Sample Custodian 029709 Susan Ogletree 06/08/2006 13:55 099999 029709 Susan Ogletree 099999 Sample Custodian 06/08/2006 13:59 Sample # L28833-5 Containernum 2 Prod Analyst GELI EJ н-3 SO SR-90 (FAST) LCB Relinquish Date Relinquish By Received By 099999 Sample Custodian 06/02/2006 00:00 Sample # L28833-6 Containernum 1 Prod Analyst GELI EJ

07/18/06 12:48		ledyne Brown Engineerin ternal Chain of Custod	-	L28833 R2 / 16 of 162 Page: 3 of 8
**************************************	****	**************************************		****
н-3	SO			
SR-90 (FAST)	LCB			
Relinquish Date Rel:	inquish By		Received By	
06/02/2006 00:00			099999	Sample Custodian
06/08/2006 13:55	099999	Sample Custodian	029709	Susan Ogletree
06/08/2006 13:59	029709	Susan Ogletree	099999	Sample Custodian
**************************************		**************************************	*****	* * * * * *
Prod GELI	Analys EJ	t		
H-3	SO			
SR-90 (FAST)	LCB			
Relinquish Date Rel:	inquish By		Received By	
06/02/2006 00:00			099999	Sample Custodian
**************************************		**************************************	****	****
Prod GELI	Analys EJ	it		
н-з	SO			
SR-90 (FAST)	LCB			
Relinquish Date Rel: 06/02/2006 00:00	inquish By		Received By 099999	Sample Custodian
06/08/2006 13:55	099999	Sample Custodian	029709	Susan Ogletree
06/08/2006 13:59	029709	Susan Ogletree	099999	Sample Custodian
**************************************		**************************************	*****	* * * * * *
Prod	Analys	t		
GELI	EJ			
н-3	SO			
SR-90 (FAST)	LCB			
Relinquish Date Rel	inquish By		Received By	
06/02/2006 00:00 *********************************		**************************************	099999 ************	Sample Custodian
Prod GELI	Analys EJ			
н-з	so			
SR-90 (FAST)	LCB			
Relinquish Date Rel:			Received By	
06/02/2006 00:00	quille Dy		099999	Sample Custodian
06/08/2006 13:55	099999	Sample Custodian	029709	Susan Ogletree
06/08/2006 13:59	029709	Susan Ogletree	099999	Sample Custodian
	* * * * * * * * * * * * * * * *	**************************************		-
Prod	Analys	t		

L28833 R2 / 17 of 162 07/18/06 12:48 Page: 4 of 8 Teledyne Brown Engineering Internal Chain of Custody Sample # L28833-8 Containernum 2 GELI EJ н-з SO SR-90 (FAST) LCB Received By Relinquish Date Relinquish By 099999 Sample Custodian 06/02/2006 00:00 Sample # L28833-9 Containernum 1 Analyst Prod GELI EJ н-3 so LCB SR-90 (FAST) Relinquish Date Relinquish By Received By 099999 Sample Custodian 06/02/2006 00:00 Sample Custodian 029709 Susan Ogletree 06/08/2006 13:55 099999 099999 Sample Custodian Susan Ogletree 06/08/2006 13:59 029709 Sample # L28833-9 Containernum 2 Analyst Prod GELI EJ H-3 SO SR-90 (FAST) LCB Relinquish Date Relinquish By Received By 099999 Sample Custodian 06/02/2006 00:00 Sample # L28833-10 Containernum 1 Prod Analyst GELI ЕJ н-з SO SR-90 (FAST) LCB Received By Relinquish Date Relinquish By 099999 Sample Custodian 06/02/2006 00:00 029709 Susan Ogletree 06/08/2006 13:55 099999 Sample Custodian 099999 Sample Custodian Susan Ogletree 06/08/2006 13:59 029709 Sample # L28833-10 Containernum 2 Analyst Prod GELI EJ SO н-з SR-90 (FAST) LCB Relinquish Date Relinquish By Received By 099999 Sample Custodian 06/02/2006 00:00 Sample # L28833-11 Containernum 1 Analyst Prod GELI EJ

07/18/06 12:48		ledyne Brown Engineering nternal Chain of Custody		L28833 R2 / 18 of 162 Page: 5 of 8
**************************************		**************************************	*****	* * * * *
н-3	so			
SR-90 (FAST)	LCB			
Relinquish Date Rel:	inquish By		Received By	
06/02/2006 00:00			099999	Sample Custodian
06/08/2006 13:55	099999	Sample Custodian	029709	Susan Ogletree
06/08/2006 13:59	029709	Susan Ogletree	099999	Sample Custodian
**************************************		**************************************	* * * * * * * * * * * * * * * * * * *	* * * * *
Prod GELI	Analy: EJ	st		
н-З	SO			
SR-90 (FAST)	LCB			
Relinquish Date Rel	inquish By		Received By	
06/02/2006 00:00			099999	Sample Custodian
**************************************	С	**************************************	*****	****
Prod GELI	Analy: EJ	st		
H-3	SO			
SR-90 (FAST)	LCB			
Relinquish Date Rel. 06/02/2006 00:00	inquish By		Received By 099999	Sample Custodian
06/08/2006 13:55	099999	Sample Custodian	029709	Susan Ogletree
06/08/2006 13:59	029709	Susan Ogletree	099999	Sample Custodian
**************************************		**************************************	*****	****
Prod	Analys	st		
GELI	EJ			
H-3	SO			
SR-90 (FAST)	LCB		<b>.</b>	
Relinquish Date Rel	ınquısh By		Received By 099999	Sample Custodian
06/02/2006 00:00 *********************************		**************************************		-
Prod GELI	Analy: EJ			
H-3	SO			
SR-90 (FAST)	LCB			
Relinquish Date Rel			Received By	
06/02/2006 00:00			099999	Sample Custodian
06/08/2006 13:55	099999	Sample Custodian	029709	Susan Ogletree
06/08/2006 13:59	029709	Susan Ogletree	099999	Sample Custodian
	*****	**************************************	* * * * * * * * * * * * * * * * * * *	
Prod	Analy			

L28833 R2 / 19 of 162 07/18/06 12:48 Page: 6 of 8 Teledyne Brown Engineering Internal Chain of Custody Sample # L28833-13 Containernum 2 GELI EJ H-3 so SR-90 (FAST) LCB Relinquish Date Relinquish By Received By 099999 Sample Custodian 06/02/2006 00:00 Sample # L28833-14 Containernum 1 Prod Analyst GELI ЕJ н-з so SR-90 (FAST) LCB Relinquish Date Relinquish By Received By 06/02/2006 00:00 099999 Sample Custodian 06/08/2006 13:55 099999 Sample Custodian 029709 Susan Ogletree Susan Ogletree 099999 06/08/2006 13:59 Sample Custodian 029709 ***** Sample # L28833-14 Containernum 2 Prod Analyst GELI EJ H-3 SO SR-90 (FAST) LCB Relinquish Date Relinquish By Received By 099999 06/02/2006 00:00 Sample Custodian Sample # L28833-15 Containernum 1 Prod Analyst GELI ЕJ н-з so SR-90 (FAST) LCB Relinquish Date Relinquish By Received By 099999 06/02/2006 00:00 Sample Custodian Sample Custodian 029709 Susan Ogletree 06/08/2006 13:55 099999 029709 Susan Ogletree 099999 Sample Custodian 06/08/2006 13:59 Sample # L28833-15 Containernum 2 Prod Analyst GELI EJ н-з SO SR-90 (FAST) LCB Relinquish Date Relinquish By Received By 099999 Sample Custodian 06/02/2006 00:00 Sample # L28833-16 Containernum 1 Prod Analyst GELI EJ

07/18/06 12:48		ledyne Brown Engineerin Nternal Chain of Custod		L28833 R2 / 20 of 162 Page: 7 of 8
**************************************		**************************************	*****	* * * * * *
н-3	SO			
SR-90 (FAST)	LCB			
Relinquish Date Rel	inquish By		Received By	
06/02/2006 00:00			099999	Sample Custodian
06/08/2006 13:55	099999	Sample Custodian	029709	Susan Ogletree
06/08/2006 13:59	029709	Susan Ogletree	099999	Sample Custodian
**************************************		**************************************	*****	* * * * *
Prod GELI	Analys EJ	st		
Н-З	SO			
SR-90 (FAST)	LCB			
Relinquish Date Rel	inquish By		Received By	
06/02/2006 00:00			099999	Sample Custodian
**************************************		**************************************	*****	* * * * * *
Prod GELI	Analys EJ	st		
н-3	SO			
SR-90 (FAST)	LCB			
Relinquish Date Rel 06/02/2006 00:00	inquish By		Received By 099999	Sample Custodian
06/08/2006 13:55	099999	Sample Custodian	029709	Susan Ogletree
06/08/2006 13:59	029709	Susan Ogletree	099999	Sample Custodian
**************************************		**************************************	*****	* * * * * *
Prod	Analys	st		
GELI	EJ			
H-3	SO			
SR-90 (FAST)	LCB			
Relinquish Date Rel	inquish By		Received By 099999	Sample Custodian
06/02/2006 00:00 *********************************		**************************************		-
Prod GELI	Analy: EJ			
H-3	SO			
SR-90 (FAST)	LCB			
Relinquish Date Rel			Received By	
06/02/2006 00:00			099999	Sample Custodian
06/08/2006 13:55	099999	Sample Custodian	029709	Susan Ogletree
06/08/2006 13:59	029709	Susan Ogletree	099999	Sample Custodian
		**************************************	*****	*****
Prod	Analys			

L28833 R2 / 21 of 162 07/18/06 12:48 Page: 8 of 8 Teledyne Brown Engineering Internal Chain of Custody Sample # L28833-18 Containernum 2 GELI EJ H-3 SO SR-90 (FAST) LCB Relinquish Date Relinquish By Received By 099999 Sample Custodian 06/02/2006 00:00 Sample # L28833-19 Containernum 1 Prod Analyst GELI EJ н-з so SR-90 (FAST) LCB Relinquish Date Relinquish By Received By 06/02/2006 00:00 099999 Sample Custodian 06/08/2006 13:55 099999 Sample Custodian 029709 Susan Ogletree Susan Ogletree 099999 Sample Custodian 06/08/2006 13:59 029709 ***** Sample # L28833-19 Containernum 2 Analyst Prod GELI EJ H-3 SO SR-90 (FAST) LCB Relinquish Date Relinquish By Received By 099999 06/02/2006 00:00 Sample Custodian Sample # L28833-20 Containernum 1 Prod Analyst GELI ЕJ н-3 so SR-90 (FAST) LCB Relinquish Date Relinquish By Received By 099999 Sample Custodian 06/02/2006 00:00 Sample Custodian 029709 Susan Ogletree 06/08/2006 13:55 099999 Susan Ogletree 099999 Sample Custodian 06/08/2006 13:59 029709 Sample # L28833-20 Containernum 2 Analyst Prod GELI EJ н-з SO SR-90 (FAST) LCB Relinquish Date Relinquish By Received By 099999 06/02/2006 00:00 Sample Custodian

Page 1 of 5

#### 07/18/06

#### Teledyne Brown Engineering Internal Chain of Custody Supplemental Sheet

*****	******	*****	*****	****
L28833-1	WG	WG-ZION-MW-4U-05240	6-MB-002	
Process step	Prod		Analyst	Date
Login			BWILKERSON	06/02/06
Aliquot	GELI		EJ	06/08/06
Aliquot	Н-З		SO	06/08/06
Aliquot	SR-90	(FAST)	LCB	06/09/06
Count Room	GELI		MVW	06/08/06
Count Room	Н-З		KPW	06/08/06
Count Room	SR-90	(FAST)	KPW	06/10/06
*****	******	******	*****	*****
L28833-2	WG	WG-ZION-MW-4L-05240	6-MB-004	
Process step	Prod		Analyst	Date
Login			BWILKERSON	06/02/06
Aliquot	GELI		EJ	06/08/06
Aliquot	Н-З		SO	06/08/06
Aliquot	SR-90	(FAST)	LCB	06/09/06
Count Room	GELI		MVW	06/08/06
Count Room	Н-З		KPW	06/09/06
Count Room	SR-90	(FAST)	KPW	06/10/06
				******
L28833-3	WG	WG-ZION-MW-7L-05250		
Process step	Prod		Analyst	Date
Login			BWILKERSON	06/02/06
Aliquot	GELI		EJ	06/08/06
Aliquot	Н-З		SO	06/08/06
Aliquot	SR-90	(FAST)	LCB	06/09/06
Count Room	GELI		MVW	06/09/06
Count Room	H-3		KPW	06/09/06
Count Room	SR-90	(FAST)	KPW	06/10/06
				******
<b>L28833-4</b> Process step	WG	WG-ZION-MW-6L-05250		
Login	Prod		Analyst	Date
Aliquot	GELI		BWILKERSON	06/02/06
Aliquot	H-3		EJ SO	06/08/06 06/08/06
Aliquot	SR-90	(FAST)	LCB	06/09/06
Count Room	GELI	(TADI)	MVW	06/09/06
Count Room	Н-З		KPW	06/09/06
Count Room	SR-90	(FAST)	KPW	06/10/06
				****
L28833-5	WG	WG-ZION-MW-8U-05240		
Process step	Prod		Analyst	Date
Login			BWILKERSON	06/02/06
Aliquot	GELI		EJ	06/08/06
Aliquot	H-3		SO	06/08/06
Aliquot	SR-90	(FAST)	LCB	06/09/06
Count Room	GELI		MVW	06/09/06

#### Teledyne Brown Engineering Internal Chain of Custody Supplemental Sheet

#### L28833

L28833-5	WG	WG-ZION-MW-8U-05240	6-MS-003	
Count Room	Н-З		KPW	06/09/06
Count Room	SR-90	(FAST)	KPW	06/10/06
*****			*****	*****
L28833-6	WG	WG-ZION-MW-8L-05240	6-MS-001	
Process step	Prod		Analyst	Date
Login			BWILKERSON	06/02/06
Aliquot	GELI		EJ	06/08/06
Aliquot	Н-З		SO	06/08/06
Aliquot	SR-90	(FAST)	LCB	06/09/06
Count Room	GELI		MVW	06/09/06
Count Room	Н-З		KPW	06/09/06
Count Room	SR-90	(FAST)	KPW	06/10/06
*****	*****	*****	****	******
L28833-7	WG	WG-ZION-MW-7U-05240	6-MS-005	
Process step	Prod		Analyst	Date
Login			BWILKERSON	06/02/06
Aliquot	GELI		EJ	06/08/06
Aliquot	Н-З		SO	06/08/06
Aliquot	SR-90	(FAST)	LCB	06/09/06
Count Room	GELI		MVW	06/09/06
Count Room	Н-З		KPW	06/09/06
Count Room	SR-90	(FAST)	KPW	06/10/06
*****	*****	*****	*****	******
L28833-8	WG	WG-ZN-MW-ZN-03U-052	506-DS-01	
Process step	Prod		Analyst	Date
Login			BWILKERSON	06/02/06
Aliquot			EJ	
ALIQUUL	GELI		60	06/08/06
Aliquot	GELI H-3		SO	06/08/06 06/08/06
-		(FAST)		
Aliquot	H-3	(FAST)	SO	06/08/06
Aliquot Aliquot	H-3 SR-90	(FAST)	SO LCB	06/08/06 06/09/06
Aliquot Aliquot Count Room	H-3 SR-90 GELI H-3	(FAST) (FAST)	SO LCB MVW	06/08/06 06/09/06 06/09/06
Aliquot Aliquot Count Room Count Room Count Room	H-3 SR-90 GELI H-3 SR-90	(FAST)	SO LCB MVW KPW KPW	06/08/06 06/09/06 06/09/06 06/09/06
Aliquot Aliquot Count Room Count Room Count Room	H-3 SR-90 GELI H-3 SR-90	(FAST)	SO LCB MVW KPW KPW	06/08/06 06/09/06 06/09/06 06/09/06 06/10/06
Aliquot Aliquot Count Room Count Room Count Room	H-3 SR-90 GELI H-3 SR-90	(FAST)	SO LCB MVW KPW KPW	06/08/06 06/09/06 06/09/06 06/09/06 06/10/06
Aliquot Aliquot Count Room Count Room ************ L28833-9 Process step Login	H-3 SR-90 GELI H-3 SR-90 ******	(FAST)	SO LCB MVW KPW KPW <b>506-DS-02</b>	06/08/06 06/09/06 06/09/06 06/09/06 06/10/06
Aliquot Aliquot Count Room Count Room ***********************************	H-3 SR-90 GELI H-3 SR-90 ******	(FAST)	SO LCB MVW KPW KPW <b>506-DS-02</b> <u>Analyst</u>	06/08/06 06/09/06 06/09/06 06/09/06 06/10/06
Aliquot Aliquot Count Room Count Room *********** L28833-9 Process step Login Aliquot Aliquot	H-3 SR-90 GELI H-3 SR-90 ****** WG <u>Prod</u>	(FAST)	SO LCB MVW KPW KPW <b>506-DS-02</b> <u>Analyst</u> BWILKERSON	06/08/06 06/09/06 06/09/06 06/10/06 ***********************************
Aliquot Aliquot Count Room Count Room ***********************************	H-3 SR-90 GELI H-3 SR-90 ******* WG <u>Prod</u> GELI	(FAST)	SO LCB MVW KPW <b>506-DS-02</b> <u>Analyst</u> BWILKERSON EJ	06/08/06 06/09/06 06/09/06 06/10/06 ***********************************
Aliquot Aliquot Count Room Count Room ***********************************	H-3 SR-90 GELI H-3 SR-90 ****** WG <u>Prod</u> GELI H-3	(FAST) ************************************	SO LCB MVW KPW <b>************************************</b>	06/08/06 06/09/06 06/09/06 06/10/06 ***********************************
Aliquot Aliquot Count Room Count Room ***********************************	H-3 SR-90 GELI H-3 SR-90 ****** WG Prod GELI H-3 SR-90	(FAST) ************************************	SO LCB MVW KPW <b>SO6-DS-O2</b> Analyst BWILKERSON EJ SO LCB	06/08/06 06/09/06 06/09/06 06/10/06 ***********************************
Aliquot Aliquot Count Room Count Room ***********************************	H-3 SR-90 GELI H-3 SR-90 ****** WG Prod GELI H-3 SR-90 GELI H-3	(FAST) ************************************	SO LCB MVW KPW <b>************************************</b>	06/08/06 06/09/06 06/09/06 06/10/06 ************************************
Aliquot Aliquot Count Room Count Room **************** L28833-9 Process step Login Aliquot Aliquot Aliquot Count Room Count Room	H-3 SR-90 GELI H-3 SR-90 ****** WG Prod GELI H-3 SR-90 GELI H-3 SR-90	(FAST) ************************************	SO LCB MVW KPW <b>************************************</b>	06/08/06 06/09/06 06/09/06 06/10/06 ************************************
Aliquot Aliquot Count Room Count Room **************** L28833-9 Process step Login Aliquot Aliquot Aliquot Count Room Count Room	H-3 SR-90 GELI H-3 SR-90 ****** WG Prod GELI H-3 SR-90 GELI H-3 SR-90	(FAST) ************************************	SO LCB MVW KPW <b>************************************</b>	06/08/06 06/09/06 06/09/06 06/10/06 ***********************************
Aliquot Aliquot Count Room Count Room <b>Count Room</b> <b>*************</b> <b>L28833-9</b> <u>Process step</u> Login Aliquot Aliquot Aliquot Count Room Count Room Count Room	H-3 SR-90 GELI H-3 SR-90 ******* WG Prod GELI H-3 SR-90 GELI H-3 SR-90	(FAST) ************************************	SO LCB MVW KPW <b>************************************</b>	06/08/06 06/09/06 06/09/06 06/10/06 ************************************
Aliquot Aliquot Count Room Count Room <b>Count Room</b> <b>************</b> <b>L28833-9</b> <u>Process step</u> Login Aliquot Aliquot Aliquot Count Room Count Room <b>Count Room</b> <b>***********</b>	H-3 SR-90 GELI H-3 SR-90 ****** WG GELI H-3 SR-90 GELI H-3 SR-90 ******	(FAST) ************************************	SO LCB MVW KPW <b>************************************</b>	06/08/06 06/09/06 06/09/06 06/10/06 ***********************************

#### Teledyne Brown Engineering Internal Chain of Custody Supplemental Sheet

#### L28833

L28833-10	WG	WG-ZN-MW-ZN-03L-052	506-DS-03	
Aliquot	GELI		EJ	06/08/06
Aliquot	Н-З		SO	06/08/06
Aliquot	SR-90	(FAST)	LCB	06/09/06
Count Room	GELI		MVW	06/09/06
Count Room	Н-З		KPW	06/09/06
Count Room	SR-90	(FAST)	KPW	06/10/06
********	******	*****	****	*****
L28833-11	WG	WG-ZN-MW-ZN-02U-052	606-DS-04	
Process step	Prod		Analyst	Date
Login			BWILKERSON	06/02/06
Aliquot	GELI		EJ	06/08/06
Aliquot	Н-З		SO	06/08/06
Aliquot	SR-90	(FAST)	LCB	06/09/06
Count Room	GELI		MVW	06/09/06
Count Room	Н-З		KPW	06/09/06
Count Room	SR-90	(FAST)	KPW	06/10/06
*****	******	*****	*****	******
L28833-12	WG	WG-ZN-MW-ZN-02L-052	606-DS-06	
<u>Process step</u>	Prod		Analyst	Date
Login			BWILKERSON	06/02/06
Aliquot	GELI		EJ	06/08/06
Aliquot	H-3		SO	06/08/06
Aliquot	SR-90	(FAST)	LCB	06/09/06
Count Room	GELI		MVW	06/09/06
Count Room Count Room	GELI H-3		MVW KPW	06/09/06 06/09/06
		(FAST)		
Count Room Count Room	H-3 SR-90		KPW KPW	06/09/06
Count Room Count Room	H-3 SR-90		KPW KPW *******	06/09/06 06/10/06
Count Room Count Room *********	H-3 SR-90 ******	****	KPW KPW *******	06/09/06 06/10/06
Count Room Count Room **************** L28833-13 Process step Login	H-3 SR-90 ****** WG	****	KPW KPW ********************************	06/09/06 06/10/06 *******
Count Room Count Room ***********************************	H-3 SR-90 ****** WG	****	KPW KPW ********************************	06/09/06 06/10/06 ***********************************
Count Room Count Room **************** L28833-13 Process step Login Aliquot Aliquot	H-3 SR-90 ******* WG <u>Prod</u>	****	KPW KPW ********************************	06/09/06 06/10/06 ***********************************
Count Room Count Room ***********************************	H-3 SR-90 ******* WG <u>Prod</u> GELI	****	KPW KPW ********************************	06/09/06 06/10/06 ***********************************
Count Room Count Room ************ L28833-13 Process step Login Aliquot Aliquot	H-3 SR-90 ******* WG Prod GELI H-3	**************************************	KPW KPW ********************************	06/09/06 06/10/06 ***********************************
Count Room Count Room ***********************************	H-3 SR-90 ******* WG Prod GELI H-3 SR-90	**************************************	KPW KPW <b>606-DS-05</b> <u>Analyst</u> BWILKERSON EJ SO LCB	06/09/06 06/10/06 ***********************************
Count Room Count Room ***********************************	H-3 SR-90 ******* WG Prod GELI H-3 SR-90 GELI	**************************************	KPW KPW ********************************	06/09/06 06/10/06 ***********************************
Count Room Count Room ***********************************	H-3 SR-90 ******* WG Prod GELI H-3 SR-90 GELI H-3 SR-90	**************************************	KPW KPW ********************************	06/09/06 06/10/06 ***********************************
Count Room Count Room ***********************************	H-3 SR-90 ******* WG Prod GELI H-3 SR-90 GELI H-3 SR-90	**************************************	KPW KPW ************************************	06/09/06 06/10/06 ***********************************
Count Room Count Room ***********************************	H-3 SR-90 ******* WG Prod GELI H-3 SR-90 GELI H-3 SR-90 ******	<pre>************************************</pre>	KPW KPW ************************************	06/09/06 06/10/06 ***********************************
Count Room Count Room ***********************************	H-3 SR-90 ****** WG Prod GELI H-3 SR-90 GELI H-3 SR-90 ******	<pre>************************************</pre>	KPW KPW ********************************	06/09/06 06/10/06 ***********************************
Count Room Count Room ***************** L28833-13 Process step Login Aliquot Aliquot Aliquot Count Room Count Room Count Room ***********************************	H-3 SR-90 ****** WG Prod GELI H-3 SR-90 GELI H-3 SR-90 ******	<pre>************************************</pre>	KPW KPW ************************************	06/09/06 06/10/06 ***********************************
Count Room Count Room *********** L28833-13 Process step Login Aliquot Aliquot Aliquot Count Room Count Room Count Room *********** L28833-14 Process step Login Aliquot Aliquot	H-3 SR-90 ****** WG Prod GELI H-3 SR-90 GELI H-3 SR-90 ****** WG Prod	<pre>************************************</pre>	KPW KPW ************************************	06/09/06 06/10/06 ***********************************
Count Room Count Room ***************** L28833-13 Process step Login Aliquot Aliquot Aliquot Count Room Count Room Count Room ***********************************	H-3 SR-90 ******* WG Prod GELI H-3 SR-90 GELI H-3 SR-90 ****** WG Prod GELI	<pre>************************************</pre>	KPW KPW ************************************	06/09/06 06/10/06 ***********************************
Count Room Count Room *********** L28833-13 Process step Login Aliquot Aliquot Aliquot Count Room Count Room Count Room ***********************************	H-3 SR-90 ******* WG Prod GELI H-3 SR-90 GELI H-3 SR-90 ****** WG Prod GELI H-3 SR-90 GELI	WG-ZN-MW-ZN-01U-052 (FAST) (FAST) ************************************	KPW KPW ************************************	06/09/06 06/10/06 ***********************************
Count Room Count Room *********** L28833-13 Process step Login Aliquot Aliquot Aliquot Count Room Count Room Count Room ***********************************	H-3 SR-90 ******* WG Prod GELI H-3 SR-90 GELI H-3 SR-90 ******* WG Prod GELI H-3 SR-90 GELI H-3 SR-90 GELI H-3	<pre>wG-ZN-MW-ZN-01U-052 (FAST) (FAST) ************************************</pre>	KPW KPW ************************************	06/09/06 06/10/06 ***********************************
Count Room Count Room *********** L28833-13 Process step Login Aliquot Aliquot Aliquot Count Room Count Room Count Room ***********************************	H-3 SR-90 ******* WG Prod GELI H-3 SR-90 GELI H-3 SR-90 ****** WG Prod GELI H-3 SR-90 GELI	WG-ZN-MW-ZN-01U-052 (FAST) (FAST) ************************************	KPW KPW ************************************	06/09/06 06/10/06 ***********************************

Page 4 of 5

07/18/06

#### Teledyne Brown Engineering Internal Chain of Custody Supplemental Sheet

L2	8	8	3	3
ĽŻ	8	8	ک	3

*****	*****	******	****	****
L28833-15	WG	WG-ZN-MW-ZN-09-0526	06-DS-08	
Process step	Prod		Analyst	Date
Login			BWILKERSON	06/02/06
Aliquot	GELI		EJ	06/08/06
Aliquot	Н-З		SO	06/08/06
Aliquot	SR-90	(FAST)	LCB	06/09/06
Count Room	GELI		MVW	06/09/06
Count Room	H-3		KPW	06/09/06
Count Room	SR-90	(FAST)	KPW	06/10/06
*****	*****	*****	****	*****
L28833-16	WG	WG-ZN-MW-ZN-09-0526	06-DS-09	
Process step	Prod		Analyst	Date
Login			BWILKERSON	06/02/06
Aliquot	GELI		EJ	06/08/06
Aliquot	Н-З		SO	06/08/06
Aliquot	SR-90	(FAST)	LCB	06/09/06
Count Room	GELI		MVW	06/09/06
Count Room	Н-З		KPW	06/09/06
Count Room	SR-90	(FAST)	KPW	06/10/06
*****	******	******	*****	*****
L28833-17	WG	WG-ZION-MW-6U-05260	6-MS-011	
Process step	Prod		Analyst	Date
Login			BWILKERSON	06/02/06
Aliquot	GELI		EJ	06/08/06
Aliquot	H-3		SO	06/08/06
Aliquot	SR-90	(FAST)	LCB	06/09/06
Count Room	GELI		MVW	06/09/06
Count Room	Н-З		KPW	06/09/06
Count Room	SR-90	(FAST)	KPW	06/10/06
	******	* * * * * * * * * * * * * * * * * * * *	****	*****
L28833-18	WG	WG-ZION-MW-5L-05260	6-MS-013	
Process step	Prod		Analyst	Date
Login			BWILKERSON	06/02/06
Aliquot	GELI		EJ	06/08/06
Aliquot	Н-З		SO	06/08/06
Aliquot	SR-90	(FAST)	LCB	06/09/06
Count Room	GELI		MVW	06/09/06
Count Room	H-3		KPW	06/09/06
Count Room	SR-90	(FAST)	KPW	06/10/06
				******
L28833-19	WG	WS-ZION-LAKE-052606		
Process step	Prod		Analyst	Date
Login			RCHARLES	06/02/06
Aliquot	GELI		EJ	06/08/06
Aliquot	H-3		SO	06/08/06
Aliquot	SR-90	(FAST)	LCB	06/09/06
Count Room	GELI		MVW	06/09/06

#### Teledyne Brown Engineering Internal Chain of Custody Supplemental Sheet

#### L28833

L28833-19	WG	WS-ZION-LAKE-052606	-MS-015	
Count Room	Н-З		KPW	06/09/06
Count Room	SR-90	(FAST)	KPW	06/10/06
*****	*****	*****	*****	* * * * * * * * * * * * * * * * * * * *
L28833- 19C1	WG	WS-ZION-LAKE-052606	-MS-015	
Process step	Prod		Analyst	Date
Login			RCHARLES	06/02/06
Aliquot	SR-90	(FAST)	LCB	06/09/06
Count Room	SR-90	(FAST)	KOJ	06/21/06
******	*****	*****	*****	*****
L28833-20	WG	WG-ZION-MW-5U-05260	6-MS-017	
Process step	Prod		Analyst	Date
Login			BWILKERSON	06/02/06
Aliquot	GELI		EJ	06/08/06
Aliquot	Н-З		SO	06/08/06
Aliquot	SR-90	(FAST)	LCB	06/09/06
Count Room	GELI		MVW	06/09/06
Count Room	H-3		KPW	06/09/06
Count Room	SR-90	(FAST)	KPW	06/10/06

### Analytical Results Summary

rn

TELEDYNE BROWN ENGINEERING, INC. A Teledyne Technologies Company

### L28833

Conestoga-Rovers & Associates

Kathy Shaw														
Sample ID: V Station:	Sample ID: WG-ZION-MW-4U-052406-MB-002 Station:	4U-052406-N	1B-002		Collect Start: Collect Ston:	Start: 0. Ston:	Collect Start: 05/24/2006 00:00 Collect Ston:	00:		Matrix: Gr Volume:	Ground Water	er	N)	(MG)
Description:					Receive	Date: 0	Receive Date: 06/02/2006		W %	% Moisture:				
LIMS Number: L	L28833-1													
Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Values	
H-3	2010	-3.91E+01	1.04E+02	1.76E+02	pCi/L		10	Ш		06/08/06	60	W	U	
TOTAL SR	2018	5.15E-01	7.41E-01	1.39E+00	pCi/L		450	ml	05/24/06 00:00	06/10/06	150	M	n	
MN-54	2007	1.15E+00	2.23E+00	3.76E+00	pCi/L		3239.8	m	05/24/06 00:00	06/08/06	34625	Sec	U	
CO-58	2007	-8.73E-01	2.30E+00	3.74E+00	pCi/L		3239.8	ml	05/24/06 00:00 06/08/06	06/08/06	34625	Sec	U No	
FE-59	2007	-4.37E-01	4.83E+00	7.98E+00	pCi/L		3239.8	ml	05/24/06 00:00 06/08/06	06/08/06	34625	Sec	U No	
CO-60	2007	6.79E-01	2.13E+00	3.56E+00	pCi/L		3239.8	m	05/24/06 00:00 06/08/06	06/08/06	34625	Sec	U   No	
ZN-65	2007	1.23E-01	4.59E+00	7.62E+00	pCi/L		3239.8	ml	05/24/06 00:00 06/08/06	06/08/06	34625	Sec	U No	
NB-95	2007	9.94E-01	2.41E+00	4.07E+00	pCi/L		3239.8	ml	05/24/06 00:00 06/08/06	06/08/06	34625	Sec	U No	_
ZR-95	2007	-3.72E+00	4.24E+00	6.78E+00	pCi/L		3239.8	ml	05/24/06 00:00 06/08/06	06/08/06	34625	Sec	No No	
CS-134	2007	5.59E+00	4.71E+00	3.84E+00	pCi/L		3239.8	ml	05/24/06 00:00		34625	Sec	U No	
CS-137	2007	-4.71E-01	2.30E+00	3.73E+00	pCi/L		3239.8	ml	05/24/06 00:00	06/08/06	34625	Sec	U No	
BA-140	2007	6.99E+00	1.72E+01	2.88E+01	pCi/L		3239.8	m	05/24/06 00:00	06/08/06	34625	Sec	No No	
I.A-140	2007	2.08E+00	5.62E+00	9.50E+00	pCi/L		3239.8	Ē	05/24/06 00:00	06/08/06	34625	Sec	U No	_

Flag Values U =

11 11 +

Compound/Analyte not detected or less than 3 sigma Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only) Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value MDC exceeds customer technical specification Low recovery High recovery

U* High Spec L H

Bolded text indicates reportable value.

||

MDC - Minimum Detectable Concentration

unless otherwise noted

Yes = Peak identified in gamma spectrum **** Results are reported on an as received basis

No = Peak not identified in gamma spectrum



Conestoga-Rovers & Associates

Kathy Shaw					C.							A 11 YO DOOR AND A	
Sample ID: W Station:	Sample ID: WG-ZION-MW-4L-052406-MB-004 Station:	-4L-052406-M	B-004		Collec Collec	Collect Start: 05 Collect Stop:	Collect Start: 05/24/2006 13:45 Collect Stop:	45		l	Ground Water	4	(MG)
Description:					Receiv	Receive Date: 06/02/2006	6/02/2006		W %	% Moisture:			
LIMS Number: L28833-2	28833-2												
Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Values
H_3	2010	2.93E+01	1.05E+02	1.70E+02	pCi/L		10	ml		90/60/90	60	M	U
TOTAL SR	2018	5.54E-01	5.03E-01	9.20E-01	pCi/L		450	ml	05/24/06 13:45 06/10/06	06/10/06	150	M	U
K-40	2007	8.59E+01	4.42E+01	3.27E+01	pCi/L		3310.82	m	05/24/06 13:45	06/08/06	34628	Sec	+ Yes
MN-54	2007	-1.16E+00	2.19E+00	3.51E+00	pCi/L		3310.82	ml	05/24/06 13:45	06/08/06	34628	Sec	U No
CO-58	2007	-1.96E+00	2.29E+00	<b>3.61E+00</b>	pCi/L		3310.82	m	05/24/06 13:45 06/08/06	06/08/06	34628	Sec	U No
FE-59	2007	2.74E+00	4.75E+00	8.08E+00	pCi/L		3310.82	Ш	05/24/06 13:45	06/08/06	34628	Sec	U No
CO-60	2007	8.46E-02	2.28E+00	3.74E+00	pCi/L		3310.82	m	05/24/06 13:45 06/08/06	06/08/06	34628	Sec	U No
ZN-65	2007	6.17E+00	4.52E+00	7.96E+00	pCi/L		3310.82	m	05/24/06 13:45 06/08/06	06/08/06	34628	Sec	U No
NR-95	2007	5.11E-01	2.34E+00	3.87E+00	pCi/L		3310.82	m	05/24/06 13:45 06/08/06	06/08/06	34628	Sec	U No
ZR-95	2007	1.27E-01	4.15E+00	6.83E+00	pCi/L		3310.82	m	05/24/06 13:45	06/08/06	34628	Sec	U No
CS-134	2007	4.36E+00	3.99E+00	3.80E+00	pCi/L		3310.82	ш	05/24/06 13:45	06/08/06	34628	Sec	U No
CS-137	2007	-1.55E-01	2.18E+00	<b>3.60E+00</b>	pCi/L		3310.82	ш	05/24/06 13:45	06/08/06	34628	Sec	U No
BA-140	2007	3.53E+00	1.65E+01	2.70E+01	pCi/L		3310.82	m	05/24/06 13:45	06/08/06	34628	Sec	U No
I.A-140	2007	2.06E+00	5.50E+00	9.33E+00	pCi/L		3310.82	Ш	05/24/06 13:45 06/08/06	06/08/06	34628	Sec	U No

Yes = Peak identified in gamma spectrum **** Results are reported on an as received basis unless otherwise noted

MDC - Minimum Detectable Concentration

No = Peak not identified in gamma spectrum

Flag Values U =

Compound/Analyte not detected or less than 3 sigma + U* High L H

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only) Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value MDC exceeds customer technical specification Low recovery High recovery

Bolded text indicates reportable value.

sport of Analysis	07/18/06 11:52
Rep	l

BROWN ENGINEERING, INC. A Teledyne Technologies Company

# L28833

Conestoga-Rovers & Associates

Kathy Shaw					r.v.			a de la companya de l						
Sample ID: WG Station:	-MM-NOIZ-	WG-ZION-MW-7L-052506-MS-007	IS-007		Collec Collec	Collect Start: 0: Collect Stop:	Collect Start: 05/25/2006 09:15 Collect Stop:	:15		Matrix: Ground Water Volume:	ound Wat	ST.		(MG)
Description: LIMS Number: L28	L28833-3				Receiv	e Date: 0	Receive Date: 06/02/2006		V %	% Moisture:				
Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Values	s
H_3	2010	-2.27E+01	1.00E+02	1.68E+02	pCi/L		10	ml		90/60/90	60	X	n	
TOTAL SR	2018	4.12E-01	6.46E-01	1.22E+00	pCi/L		450	m	05/25/06 09:15	06/10/06	150	M	U	
MN-54	2007	3.41E-01	2.84E+00	4.68E+00	pCi/L		3096.32	m	05/25/06 09:15	90/60/90	14466	Sec	N N	No
CO-58	2007	7.18E-02	3.39E+00	5.54E+00	pCi/L		3096.32	m	05/25/06 09:15 06/09/06	90/60/90	14466	Sec		No
EF-50	2007	2.78E+00	_	1.16E+01	pCi/L		3096.32	m	05/25/06 09:15 06/09/06	90/60/90	14466	Sec	N	No
U)-60	2007	-1.53E-01		5.64E+00	pCi/L		3096.32	Ш	05/25/06 09:15	90/60/90	14466	Sec		No
ZN-65	2007	9.12E+00	7.95E+00	1.22E+01	pCi/L		3096.32	m	05/25/06 09:15 06/09/06	06/09/06	14466	Sec	Z D	No
NR-95	2007	2.82E+00	3.27E+00	5.64E+00	pCi/L		3096.32	ml	05/25/06 09:15		14466	Sec	D	No
ZR-95	2007	1.25E+00	5.64E+00	9.40E+00	pCi/L		3096.32	ml	05/25/06 09:15	90/60/90	14466	Sec	N	No
CS-134	2007	1.03E+01	4.84E+00	6.29E+00	pCi/L		3096.32	ml	05/25/06 09:15	90/60/90	14466	Sec	N=	No
<u>CS-137</u>	2007	1.25E+00	2.93E+00	4.99E+00	pCi/L		3096.32	ml	05/25/06 09:15	06/09/06	14466	Sec	Z D	No
BA-140	2007	-5.88E+00	2.12E+01	3.42E+01	pCi/L		3096.32	ml	05/25/06 09:15	06/09/06	14466	Sec	n	No
I.A-140	2007	-5.79E-01	7.18E+00	1.18E+01	pCi/L		3096.32	Ш	05/25/06 09:15 06/09/06	90/60/90	14466	Sec		No

Compound/Analyte not detected or less than 3 sigma Flag Values U = 11 11 + 5

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only) Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value MDC exceeds customer technical specification Low recovery High recovery 

High Spec

ЪН

Bolded text indicates reportable value.

20 of Page 3

MDC - Minimum Detectable Concentration

Yes = Peak identified in gamma spectrum **** Results are reported on an as received basis unless otherwise noted

No = Peak not identified in gamma spectrum

ysis	
nal	:52
of A	06 11
ort c	07/18/(
(ep(	(

TELEDYNE BROWN ENGINEERING, INC. A Teledyne Technologies Company

# L28833

Conestoga-Rovers & Associates

EX001-3ESPZION-06

Kathy Shaw

•					POLICY AND IN THE POLICY AND INCOME.									
Sample ID: WG-ZION-MW-6L-052506-MS-009	-WM-NOIZ-	-6L-052506-N	1S-009		Collect	Start: 05	Collect Start: 05/25/2006 11:23	:23		Matrix: Ground Water	round Wat	er	C	(MG)
Station:					Collect Stop:	t Stop:				Volume:				
Description:					Receive	Date: 06	Receive Date: 06/02/2006		W %	% Moisture:				
LIMS Number: L28833-4	833-4													
Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Values	
H_3	2010	7.65E+01	1.10E+02	1.73E+02	pCi/L		10	ml		90/60/90	60	M	n	
TOTALSR	2018	1.77E+00	7.16E-01	1.15E+00	pCi/L		450	Ш	05/25/06 11:23	06/10/06	150	M	 +	
MN-54	2007	-1.25E+00	3.25E+00	5.27E+00	pCi/L		3292.8	ш	05/25/06 11:23	90/60/90	21901	Sec	U No	0
CO-58	2007	-4.17E-01	3.62E+00	5.95E+00	pCi/L		3292.8	Ш	05/25/06 11:23 06/09/06	90/60/90	21901	Sec	U N	No
FE-59	2007	1.28E+00	.	1.25E+01	pCi/L		3292.8	ml	05/25/06 11:23	90/60/90	21901	Sec		No
CO-60	2007	-4.56E-01	-	5.15E+00	pCi/L		3292.8	ml	05/25/06 11:23	90/60/90	21901	Sec	N 	No
ZN-65	2007	3.95E+01	1.03E+01	1.74E+01	pCi/L		3292.8	m	05/25/06 11:23	90/60/90	21901	Sec	N   N	No
NB-95	2007	1.19E+01	4.11E+00	6.75E+00	pCi/L		3292.8	m	05/25/06 11:23	90/60/90	21901	Sec	N *N	No
ZR-95	2007	1.61E+00	6.23E+00	9.94E+00	pCi/L		3292.8	m	05/25/06 11:23	90/60/90	21901	Sec	U N	No
CS-134	2007	5.95E+01	7.43E+00	9.60E+00	pCi/L		3292.8	m	05/25/06 11:23	90/60/90	21901	Sec	U*	No
CS-137	2007	2.21E+00	3.28E+00	5.50E+00	pCi/L		3292.8	m	05/25/06 11:23	90/60/90	21901	Sec	Z D	No No
BA-140	2007	-3.08E+00	2.38E+01	3.90E+01	pCi/L		3292.8	m	05/25/06 11:23	06/09/06	21901	Sec	Z D	No
LA-140	2007	-1.80E+00	7.88E+00	1.28E+01	pCi/L		3292.8	m	05/25/06 11:23	90/60/90	21901	Sec		No

Flag Values D

+

Compound/Analyte not detected or less than 3 sigma 11 11 11 11 11 11 11

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only) Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value MDC exceeds customer technical specification

*D

High

Spec 1_

Low recovery High recovery

Bolded text indicates reportable value.

Η

20 Page 4 of

MDC - Minimum Detectable Concentration

No = Peak not identified in gamma spectrum

Conestoga-Rovers & Associates

Kathy Shaw					EXI	001-3ESI	EX001-3ESPZION-06						
Sample ID: W Station:	Sample ID: WG-ZION-MW-8U-052406-MS-003 Station:		1S-003		Collect Start: Collect Stop:	t Start: 0: t Stop:	Collect Start: 05/24/2006 11:35 Collect Stop:	:35		l	Ground Water	k.	(MG)
Description:					Receive	s Date: 06	Receive Date: 06/02/2006		W %	% Moisture:			
LIMS Number: L28833-5	28833-5												
Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Values
H-3	2010	2.41E+01	1.09E+02	1.78E+02	pCi/L		10	ml		90/60/90	60	Μ	U
FOTAL SR	2018	1.25E+00	8.11E-01	1.42E+00	pCi/L		450	ml	05/24/06 11:35 06/10/06	06/10/06	150	M	U
K-40	2007	6.94E+01	4.57E+01	4.68E+01	pCi/L		3209.5	ml	05/24/06 11:35	90/60/90	14641	Sec	+ Yes
MN-54	2007	1.35E+00	2.89E+00	4.88E+00	pCi/L		3209.5	ml	05/24/06 11:35	90/60/90	14641	Sec	U No
CO-58	2007	6.14E-01	3.51E+00	5.18E+00	pCi/L		3209.5	ml	05/24/06 11:35	90/60/90	14641	Sec	U
FE-59	2007	-4.98E+00	7.42E+00	1.17E+01	pCi/L		3209.5	m	05/24/06 11:35	06/09/06	14641	Sec	U No
CO-60	2007	5.01E-01	2.95E+00	4.91E+00	pCi/L		3209.5	m	05/24/06 11:35 06/09/06	90/60/90	14641	Sec	U No
ZN-65	2007	5.49E+00	8.37E+00	1.24E+01	pCi/L		3209.5	m	05/24/06 11:35	90/60/90	14641	Sec	U No
NB-95	2007	4.21E+00	3.45E+00	6.07E+00	pCi/L		3209.5	m	05/24/06 11:35 06/09/06	90/60/90	14641	Sec	U No
ZR-95	2007	-4.02E+00	6.06E+00	9.56E+00	pCi/L		3209.5	ш	05/24/06 11:35	90/60/90	14641	Sec	U No
CS-134	2007	4.44E+00	7.23E+00	5.76E+00	pCi/L		3209.5	ш	05/24/06 11:35	90/60/90	14641	Sec	U No
CS-137	2007	3.52E+00	3.19E+00	5.59E+00	pCi/L		3209.5	m	05/24/06 11:35	90/60/90	14641	Sec	U No
BA-140	2007	5.57E+00	2.54E+01	4.18E+01	pCi/L		3209.5	ml	05/24/06 11:35	90/60/90	14641	Sec	U No
I A-140	2007	4.91E-01	7.97E+00	1.33E+01	pCi/L		3209.5	Ш	05/24/06 11:35 06/09/06	90/60/90	14641	Sec	U No

Compound/Analyte not detected or less than 3 sigma Flag Values 12 12 12 12 12 12 12 + *) D

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only) Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value MDC exceeds customer technical specification High Spec L H

Bolded text indicates reportable value. Low recovery High recovery

20 of Page 5

MDC - Minimum Detectable Concentration

TELEDYNE BROWN ENGINEERING, INC. A Teledyne Technologies Company

Conestoga-Rovers & Associates

kainy Snaw								AND STORED AND ADDRESS OF	A DESCRIPTION OF A		CONTRACTOR OF STREET, STRE	01000 miles		THE WAY IN THE TAXABLE PARTY OF
Sample ID: W	Sample ID: WG-ZION-MW-8L-052406-MS-001	8L-052406-M	S-001		Collect	t Start: 05	Collect Start: 05/24/2006 10:14	14		Matrix: Ground Water	ound Wat	3r	J	(MG)
Station:					Collect	Collect Stop:				Volume:				
Description:					Receive	Receive Date: 06/02/2006	6/02/2006		W %	% Moisture:				
LIMS Number: L28833-6	28833-6											******		
Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Values	10
Ш_3	2010	1 46F+02	1_12E+02	1.70E+02	DCi/L		10	ш		90/60/90	60	X		
TOTAL SR	2018	1.55E+00	_	1.16E+00	pCi/L		450	m	05/24/06 10:14	06/10/06	150	M	+	
MN-54	2007	7.64E-02	2.89E+00	4.80E+00	pCi/L		3083.2	ml	05/24/06 10:14		14771	Sec	A N	No
CO-58	2007	1.49E-02	3.36E+00	5.47E+00	pCi/L		3083.2	Ш	05/24/06 10:14	06/09/06	14771	Sec	A D	No
EE-59	2007	6.33E-01	6.66E+00	1.11E+01	pCi/L		3083.2	m	05/24/06 10:14	90/60/90	14771	Sec	D	οŊ
CO-60	2007	-2.20E+00	2.95E+00	4.54E+00	pCi/L		3083.2	m	05/24/06 10:14	90/60/90	14771	Sec	2 D	No
ZN-65	2007	9.40E+00	7.78E+00	1.19E+01	pCi/L		3083.2	ml	05/24/06 10:14	90/60/90	14771	Sec	N N	No
NB-95	2007	1.92E+00	3.51E+00	5.89E+00	pCi/L		3083.2	ml	05/24/06 10:14	06/09/06	14771	Sec	N N	No
ZR-95	2007	-4.74E+00	6.12E+00	9.61E+00	pCi/L		3083.2	ml	05/24/06 10:14	00/00/00	14771	Sec	۷   N	No
CS-134	2007	1.55E+01	6.88E+00	6.39E+00	pCi/L		3083.2	ml	05/24/06 10:14		14771	Sec		No
CS-137	2007	-1.69E-01	3.19E+00	5.10E+00	pCi/L		3083.2	ml	05/24/06 10:14	06/09/06	14771	Sec	n	No
BA-140	2007	2.71E+00	2.35E+01	3.86E+01	pCi/L		3083.2	lm	05/24/06 10:14 06/09/06	06/09/06	14771	Sec	N N	No
1.A-140	2007	-6.01E+00	7.84E+00	1.21E+01	pCi/L		3083.2	Ш	05/24/06 10:14	90/60/90	14771	Sec		No

Flag Values U =

+

Compound/Analyte not detected or less than 3 sigma Activity concentration exceeds MDC and 3 sigma, peak identified(gamma only) Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value MDC exceeds customer technical specification Low recovery High recovery

U* High Spec

ב ב

Bolded text indicates reportable value.

MDC - Minimum Detectable Concentration

BROWN ENGINEERING, INC. A Teledyne Technologies Company

Conestoga-Rovers & Associates

Nauly Juaw													
Sample ID:	Sample ID: WG-ZION-MW-7U-052406-MS-005	7U-052406-N	1S-005		Collect	t Start: 0:	Collect Start: 05/24/2006 14:35	35		Matrix: Ground Water	ound Wate	er	(MG)
Station:					Collec	Collect Stop:				Volume:			
Description:					Receive	Receive Date: 06/02/2006	5/02/2006		% M	% Moisture:			
LIMS Number: L28833-7	L28833-7												
Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Values
H-3	2010	1.05E+01	1.04E+02	1.71E+02	pCi/L		10	lm		90/60/90	60	W	U
TOTAL SR	2018	1.27E+00	5.63E-01	9.35E-01	pCi/L		450	ml	05/24/06 14:35	06/10/06	150	M	+
MN-54	2007	-6.66E-01	3.12E+00	5.03E+00	pCi/L		3260.8	m	05/24/06 14:35 06/09/06	06/09/06	17561	Sec	U No
CO-58	2007	-2.13E+00	3.33E+00	5.24E+00	pCi/L		3260.8	m	05/24/06 14:35 06/09/06	06/09/06	17561	Sec	No No
FE-59	2007	-3.75E-01	6.84E+00	1.12E+01	pCi/L		3260.8	ш	05/24/06 14:35 06/09/06	06/09/06	17561	Sec	U No
CO-60	2007	-3.73E-01	3.12E+00	5.09E+00	pCi/L		3260.8	m	05/24/06 14:35 06/09/06	90/60/90	17561	Sec	No
ZN-65	2007	1.42E+01	7.41E+00	1.20E+01	pCi/L		3260.8	m	05/24/06 14:35	90/60/90	17561	Sec	No
NB-95	2007	2.89E+00	3.59E+00	6.12E+00	pCi/L		3260.8	m	05/24/06 14:35 06/09/06	90/60/90	17561	Sec	U No
ZR-95	2007	-5.33E+00	6.28E+00	9.87E+00	pCi/L		3260.8	m	05/24/06 14:35 06/09/06	90/60/90	17561	Sec	No
CS-134	2007	1.78E+01	6.30E+00	6.41E+00	pCi/L		3260.8	m	05/24/06 14:35	90/60/90	17561	Sec	U* No
CS-137	2007	9.02E-01	3.26E+00	5.47E+00	pCi/L		3260.8	m	05/24/06 14:35	90/60/90	17561	Sec	U
BA-140	2007	-4.53E+00	2.49E+01	4.05E+01	pCi/L		3260.8	ml	05/24/06 14:35	90/60/90	17561	Sec	U No
I.A-140	2007	-6.30E+00	7.87E+00	1.22E+01	pCi/L		3260.8	m	05/24/06 14:35	90/60/90	17561	Sec	U No

Compound/Analyte not detected or less than 3 sigma Flag Values Þ

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only) Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value MDC exceeds customer technical specification

+ U* High Spec

лШ

Low recovery High recovery

Bolded text indicates reportable value.

Page 7

20 of

Yes = Peak identified in gamma spectrum **** Results are reported on an as received basis No = Peak not identified in gamma spectrum

unless otherwise noted

MDC - Minimum Detectable Concentration

TELEDYNE BROWN ENGINEERING, INC. A Teledyne Technologies Company

BROWN ENGINEERING, INC. A Teledyne Technologies Company

# L28833

Conestoga-Rovers & Associates

Kathy Shaw													
Sample ID: WG Station:	NZ-MM-NZ-	WG-ZN-MW-ZN-03U-052506-DS-01	-DS-01		Collect Start: Collect Stop:	Start: 0.	Collect Start: 05/25/2006 10:58 Collect Stop:	58		Matrix: Gr Volume:	Ground Water	a.	(MG)
Description:	-				Receive	Date: 0	Receive Date: 06/02/2006		W %	% Moisture:			
LIMS Number: L28833-8	833-8										-		
Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Values
H-3	2010	1.13E+02	1.13E+02	1.74E+02	pCi/L		10	ml		90/60/90	60	W	U
TOTALSR	2018	5.17E-01	6.55E-01	1.23E+00	pCi/L		450	ml	05/25/06 10:58	06/10/06	150	M	n
MN-54	2007	-5.33E-01	2.29E+00	3.71E+00	pCi/L		3044.14	ml	05/25/06 10:58	90/60/90	15001	Sec	No
CO-58	2007	-3.71E+00	2.50E+00	3.67E+00	pCi/L		3044.14	Ш	05/25/06 10:58	06/09/06	15001	Sec	U No
EE-59	2007	8.70E+00	5.63E+00	1.04E+01	pCi/L		3044.14	ш	05/25/06 10:58	90/60/90	15001	Sec	U No
CO-60	2007	-4.71E-02	2.34E+00	3.80E+00	pCi/L		3044.14	m	05/25/06 10:58 06/09/06	90/60/90	15001	Sec	U
ZN-65	2007	6.96E+00	5.64E+00	1.01E+01	pCi/L		3044.14	m	05/25/06 10:58 06/09/06	90/60/90	15001	Sec	No
NB-95	2007	-8.82E-01	2.63E+00	4.27E+00	pCi/L		3044.14	ml	05/25/06 10:58 06/09/06	90/60/90	15001	Sec	U No
ZR-95	2007	-1.09E+00	4.67E+00	7.62E+00	pCi/L		3044.14	ml	05/25/06 10:58 06/09/06	90/60/90	15001	Sec	U No
CS-134	2007	4.16E+00	3.91E+00	4.41E+00	pCi/L		3044.14	Ш	05/25/06 10:58 06/09/06	06/09/06	15001	Sec	U No
CS-137	2007	1.36E+00	2.57E+00	4.32E+00	pCi/L		3044.14	lm	05/25/06 10:58	90/60/90	15001	Sec	U No
BA-140	2007	-9.99E-01	1.65E+01	2.71E+01	pCi/L		3044.14	ml	05/25/06 10:58 06/09/06	90/60/90	15001	Sec	No
[.A-140	2007	-2.85E+00	5.65E+00	8.74E+00	pCi/L		3044.14	ml	05/25/06 10:58 06/09/06	90/60/90	15001	Sec	No

Compound/Analyte not detected or less than 3 sigma Flag Values D

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only) Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value MDC exceeds customer technical specification Low recovery High recovery

+ Ď

1 1 1 1 High Spec L H

MDC - Minimum Detectable Concentration

Yes = Peak identified in gamma spectrum **** Results are reported on an as received basis unless otherwise noted

No = Peak not identified in gamma spectrum

BROWN ENGINEERING, INC. A Teledyne Technologies Company



Conestoga-Rovers & Associates

Kathy Shaw													
Sample ID: WG-ZN-MW-ZN-03U-052506-DS-02 Station:	NZ-WM-NZ-	(-03U-05250)	5-DS-02		Collec Collec	Collect Start: 0: Collect Stop:	Collect Start: 05/25/2006 11:15 Collect Stop:	:15	r	Matrix: Ground Water Volume:	round Wat	cr	(MG)
Description: 1 IMS Number 1.28833-9	133-9				Receiv	e Date: 0	Receive Date: 06/02/2006		₩ W	% Moisture:			
Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Values
LI 2	2010	1 13F+07		1_66E+02	pCi/L		10	ml		90/60/90	60	M	n
TOTAL SR	2010	8 04E-01		1.15E+00	pCi/L		450	lm	05/25/06 11:15	06/10/06	150	M	n
MNL-54	2002	-8 66E-01	2.93E+00	4.94E+00	pCi/L		3006.76	m	05/25/06 11:15	90/60/90	15126	Sec	U
MIN-04	2007	-2 10E+00	-	5.00E+00	pCi/L		3006.76	lm	05/25/06 11:15	90/60/90	15126	Sec	UNO
EE-50	2007	1.60E+00		1.09E+01	pCi/L		3006.76	m	05/25/06 11:15	90/60/90	15126	Sec	U No
CO-60	2007	3 16E+00		5.38E+00	pCi/L		3006.76	m	05/25/06 11:15 06/09/06	90/60/90	15126	Sec	U No
7N-65	2007	1.80E+01	-	1.30E+01	pCi/L	-	3006.76	lm	05/25/06 11:15	90/60/90	15126	Sec	U* No
NR-95	2007	5.30E+00	_	6.06E+00	pCi/L		3006.76	Ш	05/25/06 11:15	90/60/90	15126	Sec	U No
ZR-95	2007	-3.82E+00		8.95E+00	pCi/L		3006.76	ml	05/25/06 11:15 06/09/06	90/60/90	15126	Sec	U No
CS-134	2007	2.05E+01		7.59E+00	pCi/L		3006.76	ml	05/25/06 11:15	06/09/06	15126	Sec	
CS-137	2007	4.48E+00		5.65E+00	pCi/L		3006.76	m	05/25/06 11:15	90/60/90	15126	Sec	U No
BA-140	2007	-1.42E+01	2.22E+01	3.64E+01	pCi/L		3006.76	m	05/25/06 11:15 06/09/06	90/60/90	15126	Sec	No No
I A_140	2007	4.24E+00	6.04E+00	1.15E+01	pCi/L		3006.76	ml	05/25/06 11:15	90/60/90	15126	Sec	D No

Yes = Peak identified in gamma spectrum **** Results are reported on an as received basis No = Peak not identified in gamma spectrum

unless otherwise noted

MDC - Minimum Detectable Concentration

Flag Values U =

Compound/Analyte not detected or less than 3 sigma 11 11 12 11 11 11 11 +

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only) Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value MDC exceeds customer technical specification Low recovery High recovery

U* High L H

Conestoga-Rovers & Associates

Kathy Shaw					C I							11111111111111111111111111111111111111		
Sample ID: WG-ZN-MW-ZN-03L-052506-DS-03 Station:	JZ-MM-NZ	N-03L-052506	-DS-03		Collec Collec	Collect Start: 0. Collect Stop:	Collect Start: 05/25/2006 14:22 Collect Stop:	22	-	Matrix: Ground Water Volume:	ound Wat	s	A)	(MG)
Description: LIMS Number: L28833-10	33-10				Receiv	e Date: 0	Receive Date: 06/02/2006		W %	% Moisture:				
Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Values	
H-3	2010	1.42E+02	1.07E+02	1.62E+02	pCi/L		10	Ē		90/60/90	60	M	U	
TOTAL SR	2018	1.06E+00	6.80E-01	1.19E+00	pCi/L		450	ш	05/25/06 14:22	06/10/06	150	M	U	
MN-54	2007	-2.09E+00	2.95E+00	4.54E+00	pCi/L		3027.97	lm	05/25/06 14:22	90/60/90	12460	Sec	U	0
CO-58	2007	-2.84E+00	3.48E+00	5.35E+00	pCi/L		3027.97	m	05/25/06 14:22 06/09/06	90/60/90	12460	Sec	U No	0
EE-59	2007	8.16E+00	7.48E+00	1.33E+01	pCi/L		3027.97	m	05/25/06 14:22	90/60/90	12460	Sec	U No	0
CO-60	2007	-3.92E-01	3.34E+00	5.33E+00	pCi/L		3027.97	m	05/25/06 14:22	90/60/90	12460	Sec	No No	0
ZN-65	2007	1.39E+00	6.68E+00	1.11E+01	pCi/L		3027.97	ml	05/25/06 14:22 06/09/06	90/60/90	12460	Sec	U No	0
NB-95	2007	5.28E+00	3.64E+00	6.52E+00	pCi/L		3027.97	ml	05/25/06 14:22	90/60/90	12460	Sec	U No	0
ZR-95	2007	-1.88E+00	6.16E+00	9.91E+00	pCi/L		3027.97	Ш	05/25/06 14:22	90/60/90	12460	Sec	U No	0
CS-134	2007	-3.24E+00	4.37E+00	5.64E+00	pCi/L		3027.97	ml	05/25/06 14:22 06/09/06	90/60/90	12460	Sec	U	0
CS-137	2007	3.15E+00	3.33E+00	5.83E+00	pCi/L		3027.97	ml	05/25/06 14:22	06/09/06	12460	Sec	U	0
BA-140	2007	-1.03E+00	2.34E+01	3.82E+01	pCi/L		3027.97	ш	05/25/06 14:22	06/09/06	12460	Sec	U	0
1 4-140	2007	1 27E+00	7.63E+00	1.29E+01	pCi/I.		3027.97	lm	05/25/06 14:22	90/60/90	12460	Sec	U No	0

Compound/Analyte not detected or less than 3 sigma Flag Values + 10 

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only) Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value MDC exceeds customer technical specification

1. 1. 1. 1. 1. 1. 1.

High Spec цщ

Low recovery High recovery

Bolded text indicates reportable value.

20 Page 10 of

MDC - Minimum Detectable Concentration



TELEDYNE BROWN ENGINEERING, INC. A Teledyne Technologies Company

# L28833

Conestoga-Rovers & Associates

Kathy Shaw												A DESCRIPTION OF A DESC		
Sample ID: Station:	Sample ID: WG-ZN-MW-ZN-02U-052606-DS-04 Station:	N-02U-052606	-DS-04		Collec Collec	Collect Start: 0: Collect Stop:	Collect Start: 05/26/2006 09:53 Collect Stop:	:53		Matrix: Ground Water Volume:	round Wat	er		(WG)
Description: LIMS Number: L28833-11	L28833-11				Receiv	e Date: 0	Receive Date: 06/02/2006		V %	% Moisture:				
Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Values	S
Н-3	2010	-1.25E+01	1.01E+02	1.68E+02	pCi/L		10	Im		90/60/90	60	Σ	U D	
TOTAL SR	2018	6.77E-01	6.50E-01	1.18E+00	pCi/L		450	ш	05/26/06 09:53	06/10/06	150	M	n	
K-40	2007	7.37E+01	4.45E+01	4.75E+01	pCi/L		3001.26	m	05/26/06 09:53	90/60/90	11970	Sec	+	Yes
MN-54	2007	-6.90E-01	2.79E+00	4.54E+00	pCi/L		3001.26	m	05/26/06 09:53	90/60/90	11970	Sec	n N	No
CO-58	2007	-6.45E-01	3.21E+00	5.25E+00	pCi/L		3001.26	m	05/26/06 09:53	90/60/90	11970	Sec	n N	No
EE-59	2007	-1.72E+00	6.37E+00	1.03E+01	pCi/L		3001.26	m	05/26/06 09:53	90/60/90	11970	Sec	- - -	No
CO-60	2007	-2.86E+00		4.06E+00	pCi/L		3001.26	m	05/26/06 09:53	90/60/90	11970	Sec		No
ZN-65	2007	3.24E-01		9.97E+00	pCi/L		3001.26	ш	05/26/06 09:53	90/60/90	11970	Sec		No
NR-95	2007	7.28E-01	3.07E+00	5.18E+00	pCi/L		3001.26	ш	05/26/06 09:53	90/60/90	11970	Sec		No
ZR-95	2007	-1.33E+00	5.71E+00	9.13E+00	pCi/L		3001.26	Ш	05/26/06 09:53	90/60/90	11970	Sec	n N	°Z
CS-134	2007	-1.13E-01	3.67E+00	5.09E+00	pCi/L		3001.26	ml	05/26/06 09:53	90/60/90	11970	Sec	n	Νo
CS-137	2007	6.15E-01	2.95E+00	4.89E+00	pCi/L		3001.26	ml	05/26/06 09:53	90/60/90	11970	Sec		No
BA-140	2007	-5.11E-01	1.99E+01	3.29E+01	pCi/L		3001.26	ml	05/26/06 09:53	90/60/90	11970	Sec	n	No
I A-140	2007	-3.32E+00	6.68E+00	1.05E+01	pCi/L		3001.26	ml	05/26/06 09:53	90/60/90	11970	Sec		No

Compound/Analyte not detected or less than 3 sigma Flag Values 

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only) Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

+ 5

Activity concentration exceeds customer reporting value MDC exceeds customer technical specification High Spec L H

Low recovery High recovery

Bolded text indicates reportable value.

20 Page 11 of

MDC - Minimum Detectable Concentration

keport
--------

### L28833

Conestoga-Rovers & Associates

Kathy Shaw														
Sample ID: V Station:	Sample ID: WG-ZN-MW-ZN-02L-052606-DS-06 Station:	V-02L-052606	-DS-06		Collec Collec	Collect Start: 0 Collect Stop:	Collect Start: 05/26/2006 12:30 Collect Stop:	:30		I	Ground Water	ar		(MG)
Description: LIMS Number: L28833-12	,28833-12				Receiv	e Date: 0	Receive Date: 06/02/2006		% N	% Moisture:				
Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Values	s
H-3	2010	-1.15E+02	9.68E+01	1.73E+02	pCi/L		10	m		90/60/90	60	X	U	
FOTAL SR	2018	7.27E-01	6.81E-01	1.24E+00	pCi/L		450	Ш	05/26/06 12:30	06/10/06	150	M	U	
K-40	2007	8.10E+01	4.25E+01	4.82E+01	pCi/L		3057.05	Ш	05/26/06 12:30	90/60/90	15481	Sec	+	Yes
MN-54	2007	-9.45E-01	2.85E+00	4.55E+00	pCi/L		3057.05	m	05/26/06 12:30	90/60/90	15481	Sec		No
CO-58	2007	-1.53E+00	3.35E+00	5.34E+00	pCi/L		3057.05	m	05/26/06 12:30	90/60/90	15481	Sec	n	No
FE-59	2007	6.49E-01	6.47E+00	1.08E+01	pCi/L		3057.05	ml	05/26/06 12:30 06/09/06	90/60/90	15481	Sec	[ ] ]	No
CO-60	2007	-1.72E-01	2.86E+00	4.66E+00	pCi/L		3057.05	ml	05/26/06 12:30 06/09/06	90/60/90	15481	Sec		No
ZN-65	2007	6.91E+00	6.46E+00	1.15E+01	pCi/L		3057.05	m	05/26/06 12:30	90/60/90	15481	Sec		No
NB-95	2007	3.09E+00	3.17E+00	5.52E+00	pCi/L		3057.05	ml	05/26/06 12:30	90/60/90	15481	Sec		No
ZR-95	2007	-1.70E+00	5.88E+00	9.50E+00	pCi/L		3057.05	m	05/26/06 12:30	90/60/90	15481	Sec		No
CS-134	2007	2.88E+00	6.97E+00	5.38E+00	pCi/L		3057.05	ml	05/26/06 12:30	90/60/90	15481	Sec		No
CS-137	2007	5.95E-01	3.19E+00	5.33E+00	pCi/L		3057.05	ml	05/26/06 12:30 06/09/06	06/09/06	15481	Sec	n	No
BA-140	2007	3.12E+00	2.16E+01	3.54E+01	pCi/L		3057.05	m	05/26/06 12:30 06/09/06	06/09/06	15481	Sec	n	No
I A_140	2000	-5 60F+00	7 46F+00	1156+01	nCi/l		3057 05	lm	05/26/06 12:30	06/09/06	15481	Sec		No No

Compound/Analyte not detected or less than 3 sigma Flag Values ): :: :: :: :: :: :: +

Activity concentration exceeds MDC and 3 signal, peak identified(gamma only) Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

*) 1

Activity concentration exceeds customer reporting value MDC exceeds customer technical specification High Spec

ЪН

Low recovery High recovery

Bolded text indicates reportable value.

20 Page 12 of

MDC - Minimum Detectable Concentration

Yes = Peak identified in gamma spectrum **** Results are reported on an as received basis unless otherwise noted



Report of 07/18/06
--------------------

TELEDYNE BROWN ENGINEERING, INC. A Teledyne Technologies Company

### L28833

Conestoga-Rovers & Associates

Kathy Shaw					EX	001-3ES	EX001-3ESPZION-06							
Sample ID: WG-ZN-MW-ZN-01U-052606-DS-05 Station:	NZ-WM-N2	-01U-052606-	DS-05		Collec Collec	Collect Start: 0 Collect Stop:	Collect Start: 05/26/2006 11:02 Collect Stop:	:02		Matrix: Ground Water Volume:	round Wat	er	)	(MG)
Description: LIMS Number: L28833-13	13-13				Receive	e Date: 0	Receive Date: 06/02/2006		N %	% Moisture:				
Radionuclide	SOP#	Activity 1 Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Values	ŝ
H-3	2010	2.61E+02	1.24E+02	1.77E+02	pCi/L		10	m		90/60/90	60	M	+	140.40
FOTAL SR	2018	6.78E-01	6.79E-01	1.25E+00	pCi/L		450	ml	05/26/06 11:02 06/10/06	06/10/06	150	X	n	
MN-54	2007	-8.72E-02	3.42E+00	5.67E+00	pCi/L		3002.48	ml	05/26/06 11:02	90/60/90	11483	Sec		No
CO-58	2007	-1.35E+00	3.37E+00	5.33E+00	pCi/L		3002.48	ml	05/26/06 11:02	90/60/90	11483	Sec	ч П	No
FE-59	2007	4.25E+00	7.57E+00	1.31E+01	pCi/L		3002.48	m	05/26/06 11:02 06/09/06	90/60/90	11483	Sec		No
CO-60	2007	3.65E+00	3.57E+00	6.32E+00	pCi/L		3002.48	m	05/26/06 11:02	90/60/90	11483	Sec	N N	No
ZN-65	2007	2.54E+00	7.23E+00	1.23E+01	pCi/L		3002.48	ml	05/26/06 11:02	90/60/90	11483	Sec	N N	No
NB-95	2007	3.52E+00	3.44E+00	5.98E+00	pCi/L		3002.48	ml	05/26/06 11:02	90/60/90	11483	Sec	n I	No
ZR-95	2007	-4.17E+00	6.28E+00	9.84E+00	pCi/L		3002.48	ml	05/26/06 11:02	90/60/90	11483	Sec	n I	No
CS-134	2007	3.58E+00	6.16E+00	6.16E+00	pCi/L		3002.48	m	05/26/06 11:02	90/60/90	11483	Sec	۲ ח	No
CS-137	2007	7.41E-01	3.64E+00	5.95E+00	pCi/L		3002.48	ml	05/26/06 11:02	90/60/90	11483	Sec	۷ D	No
BA-140	2007	1.05E+01	2.29E+01	3.84E+01	pCi/L		3002.48	m	05/26/06 11:02	90/60/90	11483	Sec	۷ N	No
I.A-140	2007	-2.50E+00	7.73E+00	1.23E+01	pCi/L		3002.48	lm	05/26/06 11:02	90/60/90	11483	Sec	A D	No

Compound/Analyte not detected or less than 3 sigma Flag Values 11  $\supset$ +

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only) Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value MDC exceeds customer technical specification

U* High L H

Low recovery High recovery

Bolded text indicates reportable value.

20 Page 13 of

Yes = Peak identified in gamma spectrum **** Results are reported on an as received basis No = Peak not identified in gamma spectrum

unless otherwise noted

MDC - Minimum Detectable Concentration



L28833

Conestoga-Rovers & Associates

Kathy Shaw					EXC	1626-10	EXUUI-JESPZIUN-UD							
Sample ID: Station:	WG-ZN-MW-ZN-01L-052606-DS-07	I-01L-052606	5-DS-07		Collect Start: Collect Stop:	Start: 05 Stop:	Collect Start: 05/26/2006 13:40 Collect Stop:	:40		Matrix: G Volume:	Ground Water	er		(MG)
Description:					Receive	Date: 06	Receive Date: 06/02/2006		W %	% Moisture:				
LIMS Number:	L28833-14													
Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag	Flag Values
H_3	2010	5.86E+02	1.41E+02	1.76E+02	pCi/L		10	m		90/60/90	60	M	+	
TOTAL SR	2018	1.03E+00		1.28E+00	pCi/L		450	Ē	05/26/06 13:40	06/10/06	150	M	U	
K-40	2007	5.30E+01		3.75E+01	pCi/L		3024.01	Ш	05/26/06 13:40 06/09/06	90/60/90	14400	Sec	+	Yes
MN-54	2007	1.38E+00		4.26E+00	pCi/L		3024.01	m	05/26/06 13:40	90/60/90	14400	Sec	n	No
CO-58	2007	-2.57E+00	.	4.46E+00	pCi/L		3024.01	Ш	05/26/06 13:40 06/09/06	90/60/90	14400	Sec	n	No
FE-59	2007	8.62E+00	5.77E+00	1.04E+01	pCi/L		3024.01	E	05/26/06 13:40 06/09/06	90/60/90	14400	Sec	D	No
CO-60	2007	1.86E+00	2.44E+00	4.23E+00	pCi/L		3024.01	ml	05/26/06 13:40 06/09/06	90/60/90	14400	Sec	n	No
ZN-65	2007	6.08E+00	5.58E+00	9.85E+00	pCi/L		3024.01	ml	05/26/06 13:40 06/09/06	06/09/06	14400	Sec	n	No
NB-95	2007	1.54E+00	2.72E+00	4.65E+00	pCi/L		3024.01	ml	05/26/06 13:40	06/09/06	14400	Sec	n	No
ZR-95	2007	-1.90E+00	4.93E+00	7.81E+00	pCi/L		3024.01	ш	05/26/06 13:40 06/09/06	90/60/90	14400	Sec	n	No
CS-134	2007	7.77E+00	5.91E+00	5.13E+00	pCi/L		3024.01	ml	05/26/06 13:40	06/09/06	14400	Sec	n	No
CS-137	2007	1.85E+00	2.60E+00	4.42E+00	pCi/L		3024.01	ml	05/26/06 13:40 06/09/06	90/60/90	14400	Sec	D	No
BA-140	2007	-7.65E+00	1.76E+01	2.86E+01	pCi/L		3024.01	ml	05/26/06 13:40	90/60/90	14400	Sec	D	No
LA-140	2007	5.00E+00	5.74E+00	1.01E+01	pCi/L		3024.01	ml	05/26/06 13:40 06/09/06	90/60/90	14400	Sec	n	No
AC-778	2007	3.52E+01	1.03E+01	1.45E+01	pCi/L		3024.01	ml	05/26/06 13:40	90/60/90	14400	Sec	+	Ycs

Yes = Peak identified in gamma spectrum **** Results are reported on an as received basis No = Peak not identified in gamma spectrum

unless otherwise noted

MDC - Minimum Detectable Concentration

Flag Values U =

H H H +

Compound/Analyte not detected or less than 3 sigma Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only) Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma *``

Activity concentration exceeds customer reporting value MDC exceeds customer technical specification

11 11 11 High Spec L H

Low recovery High recovery

Bolded text indicates reportable value.

20 Page 14 of

port of Analysis	07/18/06 11:52
Rep	(

BROWN ENGINEERING, INC. A Teledyne Technologies Company



Conestoga-Rovers & Associates

Kathy Shaw														
Sample ID: WG-ZN-MW-ZN-09-052606-DS-08 Station:	JZ-MM-NZ-	V-09-052606-I	)S-08		Collect Start: Collect Ston:	t Start: 0.	Collect Start: 05/26/2006 14:48 Collect Ston:	.48		Matrix: Ground Water Volume:	ound Wat	er	.)	(MG)
					Receive	Date: 0	Receive Date: 06/02/2006		% N	% Moisture:				
LIMS Number: L28	L28833-15													
Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Values	
H-3	2010	-2.95E+01	7.87E+01	1.33E+02	pCi/L		10	m		90/60/90	60	M	<u> </u>	
TOTAL SR	2018	1.08E+00	8.82E-01	1.58E+00	pCi/L		450	Ē	05/26/06 14:48 06/10/06	06/10/06	150	M	n	
MN-54	2007	7.46E-01	2.35E+00	<b>3.95E+00</b>	pCi/L		3045.16	Ш	05/26/06 14:48 06/09/06	90/60/90	14592	Sec	U No	
CO-58	2007	-2.43E+00	2.65E+00	4.09E+00	pCi/L		3045.16	m	05/26/06 14:48 06/09/06	90/60/90	14592	Sec	U No	0
FE-59	2007	-7.20E-01	5.38E+00	8.80E+00	pCi/L		3045.16	ml	05/26/06 14:48 06/09/06	90/60/90	14592	Sec	U No	_
CO-60	2007	1.06E+00	2.25E+00	3.86E+00	pCi/L		3045.16	ml	05/26/06 14:48	90/60/90	14592	Sec	U No	0
ZN-65	2007	-3.15E+00	6.67E+00	8.76E+00	pCi/L		3045.16	ml	05/26/06 14:48 06/09/06	90/60/90	14592	Sec	U No	
NB-95	2007	5.26E-01	2.60E+00	4.36E+00	pCi/L		3045.16	ml	05/26/06 14:48 06/09/06	90/60/90	14592	Sec	U	_
ZR-95	2007	-4.54E+00	4.58E+00	7.08E+00	pCi/L		3045.16	ml	05/26/06 14:48 06/09/06	06/09/06	14592	Sec	UNO	
CS-134	2007	3.02E+00	3.37E+00	4.28E+00	pCi/L		3045.16	ml	05/26/06 14:48 06/09/06	90/60/90	14592	Sec	U No	
CS-137	2007	1.45E+00	2.54E+00	4.28E+00	pCi/L		3045.16	ml	05/26/06 14:48 06/09/06	06/09/06	14592	Sec	U	0
BA-140	2007	8.09E+00	1.61E+01	2.73E+01	pCi/L.		3045.16	m	05/26/06 14:48 06/09/06	90/60/90	14592	Sec	U No	_
I.A-140	2007	-2.86E+00	5.64E+00	8.73E+00	pCi/L		3045.16	ml	05/26/06 14:48 06/09/06	90/60/90	14592	Sec	No No	0

Compound/Analyte not detected or less than 3 sigma Flag Values 11 D

+

11

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only) Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

11

Activity concentration exceeds customer reporting value MDC exceeds customer technical specification 11

11 U* High Spec

Low recovery 11 11 ЪΞ

Bolded text indicates reportable value. High recovery

20 of Page 15

MDC - Minimum Detectable Concentration

Yes = Peak identified in gamma spectrum **** Results are reported on an as received basis unless otherwise noted

# L28833

Conestoga-Rovers & Associates

Kathy Shaw												CALVERAL DOCTORING AND		A
Sample ID: WG-ZN-MW-ZN-09-052606-DS-09	Z-MW-NZ-	N-09-052606-I	00-SQ		Collect	Start: 05	Collect Start: 05/26/2006 15:10	10	,		Ground Water	ar	M)	(MG)
Station:					Collect Stop:	t Stop:				Volume:				
Description:					Receive	; Date: 06	Receive Date: 06/02/2006		% N	% Moisture:				
LIMS Number: L28833-16	833-16													
Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Values	
H-3	2010	-1.09E+01	1.07E+02	1.77E+02	pCi/L		10	ml		90/60/90	60	M	U	
TOTALSR	2018	5.19E-01	8.23E-01	1.55E+00	pCi/L		450	Ш	05/26/06 15:10 06/10/06	06/10/06	150	M	n	
MN-54	2007	1.12E+00	2.71E+00	4.81E+00	pCi/L		3037.16	ml	05/26/06 15:10 06/09/06	90/60/90	13307	Sec	U   No	_
CO-58	2007	-2.66E+00	3.07E+00	5.02E+00	pCi/L		3037.16	E	05/26/06 15:10 06/09/06	90/60/90	13307	Sec	U No	_
FE-59	2007	4.01E-02	5.86E+00	1.03E+01	pCi/L		3037.16	m	05/26/06 15:10 06/09/06	90/60/90	13307	Sec	U No	_
CO-60	2007	-3.91E-01	2.54E+00	4.44E+00	pCi/L		3037.16	ml	05/26/06 15:10 06/09/06	90/60/90	13307	Sec	U No	
ZN-65	2007	1.16E+00	5.79E+00	1.03E+01	pCi/L		3037.16	ш	05/26/06 15:10 06/09/06	90/60/90	13307	Sec	U No	
NB-95	2007	1.94E-01	3.09E+00	5.37E+00	pCi/L		3037.16	m	05/26/06 15:10 06/09/06	90/60/90	13307	Sec	U No	
ZR-95	2007	1.74E+00	5.63E+00	9.91E+00	pCi/L		3037.16	ml	05/26/06 15:10	90/60/90	13307	Sec	U	
CS-134	2007	-3.59E-01	3.09E+00	5.31E+00	pCi/L		3037.16	ml	05/26/06 15:10 06/09/06	90/60/90	13307	Sec	U No	
CS-137	2007	-5.27E-01	2.92E+00	5.02E+00	pCi/L		3037.16	ml	05/26/06 15:10 06/09/06	90/60/90	13307	Sec	U No	
BA-140	2007	4.36E+00	2.00E+01	3.43E+01	pCi/L		3037.16	ml	05/26/06 15:10	90/60/90	13307	Sec	U No	_
I A-140	2007	1 47F+00	6 02E+00	1.11E+01	pCi/L		3037.16	lm	05/26/06 15:10 06/09/06	90/60/90	13307	Sec	U No	_

Compound/Analyte not detected or less than 3 sigma Flag Values D

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only) Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value MDC exceeds customer technical specification 12 12 12 12 12 12

+ 5

High Spec L H

Bolded text indicates reportable value. Low recovery High recovery

20 Page 16 of

MDC - Minimum Detectable Concentration

Yes = Peak identified in gamma spectrum **** Results are reported on an as received basis unless otherwise noted



'SIS		
laly	2	
An	11:5	
t of	18/06	
LIOC	1/20	
Sel	1	

TELEDYNE BROWN ENGINEERING, INC. A Teledyne Technologies Company

## L28833

Conestoga-Rovers & Associates

Kathy Shaw													A DESCRIPTION OF A
Sample ID: WC Station:	WG-ZION-MW-6U-052606-MS-011	-6U-052606-N	AS-011		Collec Collec	Collect Start: 0: Collect Stop:	Collect Start: 05/26/2006 08:45 Collect Stop:	:45		Matrix: Ground Water Volume:	ound Wat	er	(MG)
Description:					Receiv	e Date: 0	Receive Date: 06/02/2006		₩ %	% Moisture:			
LIMS Number: L28833-17	833-17												
Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Values
11 2	2010	-0 36F+01	1 04F+07	1 74E+02	nCi/I.		10	ml		90/60/90	60	M	n
TOTAL SR	2010	9 89F-01	6.85E-01	1.21E+00	pCi/L	-	450	m	05/26/06 08:45 06/10/06	06/10/06	150	X	<u> </u>
MN-54	2007	5.91E-01	3.17E+00	5.22E+00	pCi/L		3063.8	lm	05/26/06 08:45 06/09/06	90/60/90	15361	Sec	U No
CO-58	2007	2.60E+00	-	5.71E+00	pCi/L		3063.8	la	05/26/06 08:45 06/09/06	90/60/90	15361	Sec	U No
EE-59	2007	9.82E-01	-	1.17E+01	pCi/L		3063.8	ш	05/26/06 08:45	90/60/90	15361	Sec	U No
CO-60	2007	-1.49E+00		4.62E+00	pCi/L		3063.8	lm	05/26/06 08:45	90/60/90	15361	Sec	U No
ZN-65	2007	-9.87E-01		1.07E+01	pCi/L		3063.8	m	05/26/06 08:45 06/09/06	90/60/90	15361	Sec	U No
NB-95	2007	3.26E+00	3.37E+00	5.82E+00	pCi/L		3063.8	ml	05/26/06 08:45 06/09/06	90/60/90	15361	Sec	U
ZR-95	2007	-2.29E+00	6.14E+00	9.87E+00	pCi/L		3063.8	m	05/26/06 08:45 06/09/06	90/60/90	15361	Sec	U No
CS-134	2007	-4.89E-01	3.40E+00	5.48E+00	pCi/L		3063.8	ml	05/26/06 08:45 06/09/06	90/60/90	15361	Sec	U
CS-137	2007	-1.39E+00	3.28E+00	5.30E+00	pCi/L		3063.8	m	05/26/06 08:45 06/09/06	06/09/06	15361	Sec	U
BA-140	2007	-1.35E+01	2.32E+01	3.68E+01	pCi/L		3063.8	m	05/26/06 08:45	90/60/90	15361	Sec	U No
I.A-140	2007	4.81E-01	7.01E+00	1.17E+01	pCi/L		3063.8	lm	05/26/06 08:45 06/09/06	90/60/90	15361	Sec	U No

Compound/Analyte not detected or less than 3 sigma Flag Values U = 

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only) Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value MDC exceeds customer technical specification

+ U* High L H

Low recovery High recovery

Bolded text indicates reportable value.

20 Page 17 of

MDC - Minimum Detectable Concentration

BROWN ENGINEERING, INC. A Teledyne Technologies Company

## L28833

Conestoga-Rovers & Associates

Kathy Shaw					EX(	01-3ES	EX001-3ESPZION-06							
Sample ID: V Station:	Sample ID: WG-ZION-MW-5L-052606-MS-013 Station:	-5L-052606-M	S-013		Collect Start: Collect Stop:	Start: 0: Stop:	Collect Start: 05/26/2006 13:15 Collect Stop:	:15			Ground Water	er	)	(MG)
Description: LIMS Number: L28833-18	28833-18				Receive	Date: 0	Receive Date: 06/02/2006		%	% Moisture:				
Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Values	ŝ
H-3	2010	6.50E+00	1.07E+02	1.76E+02	pCi/L		10	Ш		90/60/90	60	Σ	n	
TOTAL SR	2018	1.09E+00	7.08E-01	1.24E+00	pCi/L		450	Ē	05/26/06 13:15 06/10/06	06/10/06	150	M		
MN-54	2007	6.62E-01	2.98E+00	4.99E+00	pCi/L		3017.28	Ē	05/26/06 13:15	90/60/90	17168	Sec		No
CO-58	2007	1.44E-01	3.12E+00	5.17E+00	pCi/L		3017.28	ml	05/26/06 13:15	90/60/90	17168	Sec	- - -	No
FE-59	2007	2.31E+00	6.88E+00	1.17E+01	pCi/L		3017.28	m	05/26/06 13:15 06/09/06	90/60/90	17168	Sec	- N	No
CO-60	2007	2.03E+00	2.84E+00	4.95E+00	pCi/L		3017.28	Ш	05/26/06 13:15	90/60/90	17168	Sec	- 	No
ZN-65	2007	4.04E+00	6.16E+00	1.07E+01	pCi/L		3017.28	m	05/26/06 13:15	90/60/90	17168	Sec	n	No
NB-95	2007	1.59E+00	3.14E+00	5.36E+00	pCi/L		3017.28	m	05/26/06 13:15	90/60/90	17168	Sec		No
ZR-95	2007	2.82E+00	5.56E+00	9.50E+00	pCi/L		3017.28	ml	05/26/06 13:15	90/60/90	17168	Sec	D	No
CS-134	2007	2.83E+00	6.98E+00	5.26E+00	pCi/L		3017.28	m	05/26/06 13:15	90/60/90	17168	Sec	2 D	No No
CS-137	2007	8.39E-01	3.05E+00	5.06E+00	pCi/L		3017.28	ml	05/26/06 13:15	90/60/90	17168	Sec	- 	No
BA-140	2007	3.71E+00	2.17E+01	3.61E+01	pCi/L		3017.28	m	05/26/06 13:15		17168	Sec	2 D	No
I.A-140	2007	1_01E+00	7.29E+00	1.22E+01	pCi/L		3017.28	m	05/26/06 13:15	90/60/90	17168	Sec	2 D	No

Compound/Analyte not detected or less than 3 sigma Flag Values U = +

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only) Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value MDC exceeds customer technical specification

U* High L H

Low recovery High recovery

20 Page 18 of

MDC - Minimum Detectable Concentration

Bolded text indicates reportable value.

sport of Analysis	07/18/06 11:52	
Rep		

## L28833

Conestoga-Rovers & Associates

Kathy Shaw					EX	001-3ES	EX001-3ESPZION-06							
Sample ID: WS-ZION-LAKE-052606-MS-015 Station: Description:	S-ZION-LAK	E-052606-MS	3-015		Collec Collec Deceive	Collect Start: 0: Collect Stop:	Collect Start: 05/26/2006 11:00 Collect Stop: Descrive Date: 06/02/2006	00:	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Matrix: G Volume: % Moisture:	Ground Water	cr		(WG)
	L28833-19				NCCU V	ר דימורי ט								
Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Values	s
H-3	2010	-1.29E+01	1.05E+02	1.74E+02	pCi/L		10	m		00/60/90	60	X	n	
TOTAL SR	2018	6.33E-01	1.06E+00	2.02E+00	pCi/L		450	m	05/26/06 11:00	06/10/06	150	M	U Spec	
TOTAL SR	2018	4.54E-01	9.36E-01	1.72E+00	pCi/L	CI	450	ml	05/26/06 11:00	06/21/06	200	M	U	
K-40	2007	1.07E+02	4.84E+01	4.70E+01	pCi/L		3026.5	ml	05/26/06 11:00	90/60/90	14070	Sec	+	Yes
MN-54	2007	-3.82E+00	2.71E+00	3.93E+00	pCi/L		3026.5	ш	05/26/06 11:00	90/60/90	14070	Sec	n	No
CO-58	2007	-3.18E-01	3.11E+00	5.04E+00	pCi/L		3026.5	ш	05/26/06 11:00	90/60/90	14070	Sec		No
FE-59	2007	-9.61E-01	6.42E+00	1.04E+01	pCi/L		3026.5	ш	05/26/06 11:00	90/60/90	14070	Sec	<b>U</b>	No
CO-60	2007	3.26E+00	3.44E+00	5.96E+00	pCi/L		3026.5	Ш	05/26/06 11:00	90/60/90	14070	Sec	n	No
ZN-65	2007	2.34E+00	6.12E+00	1.03E+01	pCi/L		3026.5	ml	05/26/06 11:00	90/60/90	14070	Sec		No
NB-95	2007	1.68E+00	3.16E+00	5.36E+00	pCi/L		3026.5	ml	05/26/06 11:00	90/60/90	14070	Sec		No
ZR-95	2007	-2.55E+00	5.36E+00	8.50E+00	pCi/L		3026.5	ml	05/26/06 11:00	90/60/90	14070	Sec	n	No
CS-134	2007	5.37E+00		4.85E+00	pCi/L		3026.5	ml	05/26/06 11:00	90/60/90	14070	Sec	- n	No
CS-137	2007	-1.94E+00	-	5.03E+00	pCi/L		3026.5	ш	05/26/06 11:00	90/60/90	14070	Sec		No
BA-140	2007	6.19E+00	2.01E+01	3.35E+01	pCi/L		3026.5	la l	05/26/06 11:00	90/60/90	14070	Sec		No
1 A-140	2007	-1.49E+00	7.37E+00	1.20E+01	pCi/L		3026.5	Im	05/26/06 11:00	90/60/90	14070	Sec	D	No

Compound/Analyte not detected or less than 3 sigma Flag Values 11 11 11 +

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only) Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value MDC exceeds customer technical specification

*)

11 11 11 11 High Spec L H

Low recovery High recovery

Bolded text indicates reportable value.

20 Page 19 of

MDC - Minimum Detectable Concentration

Yes = Peak identified in gamma spectrum **** Results are reported on an as received basis unless otherwise noted No = Peak not identified in gamma spectrum



ysis	
Anal	1:52
of <i>F</i>	18/06 1
port	07/1
Rej	i

TELEDYNE BROWN ENGINEERING, INC. A Teledyne Technologies Company

## L28833

Conestoga-Rovers & Associates

Kathy Shaw					EAU	Teac-IU	EAUU1-JESFZIUN-U0							
	WG-ZION-MW-5U-052606-MS-017	'-5U-052606-N	IS-017		Collect Start: Collect Stop:	Start: 05/ Stop:	Collect Start: 05/26/2006 16:00 Collect Stop:	0		Matrix: Ground Water Volume:	ound Wat	L.		(MG)
Description: LIMS Number:	L28833-20				Receive	Receive Date: 06/02/2006	/02/2006		VI 0%	% MOISTUFC:				
Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Values	es
H-3	2010	-1.29E+01	1.05E+02	1.74E+02	pCi/L		10	Ш		90/60/90	60	M	n I	
TOTAL SR	2018	1.93E+00	7.99E-01	1.30E+00	pCi/L		450	Ш	05/26/06 16:00 06/10/06	06/10/06	150	M	+	
MN-54	2007	1.78E+00	2.52E+00	4.33E+00	pCi/L		3004.12	ml	05/26/06 16:00	90/60/90	14433	Sec	n	No
CO-58	2007	-7.30E-04	2.61E+00	4.33E+00	pCi/L		3004.12	Ш	05/26/06 16:00	06/09/06	14433	Sec	U	No
FE-59	2007	1.20E+00	5.53E+00	9.30E+00	pCi/L		3004.12	m	05/26/06 16:00	90/60/90	14433	Sec	U	No
CO-60	2007	-5.85E-01	2.52E+00	4.04E+00	pCi/L		3004.12	ml	05/26/06 16:00 06/09/06	90/60/90	14433	Sec	U	No
ZN-65	2007	-1.34E+00	5.28E+00	8.58E+00	pCi/L		3004.12	m	05/26/06 16:00	06/09/06	14433	Sec	D	νo
NB-95	2007	1.30E+00	2.77E+00	4.72E+00	pCi/L		3004.12	E	05/26/06 16:00	90/60/90	14433	Sec	n	νo
ZR-95	2007	-4.26E+00	4.81E+00	7.37E+00	pCi/L		3004.12	m	05/26/06 16:00	90/60/90	14433	Sec		No
CS-134	2007	-1.15E+00	2.82E+00	4.57E+00	pCi/L		3004.12	ml	05/26/06 16:00	06/09/06	14433	Sec	U	No
CS-137	2007	-8.16E-01	2.66E+00	4.28E+00	pCi/L		3004.12	ш	05/26/06 16:00	06/09/06	14433	Sec	n	No
BA-140	2007	1.18E+01	1.75E+01	3.01E+01	pCi/L		3004.12	ш	05/26/06 16:00	06/09/06	14433	Sec	n	No
LA-140	2007	-3.67E+00	6.17E+00	9.63E+00	pCi/L		3004.12	ш	05/26/06 16:00	90/60/90	14433	Sec	n	No

Compound/Analyte not detected or less than 3 sigma Flag Values II D +

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only) Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value MDC exceeds customer technical specification 11 11 11

High *0

Spec

Low recovery High recovery

Bolded text indicates reportable value.

20 Page 20 of

MDC - Minimum Detectable Concentration

Yes = Peak identified in gamma spectrum **** Results are reported on an as received basis unless otherwise noted No = Peak not identified in gamma spectrum

#### QC Results Summary

1	1	1		L28833 R2 / 49 of 3
NEERING es Company	<u>Qualifier P/F</u> U P	RangeQualifierP/F70-130+P	<u>Range</u> <u>Qualifier</u> <u>P/F</u> <30 ** NE	Page: 1
BROWN ENGINEERING A Teledyne Technologies Company	P	Spike Recovery al 90.7	RPD	
	<u>Units</u> pCi/Total	<u>Units</u> pCi/Total	<u>Units</u> pCi/L	
	<b>lary</b> <u>Blank Result</u> < 1.710E+00	ary <u>LCS Result</u> 4.580E+02	∵y <u>DUP Result</u> < 1.740E+02	
	Method Blank Summary Bla < 1	LCS Sample Summary Value L -002	Duplicate Summary Original Result < 1.760E+02	MDC
Н-3	Method	LCS S Spike Value 5.05E+002	Dupl	ot detected above
r L28833	Count Date/Time 06/08/2006 21:15	Count Date/Time 06/08/2006 22:19	Count Date/Time 06/08/2006 22:38	dentified and/or n
for	<u>Matrix</u> <u>C</u> WO 0	Matrix C WO 0	<u>Matrix</u> <u>C</u> WG 0	peak not i ted
QC Summary Report 7/18/2006 4:29:02PM	<u>Radionuclide</u> H-3	idionuclide 1	<u>Radionuclide</u> H-3	Positive Result Compound/analyte was analyzed, peak not identified and/or not detected above MDC < 5 times the MDC are not evaluated Nuclide not detected Spikting level < 5 times activity Pass Fail Not evaluated
QC Sun	TBE Sample ID WG4107-1	TBE Sample ID         Ra           WG4107-2         H-3           WG4107:         3H-041706-           Spike ID:         3H-041706-           Spike conc: 5.05E+002         Spike Vol:	<b>TBE Sample ID</b> WG4107-3 L28833-1	H + Positi U C Comp F A Spiki NE Nucli F Fail

Report
mary F
C Sum
Ō

for L28833



4:29:02PM	H-3
7/18/2006	L28833

<b>Associated Samples for</b>	WG4107
<u>SAMPLENUM</u>	CLIENTID
L28833-1	WG-ZION-MW-4U-052406-MB-002
L28833-2	WG-ZION-MW-4L-052406-MB-004
L28833-3	WG-ZION-MW-7L-052506-MS-007
L28833-4	WG-ZION-MW-6L-052506-MS-009
L28833-5	WG-ZION-MW-8U-052406-MS-003
L28833-6	WG-ZION-MW-8L-052406-MS-001
L28833-7	WG-ZION-MW-7U-052406-MS-005
L28833-8	WG-ZN-MW-ZN-03U-052506-DS-01
L28833-9	WG-ZN-MW-ZN-03U-052506-DS-02
L28833-10	WG-ZN-MW-ZN-03L-052506-DS-03
L28833-11	WG-ZN-MW-ZN-02U-052606-DS-04
L28833-12	WG-ZN-MW-ZN-02L-052606-DS-06
L28833-13	WG-ZN-MW-ZN-01U-052606-DS-05
L28833-14	WG-ZN-MW-ZN-01L-052606-DS-07
L28833-15	WG-ZN-MW-ZN-09-052606-DS-08
L28833-16	WG-ZN-MW-ZN-09-052606-DS-09
L28833-17	WG-ZION-MW-6U-052606-MS-011
L28833-18	WG-ZION-MW-5L-052606-MS-013
L28833-19	WS-ZION-LAKE-052606-MS-015
L28833-20	WG-ZION-MW-5U-052606-MS-017

Positive Result Compound/analyte was analyzed, peak not identified and/or not detected above MDC < 5 times the MDC are not evaluated Nuclide not detected

+ D * * * • • • • • • •

Spiking level < 5 times activity Pass Fail Not evaluated

2

Page:

QC Summary Report 7/18/2006 4:29:0	ry Report 6 4:29:02PM		for L28833	TOTAL SR			K	TELEDYNE BROWN ENGINEERING A Teledyne Technologies Company	LE NEERING es Company	
				Method B	Method Blank Summary	lary				
<b>TBE Sample ID R</b> . WG4121-1 TO	<u>Radionuclide</u> TOTAL SR W	<u>Matrix</u> WO	Count Date/Time 06/11/2006 14:39			Blank Result < 6.730E-01	<u>Units</u> pCi/Total		Qualifier <u>P/F</u> U P	P
				LCS Sam	LCS Sample Summary	ury				
TBE Sample ID     R3       WG4121-2     TO	Radionuclide <u>M</u> TOTAL SR W	<u>Matrix</u> WO	Count Date/Time 06/10/2006 18:17	<u>Spike Value</u> 5.84E+001		LCS Result 6.570E+01	<u>Units</u> pCi/Total	<u>Spike Recovery</u> 112.6	Range Qualifier P 70-130 +	P/F P
Spike ID: 90SR-011905 Spike conc: 2.34E+002 Spike Vol: 2.50E-001	05 2									
				Duplica	<b>Duplicate Summary</b>	V				
TBE Sample ID         R:           WG4121-3         TO           L28833-1         TO	<u>Radionuclide</u> <u>M</u> TOTAL SR W	<u>Matrix</u> WG	Count Date/Time 06/10/2006 18:17	. <u>9</u> ∧ 1	<mark>Original Result</mark> < 1.390E+00	<u>DUP Result</u> < 1.230E+00	<u>Units</u> pCi/L	RPD	Range Qualifier <u>P/F</u> <30 ** NE	NE
										L28833
	Positive Result Compound/analyte was analyzed, peak not identified and/or not detected above MDC < 5 times the MDC are not evaluated	peak no ted	it identified and/or no	t detected above MI	DC				Page: 3	R2
** Nuclide not detected *** Spiking level < 5 tim	Nuclide not detected Spiking level < 5 times activity									/ 51
F Fail NE Not evaluated	ed									l of

L28833 R2 / 52 of 162

#### Raw Data

<u>Raw Data Sheet (rawdata)</u> Jul 13 2006, 03:09 pm

Work Order: <u>L28833</u>	Customer: <u>Exelon</u>		1				Page:					
Nuclide: <u>H-3</u>	Project : <u>EX001-3ESFZION-06</u>	ESPZION-06							i			404
ID Run Analysis		Milking	Mount	Count Count C	Counter ID	Total counts	Sample Bkg dt(mín) counts		Bkg dt (min)	Б±т <u>F</u> i	Ingrowia A Factor	
Client ID # Date/time L28833-1 H-3	ime Aliquot 10 ml	Date/time Date/time	1	23:42	LS7	86	60	1.82	60	.208		80
WG-ZION-MW-4U-U524U0-MB-UU2 Activity: -3.918+01 Error: 1.048+02 L28833-2 H-3	MDC: 1.768+02 * 10 Ml		0	09 - jun - 06 00:46	LS7	118	60	1.82	60	.216		20
MG-ALON-MW-XL-022100-202 Activity: 2.938+01 Error: 1.058+02 L28833-3 H-3 H-3 WG-7TON-MW-71.055506-MS-007	MDC: 1.7E+02 1 10 ml	*	o	09-jun-06 01:50	LS7	103	60	1.82	60	.219		so
MG-ZION-MM-5L-052505-MG-21 Activity: -2.278+01 Error: 1E+02 L28833-4 H-3 WG-ZION-MM-6L-052506-MS-009	MDC: 1.68E+02 10 ml	*	D	09 - jun - 06 02:54	LS7	131	60	1.82	60	.212		80
Activity: 7.65E+01 Error: 1.1E+02 L28833-5 H-3 WG-ZION-MW-8U-052406-MS-003	(	*	٥	09-jun-06 03:58	LS7	116	60	1.82	60	.206		go
<u>Activity: 2.418+01 Error: 1.098+02</u> 128833-6 H-3 WG-ZION-MW-8L-052406-MS-001	MDC: 1.788+02 10 ml	*	O	09-jun-06 05:01	LS7	151	60	1.82	60	.216		SO
40	MDC: 1.78+02 10 ml	*	o	09-jum-06 06:05	LS7	112	60	1.82	60	.215		SO
Activity: 1.05E+01 Error: 1.04E+02 L28B33-8 H-3 WG-ZN-MW-ZN-03U-052506-DS-01	MDC: 1.71E+02 10 ml	*	O	09-jun-06 07:09	LS7	141	60	1.82	60	.211		SO
Activity: 1.13E+02 Error: 1.13E+02 L28833-9 H-3 WG-ZN-MW-ZN-03U-052506-D5-02	MDC: 1.74E+02 10 ml	*	o	09-jun-06 08:13	LS7	142	60	1.82	60	.22		50
Error: H-3 52506-DS-	MDC: 1.668+02 10 ml	*	0	09-jun-06 09:17	LS7	152	60	1.82	60	. 226		ഭ L2
Activity: 1.42E+02 Error: 1.07E+02 L28833-11 H-3 WG-ZN-MW-ZN-02U-052606-D5-04		*	0	09-jun-06 10:21	LS7	106	60	1.82	60	.218		₩33
Activity: -1.25E+01 Error: 1.01E+02 L28833-12 H-3 WG-ZN-MW-ZN-02L-052606-DS-06		*	o	09-jun-06 11:24	LS7	77	60	1.82	60	.212		<b>r</b> ;2 /
Activity: -1.15E+02 Error: 9.68E+01	1 MDC: 1. / 36+02	ĸ										53 of 1

Page: 1

of 162

Raw Data Sheet (rawdata) Jul 13 2006, 03:09 pm

Work Order: <u>L28833</u>	Customer: <u>Exelon</u>							Page:	5			
Nuclide: <i>H-3</i>	Project : <u>EX001-3ESPZION-06</u>	ESPZION-06									Десау &	
Run Analysis "		Scavenge	Milking Date/time	Mount	Count Becovery Date/time	Counter ID	Total counts	Sample dt (min)	Bkg counts	Bkg dt (min)	Eff. Ingrowth Factor	Analyst
<u>CL1ent JD # Date/time</u> L28833-13 H-3		המרכן ראווכ	1010/ 17110		09-jun-06 12:28		181	60	1.82	60	.207	SO
WG-ZN-WW-ZN-01U-052606-DS-05												
<u>ACCLVTLY' 2.6184V2 * BITCF: 1.2487V2</u> L28833-14 H-3	10 ml			0	09-jun-06 13:31	LS7	271	60	1.82	60	.208	80
WG-ZN-MW-ZN-01L-052606-DS-07	CO1927 1 .DAM											
L28833-15 H-3	10 ml			0	09-jun-06 14:35	LS7	98	60	1.82	60	.276	20
WG-ZN-MW-ZN-09-052606-DS-08	MDC· 1 33E+02 *											
L28833-16 H-3	10 ml			0	09-jun-06 15:39	LS7	106	60	1.82	60	.207	SO
WG-ZN-MW-ZN-09-052606-DS-09 Potivity, _1 098401 Frror, 1 078402	MDC: 1.77E+02 *											
L28833-17 H-3	10 ml			0	09-jun-06 16:42	LS7	103	60	1.82	60	.211	so
WG-ZION-MW-6U-052606-MS-011 Motivition -2 368401 87707 1 048402	MDC: 1 74E+02 *											
L28833-18 H-3	10 ml			0	09-jun-06 17:46	LS1	TTT	60	1.82	60	.208	80
WG-ZION-MW-5L-052606-MS-013 Artivity: 6.5E+00 Error: 1.07E+02	MDC: 1.76E+02 *											
н-3	10 m.L			0	09 - jun - 06 18:50	LS7	106	60	1.82	60	112.	20
WS-ZION-LAKE-052606-MS-015 artivity1 298+01 Error: 1.058+02	MDC: 1.74E+02 *											
L28833-20 H-3	10 mI			0	09-jun-06 19:54	LSJ	106	60	1.82	60	.211	so
WG-ZION-KW-5U-052606-MS-017 Activity: -1.29E+01 Error: 1.05E+02	MDC: 1.74E+02 *											

#### L28833 R2 / 54 of 162

Raw Data Sheet (rawdata) Jul 18 2006, 04:43 pm

Work Order: <u>128833</u> Customer: <u>Exelon</u>				Page: 3					
Nuclide: <u>SR-90 (FAST)</u> Project : <u>EX001-3ESPZION-06</u>							D	Десау &	
ID Run Analysis Reference Volume/ Scavenge Milking Mount	Count Recovery Date/time	Counter	Total counts	Sample dt(min) co	Bkg 1 counts dt	Bkg B dt (min)	Bff. In Fa	д	Analyst
0 0 0	10-jun-06 10-jun-06	XIA	134	L _	œ	400	.346	666.	LCB
TOTAL SR 24-may-06 10-jun-06 0	F	X1B	160	150	342	400	.343	666.	LCB
111.56 12:00 13:45 450 ml 12:00 12:00 111.56	.56 17:17								
MG-LION-RMM-%L-032700-RMD-007 Activity: 5.54E-01 Error: 5.03E-01 MDC: 9.2E-01 *									**************
TOTAL S	10-jun-06	XID	134	150	312	400	.344	666.	LCB
*10 ML									
TOTAL SR 25-may-06	10-jun-06 17:17	X2A	170	150	264	400	.354	666.	гсв
1 WDC - 1 158+00									
y-06	10-jun-06	X2B	151	150	289	400	.345	666.	LCB
00:7T TW DC% CEITT									
1.25E+00 Error: 8.11E-01 MDC: 1.42E+00 *		~ ~ ~ ~		01.5		001		000	a) +
L28833-6 TOTAL SR 24-may-06 10-jun-06 0 79.30 10-jun-06 0 79.30	10-jun-06 30 17:17	XZC	167	150	1.1.7	400	. 344		TCB
100-SW-90									- ¹⁶
1.55E+00 * Error: 7.03E-01 MDC: 1.16E+00				4				000	
L28833-7 TOTAL SR 24-may-06 10-jun-06 0 104.03 14.35 450 ml 12:00 104.03	10-jun-06 .03 17:17	X2D	183	150	307	400	.343	£44.	П.С.В.
W-7U-052406-MS-005									
1.27E+00 * Error: 5.63E-01 MDC: 9.35E-01			01.7	C 1		001		000	42 H
L28833-8 TOTAL SR 25-may-06 10-jun-06 0 10-jun-06 0 10-388.17 12:00 88.17	10-Jun-06 17 17:17	X3A	159	041	202	400		~~~·	anu
WG-ZN-MW-ZN-03U-052506-DS-01 Antivity: 5 172-01 Error: 6 558-01 MDC: 1 23R+00 *									
TOTAL SR 25-mav-06	10-jun-06	X3B	156	150	321	400	.343	.999	LCB
11:15 450 ml 12:00									
WG-ZN-MW-ZN-03U-052506-DS-02 bativity: 8 04E-01 Error: 6 4E-01 MDC: 1.15E+00 *									
TOTAL SR 25-may-06	10-jun-06	x3C	154	150	294	400	.345	666.	LCB
14:22 450 ml 12:00 79	.57 17:17								Г
WG-IXN-XM-IXN-D3L-D3L-D0-IV-0-3 bact+iv+iv-1 1 АБ¥LOD БУ-10 № 10-1 1 19К+ОО *									28
may-06 10-jun-06 0	T	X4A	134	150	284	400	.358	666.	38 ⁸⁰ 1
09:53 450 ml 12:00 75.81	81 17:18								33
WG-ZN-MM-ZN-02U-052606-DS-04 Activity: 6.77E-01 Error: 6.5E-01 MDC: 1.18E+00 *									3
12 TOTAL SR 26-may-06 10-jun-06 0	10-jun-06	X4C	141	150	299	400	.35	666.	<u>2</u> 2
12:30 4:00 4:00 ML									/
Activity: 7.27E-01 Error: 6.81E-01 MDC: 1.24E+00 *									55
									5
									0:

/_|55 of 162

<u>Raw Data Sheet (rawdata)</u> Jul 18 2006, 04:43 pm

No.1148:         Exponent	Work Order: <i>L28833</i>	Cust	Customer: <b>Exelon</b>							Page:	ቲ			
	uclide: <i>SR-90 (FAST)</i>	Proj	ect : <u>EX001-3E</u>	SPZION-06									Decav	ця
	Run H					ecoverv D		Counter	Total counts					
	13	26-may-06		18			<u>10- jun- 06</u>	X4D	156			400	1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		11:02	450 ml	12:00	-	9.57	17:18							
	WG-ZN-MW-ZN-01U-052606-DS-	.05												
	ctivity: 6.78E-01 Error:		C: 1.25E+00 *											
	L28833-14 TOTAL 5	ay-06		10-jun-06			10-jun-06	ALY	143	150	279	400		
$ \begin{array}{c} 100 - 150 - 0 \\ 100 - 10 - 0 \\ 100 - 10 - 0 \\ 100 - 10 - 0 \\ 100 - 10 - 0 \\ 100 - 10 - 0 \\ 100 - 10 - 0 \\ 100 - 10 - 0 \\ 100 - 10 - 0 \\ 100 - 10 - 0 \\ 100 - 10 - 0 \\ 100 - 10 - 0 \\ 100 - 10 - 0 \\ 100 - 1 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 100 - 0 \\ 10$		13:40	450 ml	12:00	7	2.85	18:17							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccc} 12.5 & 2-maY-0 & 10-jun-0 & 7.26 & 10:17 & 10-jun-0 & X1B & 1.7 & 1.50 & 2.79 & 400 & .341 & .939 \\ 106-55-03 & 105:10 & 450 m1 & 12:00 & 0 & 57.26 & 10:1jun-06 & X1C & 129 & 150 & 200 & .341 & .939 \\ 106:05-09 & 105:11 & 100:11.558+00 & 0 & 10-jun-06 & X1D & 155 & 150 & 300 & 400 & .342 & .999 \\ 106:05-09 & 100:11.558+00 & 0 & 75.81 & 10.1jun-06 & Y1D & 155 & 150 & 305 & 400 & .342 & .999 \\ 106:05-01 & 100:11.558+00 & 0 & 75.81 & 10.1jun-06 & Y1D & 155 & 150 & 305 & 400 & .342 & .999 \\ 106:05-01 & 100:11.218+00 & 0 & 75.81 & 10.1jun-06 & Y1D & 155 & 150 & 305 & 400 & .342 & .999 \\ 106:05-01 & 100:11.218+00 & 0 & 75.81 & 10.1jun-06 & Y2A & 147 & 150 & 200 & 400 & .343 & .999 \\ 106:05-01 & 100:11.218+00 & 0 & 73.92 & 19117 & 150 & 200 & 400 & .343 & .999 \\ 106:05-01 & 100:11.218+00 & 0 & 73.02 & 10.1jun-06 & Y2A & 147 & 150 & 210 & 400 & .343 & .999 \\ 106:05-01 & 100:0 & 10-jun-06 & 0 & 73.02 & 19117 & 150 & 200 & 400 & .343 & .999 \\ 106:05-01 & 100:0 & 40 & 10 & 12:00 & 0 & 47.04 & 19117 & 150 & 210 & 210 & 219 & 200 \\ 106:05-01 & 11:00 & 40 & 11 & 12:00 & 0 & 47.04 & 19117 & 150 & 210 & 210 & 214 & 190 & 216 & 200 & 216 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & $			C: 1.285+UU *								010			
			450 m]	12-00 12-00		7 26	18.17	<b>BLY</b>	151	047	61.7	400		
	0-20-2020-00-02-00-02-00-02-00-00-00-00-			00:21	n	07.1	17:07							
		.82E-01	C: 1.58E+00 *											
		ay-06		10-jun-06	0		10-jun-06	ALC	129	150	300	400		
		15:10	450 ml	12:00	9	1.56	18:17							
Brrots: 8.23E-01       MDC: 1.55E+00 *       10-jun-06       0       75.81       10-jun-06       YID       155       150       305       400       362       999         06-MS-011       06-MS-011       12:00       75.81       13:17       13:17       15       150       305       400       362       999         06-MS-011       10:jun-06       75.81       13:17       13:17       147       150       280       400       349       999         06-MS-013       13:15       450 ml       12:00       0       73.92       18:17       147       150       280       400       349       999         06-MS-013       13:15       450 ml       12:00       73.92       18:17       147       150       280       400       356       999         06-MS-015       MDC: 1.248+00 *       10-jun-06       0       47.04       19:17       150       280       400       356       999         06-MS-015       MDC: 1.068+00       MDC: 1.248+00 *       10-jun-06       0       47.04       19:17       150       280       400       356       999         100 MDC: 1.00       450 ml       12:00       0       10-jun-06       Y2<	1G-ZN-MW-ZN-09-052606-DS-(	60												
TOTAL SR $26 - may - 06$ $10 - jun - 06$ $0$ $75.81 10jun - 06$ $10 - jac 121 0$ $365 400 362 999$ $06 - M5 - 011$ $12 \pm 00$ $12 \pm 00$ $75.81 18 \pm 17$ $16 0 365 400 362 999$ $Errors 6.858 - 01 MC = 1.218 + 00 35$ $10 - jun - 06 20$ $10 - jun - 06 20$ $13 \pm 10$	Error:		C: 1.55E+00 *											
				10 - jun - 06	0		10 - jun - 06	ALY	155	150	305	400		
		08:45	450 ml	12:00	7	5.81	18:17							
	5													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1		C: 1.21E+00 *											
				10-jun-06			10 - jun - 06	YZA	147	150	280	400		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			450 ml	12:00	2	3.92	18:17							
	VG-ZION-MW~5L-052606-MS-01													
TOTAL SR $2^{6}$ -may -06 $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $13^{4}$ 150 315 400 .356 .999 11:00 450 ml 12:00 450 ml 12:00 312 47.04 18:17 $154$ 200 279 400 .341 .998 TOTAL SR $2^{6}$ - may - 06 $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$ - $10^{-1}$	ctivity: 1.09E+00 Error:		C: 1.24E+00 *											
		20-may-uo	450 m]	90 - TUC - OT			18.17	977	40T	0 CT	CTC	400		
Error: 1.068+00       MDC: 2.028+00 *         TOTAL SR 26-may-06       10-jum-06       0         11:00       450 ml       10-jum-06       47.04         11:00       450 ml       12:00       47.04         11:00       450 ml       12:00       47.04         6-MS-015       MDC: 1.728+00 *       400       .341         TOTAL SR 26-may-06       10-jum-06       19:42       200       279       400       .341       .998         Front 9.368-01       MDC: 1.728+00 *       10-jum-06       0       19:42       10-jum-06       200       279       400       .35       .999         16-MS-017       MDC: 1.728+00 *       10-jum-06       0       10-jum-06       Y2C       170       150       268       400       .35       .999         16-MS-017       MDC: 1.38+00       68.82       18:17       10-jum-06       Y2C       170       150       268       400       .35       .999	<b>VS-ZION-LAKE-052606-MS-015</b>				•									
TOTAL SR $26 - may - 06$ $10 - jum - 06$ $0$ $21 - jum - 06$ $YIA$ $154$ $200$ $279$ $400$ $.341$ $.998$ $16 - WS - 015$ $11:00$ $450 ml$ $12:00$ $47.04$ $19:42$ $19:42$ $10.0$ $450 ml$ $11:00$ $450 ml$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$ $10.0$		1.068+00	C: 2.02E+00 *											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		ay-06		10-jun-06	0		21-jun-06	ALY	154	200	279	400		
MS-015 <u>irror: 9.36B-01 MDC: 1.72B+00 *</u> <u>irror: 9.36B-01 MDC: 1.72B+00 *</u> NTAL SR 26-may-06 10-jum-06 V2C 170 150 268 400 .35 .999 16:00 450 ml 12:00 68.82 18:17 150 268 400 .35 .999 Herror: 1 38.00 135 .999 Herror: 1 38.00 135 .999 Herror: 1 38.00 135 .999 Herror: 1 38.00 135 .999 Herror: 1 38.00 150 268 400 .35 .999 Herror: 1 38.00 150 268 400 .35 .999 Herror: 1 38.00 150 268 400 .35 .999 Herror: 1 38.00 150 268 100 .35 .999 Herror: 1 38.00 150 150 150 150 150 150 150 150 150 1		11:00	450 ml	12:00	4		19:42							
irror: 9.36E-01     MDC: 1.72E+00 *       ioral SR     26-may-06     0       ioral SR     26-may-06     0       16:00     450 ml     12:00	4S-ZION-LAKE-052606-MS-015													
ЮТАL SR 26-may-06 10-jun-06 0 10-jun-06 YZC 170 150 268 400 .35 .999 16:00 450 ml 12:00 68.82 18:17 -MS-017 млс. 1 3к±00			C: 1.72E+00 *											
16:00 450 ml 12:00 68.82 -MS-017 mrr. 1 3 素 100		1		10-jun-06			10-jun-06	¥2C	170	150	268	400		
			450 ml	12:00	9	8.82	18:17							
	WG-ZION-MW-5U-052606-MS-01	7 008 01	00146 1 .04											

L28833 R2 / 56 of 162

3.19E-01 2.35E-03 23.4 2.93E+00

Sec. Review: Analyst: LIMS: ____

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 9-JUN-2006 04:07:49.20 TBE10 12892256 HpGe ******* Aquisition Date/Time: 8-JUN-2006 18:30:30.14 LIMS No., Customer Name, Client ID: WG L28833-1 EXELON ZION Smple Date: 24-MAY-2006 00:00:00. Sample ID : 10L28833-1 Geometry : 1035L091004 Sample Type : WG : 3.23980E+00 L BKGFILE : 10BG060306MT Quantity Real Time : 0 09:37:11.03 Start Channel : 80 Energy Tol : 1.00000 Pk Srch Sens: 5.00000 Live time : 0 09:37:05.47 End Channel : 4090 MDA Constant : 0.00 Library Used: LIBD %Eff Cts/Sec %Err Fit Energy Bkqnd FWHM Channel Pk It Area 6.12E-01 2.11E-02 12.0 1.42E+01 1 65.58* 731 1590 4.51 130.27 1 1.30E+00 5.67E-04353.1 2.69E-01 184.27 2 1 92.57* 20 1039 1.47 3 248 1041 1.37 279.13 1.68E+00 7.16E-03 24.2 1.05E+00 1 139.97 1.59E+00 2.26E-03 82.6 1.62E+00 78 1.27 370.86 4 1 185.82* 865 1.55E+00 5.09E-03 36.8 2.87E+00 1.55 1 396.46 5 198.61* 176 891 1.40E+00 3.40E-03 60.9 4.71E+00 6 1 238.69* 118 918 3.55 476.66 7 703.68 1.06E+00 1.19E-03120.4 1.42E+00 1 352.15* 41 418 1.97 1.67 1191.91 7.06E-01 2.75E-03 40.3 1.69E+00 1 596.12 95 281 8 6.94E-01 1.78E-03 64.3 1.44E+00 62 234 1.87 1218.16 9 1 609.23* 5.06E-01 1.10E-03 85.3 1.42E+01 10 38 154 1.03 1824.89 1 912.38* 2.04 2923.31 45 3.56E-01 1.30E-03 64.2 9.17E-01 11 1 1461.08* 69

9.66 3430.07

Flag: "*" = Peak area was modified by background subtraction

40

81

Nuclide Line Activity Report

Nuclide Type: natural

1714.17

12

1

					TT	De ser de ser	0 0 -
					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pCi/L	%Error
K-40	1460.81	45	10.67*	3.559E-01	2.853E+01	2.853E+01	128.45
RA-226	186.21	78	3.28*	1.594E+00	3.601E+01	3.601E+01	165.29
TH-228	238.63	118	44.60*	1.400E+00	4.541E+00	4.614E+00	121.75
	240.98		3.95	1.392E+00	Li	ne Not Found	
U-235	143.76		10.50*	1.683E+00	Li	ne Not Found	
	163.35		4.70	1.659E+00	Li:	ne Not Found	
	185.71	78	54.00	1.594E+00	2.187E+00	2.187E+00	165.29
	205.31		4.70	1.524E+00	Li:	ne Not Found	

Flag: "*" = Keyline

Summary of Nuclide ActivityPage : 2Sample ID : 10L28833-1Acquisition date : 8-JUN-2006 18:30:30Total number of lines in spectrum12Number of unidentified lines9Number of lines tentatively identified by NID 325.00%

Nuclide Type : natural

]	Nuclide K-40 RA-226 FH-228 U-235	Hlife 1.28E+09Y 1600.00Y 1.91Y 7.04E+08Y	Decay 1.00 1.00 1.02 1.00	Uncorrected pCi/L 2.853E+01 3.601E+01 4.541E+00 2.187E+00	Decay Corr pCi/L 2.853E+01 3.601E+01 4.614E+00 2.187E+00	Decay Corr 2-Sigma Error 3.664E+01 5.953E+01 5.617E+00 3.616E+00	128.45 165.29 121.75	Flags K
		Total Act:	ivity :	7.127E+01	7.134E+01			
	Grano	d Total Act:	ivity :	7.127E+01	7.134E+01			

Flags:	"K" = Keyline not			Manually accepted
0	"E" = Manually edi	ited "A"	-	Nuclide specific abn. limit

Page : 3 Unidentified Energy Lines Acquisition date : 8-JUN-2006 18:30:30 Sample ID : 10L28833-1 Bkgnd FWHM Channel Left Pw Cts/Sec %Err %Eff Flags Area Ιt Energy 6.12E-01 123 13 2.11E-02 24.0 731 1590 4.51 130.27 1 65.58 9 5.67E-04 **** 1.30E+00 1 92.57 20 1039 1.47 184.27 180 275 9 7.16E-03 48.5 1.68E+00 248 1041 1.37 279.13 1 139.97 1.55E+00 391 10 5.09E-03 73.5 176 891 1.55 396.46 1 198.61 697 13 1.19E-03 **** 1.06E+00 1.97 703.68 418 41 1 352.15 7.06E-01 1191.91 1184 15 2.75E-03 80.6 281 1.67 1 596.12 95 6.94E-01 1218.16 1212 14 1.78E-03 **** 1 609.23 62 234 1.87 38 154 1.03 1824.89 1815 17 1.10E-03 **** 5.06E-01 912.38 1 9.66 3430.07 3418 24 2.35E-03 46.7 3.19E-01 40 1 1714.17 81 Flags: "T" = Tentatively associated Summary of Nuclide Activity 12 Total number of lines in spectrum Number of unidentified lines 9 Number of lines tentatively identified by NID 3 25.00% Nuclide Type : natural Wtd Mean Wtd Mean Uncorrected Decay Corr 2-Sigma Decay Corr 2-Sigma Error %Error Flags pCi/L Nuclide Hlife Decay pCi/L 2.853E+01 2.853E+01 3.664E+01 128.45 1.28E+09Y 1.00 K-40 165.29 1600.00Y 1.00 3.601E+01 3.601E+01 5.953E+01 RA-226 5.617E+00 121.75 4.614E+00 1.02 4.541E+00 TH-228 1.91Y _ _ _ _ _ _ _ _ _ _ _____ 6.915E+01 Total Activity : 6.908E+01 6.915E+01 Grand Total Activity : 6.908E+01 "M" = Manually accepted Flags: "K" = Keyline not found "A" = Nuclide specific abn. limit "E" = Manually edited Interference Report No interference correction performed Combined Activity-MDA Report ---- Identified Nuclides ----Act/MDA MDA MDA error Activity Act error Nuclide (pCi/L)(pCi/L)0.923 0.000E+00 3.090E+01 3.664E+01 K-40 2.853E+01 0.426 8.461E+01 0.000E+00 RA-226 3.601E+01 5.953E+01 0.737 4.614E+00 5.617E+00 6.260E+00 0.000E+00 TH-228

---- Non-Identified Nuclides ----

Key-Line

Nuclide	(pCi/L)	Ided		(pCi/L)		
BE-7	1.631E+00		2.152E+01	3.577E+01	0.000E+00	0.046
NA-24	-7.951E+01		5.032E+01	Half-Life	too short	
CR-51	1.079E+00		2.650E+01	4.365E+01	0.000E+00	0.025
MN-54	1.151E+00		2.232E+00	3.760E+00	0.000E+00	0.306
CO-57	1.301E+00		2.229E+00	3.720E+00	0.000E+00	0.350
CO-58	-8.728E-01		2.301E+00	3.740E+00	0.000E+00	-0.233
FE-59	-4.366E-01		4.831E+00	7.981E+00	0.000E+00	-0.055
CO-60	6.794E-01		2.128E+00	3.557E+00	0.000E+00	0.191
ZN-65	1.233E-01		4.590E+00	7.619E+00	0.000E+00	0.016
SE-75	5.496E-01		3.110E+00	5.176E+00	0.000E+00	0.106
SR-85	2.455E+01		2.911E+00	5.717E+00	0.000E+00	4.294
Y-88	4.119E-01		2.431E+00	4.031E+00	0.000E+00	0.102
NB-94	-6.836E-01		2.108E+00	3.385E+00	0.000E+00	-0.202
NB-95	9.936E-01		2.414E+00	4.068E+00	0.000E+00	0.244
ZR-95	-3.724E+00		4.240E+00	6.783E+00	0.000E+00	-0.549
MO-99	-1.461E+02		8.446E+02	1.393E+03	0.000E+00	-0.105
RU-103	2.386E+00		2.891E+00	4.902E+00	0.000E+00	0.487
RU-106	1.479E+01		2.191E+01	3.531E+01	0.000E+00	0.419
AG-110m	4.897E-01		2.137E+00	3.520E+00	0.000E+00	0.139
SN-113	1.837E+00		2.975E+00	4.938E+00	0.000E+00	0.372
SB-124	-2.052E+00		6.108E+00	4.057E+00	0.000E+00	-0.506
SB-125	-3.841E+00		6.421E+00	1.024E+01	0.000E+00	-0.375
TE-129M	-3.139E+01		3.278E+01	5.293E+01	0.000E+00	-0.593
I-131	3.856E+00		8.326E+00	1.380E+01	0.000E+00	0.279
BA-133	3.124E+00		3.409E+00	4.887E+00	0.000E+00	0.639
CS-134	5.586E+00		4.710E+00	3.840E+00	0.000E+00	1.455
CS-136	-2.920E+00		4.557E+00	7.313E+00	0.000E+00	-0.399
CS-137	-4.710E-01		2.301E+00	3.725E+00	0.000E+00	-0.126
CE-139	6.655E-01		2.355E+00	3.877E+00	0.000E+00	0.172
BA-140	6.993E+00		1.722E+01	2.879E+01	0.000E+00	0.243
LA-140	2.081E+00		5.616E+00	9.496E+00	0.000E+00	0.219
CE-141	-1.111E+00		6.038E+00	8.391E+00	0.000E+00	-0.132
CE-144	-6.395E+00		2.027E+01	2.819E+01	0.000E+00	-0.227
EU-152	-9.625E+00		8.175E+00	1.082E+01	0.000E+00	-0.890
EU-154	3.426E+00		4.527E+00	7.575E+00	0.000E+00	0.452
AC-228	-6.355E+00		8.980E+00	1.271E+01	0.000E+00	-0.500
TH-232	-6.321E+00		8.933E+00	1.265E+01	0.000E+00	-0.500
U-235	1.998E+01		1.989E+01	2.846E+01	0.000E+00	0.702
U-238	1.069E+02		2.341E+02	3.907E+02	0.000E+00	0.274
AM-241	-1.088E+01		2.115E+01	2.893E+01	0.000E+00	-0.376

A,10L28833			04:07,05/24/2		3.240E+00,WG	L28833-1	ΕX
B,10L28833		,LIBD		07/2006 09:32			
	,YES,	2.853E+01,	3.664E+01,				
	,YES,	3.601E+01,		8.461E+01,,	0.426		
	,YES,	4.614E+00,		6.260E+00,,	0.737		
	,NO,	1.631E+00,	2.152E+01,	3.577E+01,,	0.046		
	,NO,	1.079E+00,	2.650E+01,	4.365E+01,,	0.025		
	,NO,	1.151E+00,	2.232E+00,	3.760E+00,,	0.306		
	,NO,	1.301E+00,	2.229E+00,	3.720E+00,,	0.350		
	,NO,	-8.728E-01,	2.301E+00,	3.740E+00,,	-0.233		
C,FE-59	,NO,	-4.366E-01,	4.831E+00,	7.981E+00,,	-0.055		
	,NO,	6.794E-01,	2.128E+00,	3.557E+00,,	0.191		
C,ZN-65	,NO,	1.233E-01,	4.590E+00,	7.619E+00,,	0.016		
C,SE-75	,NO,	5.496E-01,	3.110E+00,	5.176E+00,,	0.106		
C,SR-85	,NO,	2.455E+01,	2.911E+00,	5.717E+00,,	4.294		
C,Y-88	,NO,	4.119E-01,	2.431E+00,	4.031E+00,,	0.102		
C,NB-94	,NO,	-6.836E-01,	2.108E+00,	3.385E+00,,	-0.202		
C,NB-95	,NO,	9.936E-01,	2.414E+00,	4.068E+00,,	0.244		
C,ZR-95	,NO,	-3.724E+00,	4.240E+00,	6.783E+00,,	-0.549		
	,NO,	-1.461E+02,	8.446E+02,	1.393E+03,,	-0.105		
C,RU-103	,NO,	2.386E+00,	2.891E+00,	4.902E+00,,	0.487		
C,RU-106		1.479E+01,	2.191E+01,	3.531E+01,,	0.419		
C,AG-110m		4.897E-01,	2.137E+00,	3.520E+00,,	0.139		
C,SN-113	,NO,	1.837E+00,	2.975E+00,	4.938E+00,,	0.372		
	,NO,	-2.052E+00,	6.108E+00,	4.057E+00,,	-0.506		
C,SB-125	,NO,	-3.841E+00,	6.421E+00,	1.024E+01,,	-0.375		
C,TE-129M		-3.139E+01,	3.278E+01,	5.293E+01,,	-0.593		
	,NO,	3.856E+00,	8.326E+00,	1.380E+01,,	0.279		
C, BA-133	,NO,	3.124E+00,	3.409E+00,	4.887E+00,,	0.639		
C,CS-134	,NO,	5.586E+00,	4.710E+00,	3.840E+00,,	1.455		
C,CS-136	,NO,	-2.920E+00,	4.557E+00,	7.313E+00,,	-0.399		
C,CS-137	,NO,	-4.710E-01,	2.301E+00,	3.725E+00,,	-0.126		
C,CE-139	,NO,	6.655E-01,	2.355E+00,	3.877E+00,,	0.172		
C, BA-140	,NO,	6.993E+00,	1.722E+01,	2.879E+01,,	0.243		
C,LA-140	,NO,	2.081E+00,	5.616E+00,	9.496E+00,,	0.219		
C,CE-141	,NO,	-1.111E+00,	6.038E+00,	8.391E+00,,	-0.132		
-	, NO ,	-6.395E+00,	2.027E+01,	2.819E+01,,	-0.227		
C,EU-152	,NO,	-9.625E+00,	8.175E+00,	1.082E+01,,	-0.890		
C,EU-154	,NO,	3.426E+00,	4.527E+00,	7.575E+00,,	0.452		
C, AC-228	,NO ,	-6.355E+00,	8.980E+00,	1.271E+01,,	-0.500		
C,TH-232	,NO ,	-6.321E+00,	8.933E+00,	1.265E+01,,	-0.500		
C,U-235	,NO ,	1.998E+01,	1.989E+01,	2.846E+01,,	0.702		
C,U-238	,NO ,	1.069E+02,	2.341E+02,	3.907E+02,,	0.274		
C,AM-241	,NO ,	-1.088E+01,	2.115E+01,	2.893E+01,,	-0.376		
_,	, ,	······································	,	, ,			

Sec. Review: Analyst: LIMS:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 9-JUN-2006 04:08:02.68 TBE11 P-20610B HpGe ******** Aquisition Date/Time: 8-JUN-2006 18:30:32.65 LIMS No., Customer Name, Client ID: WG L28833-2 EXELON ZION

 Sample ID
 : 11L28833-2
 Smple Date: 24-MAY-2006 13:45:00.

 Sample Type
 : WG
 Geometry : 1135L090204

 Quantity
 : 3.31080E+00 L
 BKGFILE : 11BG060306MT

 Start Channel
 : 40
 Energy Tol : 1.00000
 Real Time : 0 09:37:20.10

 End Channel
 : 4090
 Pk Srch Sens: 5.00000
 Live time : 0 09:37:07.77

 MDA Constant
 : 0.00
 Library Used: LIBD

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec %Err	Fit
1 2	0 0	66.16 92.51*	238 103	2248 1421	1.25	131.32 184.19	1.27E+00	6.87E-03 36.5 2.96E-03 83.8	
3	0	139.76*	207	890	1.31	278.95		5.97E-03 30.2	
4	0	185.75*	71	907	1.37	371.19		2.04E-03 93.1	
5	0	198.44	239	900	1.39	396.63		6.89E-03 24.4	
6	0	238.40*	18	722	1.34	476.75		5.23E-04333.3	
7	0	295.60*	95	545	2.66	591.42	1.23E+00	2.74E-03 54.7	
8	0	352.04*	97	424	1.37	704.53	1.08E+00		
9	0	582.83*	69	185	0.98	1166.86		2.01E-03 53.7	
10	0	595.98	135	252	1.77	1193.18		3.91E-03 25.0	
11	0	609.22*	134	335	1.98	1219.70	7.02E-01	3.88E-03 36.3	
12	0	1460.39*	138	132	1.85	2921.28	3.54E-01	3.97E-03 25.8	

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pCi/L	%Error
K-40	1460.81	138	10.67*	3.540E-01	8.589E+01	8.589E+01	51.51
RA-226	186.21	71	3.28*	1.616E+00	3.144E+01	3.144E+01	186.16
TH-228	238.63	18	44.60*	1.422E+00	6.729E-01	6.833E-01	666.54
	240.98		3.95	1.413E+00	Li	ne Not Found	
U-235	143.76		10.50*	1.695E+00	Lii	ne Not Found	
	163.35		4.70	1.678E+00	Li	ne Not Found	
	185.71	71	54.00	1.616E+00	1.910E+00	1.910E+00	186.16
	205.31		4.70	1.546E+00	Li	ne Not Found	

Flag: "*" = Keyline

Summary of Nuclide Activity Page : 2 Sample ID : 11L28833-2 Acquisition date : 8-JUN-2006 18:30:32 12 Total number of lines in spectrum Number of unidentified lines 8 Number of lines tentatively identified by NID 4 33.33% Nuclide Type : natural Uncorrected Decay Corr Decay Corr 2-Sigma pCi/L 2-Sigma Error %Error Flags Nuclide pCi/L Hlife Decay 4.424E+01 51.51 K-40 1.28E+09Y 1.00 8.589E+01 8.589E+01 1.00 3.144E+01 5.853E+01 186.16 RA-226 1600.00Y 3.144E+01 666.54 45.54E-01 1.02 6.729E-01 6.833E-01 TH-228 1.91Y 3.555E+00 186.16 K U-235 7.04E+08Y 1.00 1.910E+00 1.910E+00 _ _ _ _ _ _ _ _ _ _ _____ Total Activity : 1.199E+02 1.199E+02 Grand Total Activity : 1.199E+02 1.199E+02 Flags: "K" = Keyline not found "M" = Manually accepted "E" = Manually edited "A" = Nuclide specific abn. limit

3 Page : Unidentified Energy Lines Acquisition date : 8-JUN-2006 18:30:32 Sample ID : 11L28833-2 Channel Left Pw Cts/Sec %Err %Eff Flags Bkgnd FWHM It Energy Area 5.98E-01 1.25 131.32 128 9 6.87E-03 73.0 238 2248 0 66.16 1.27E+00 178 13 2.96E-03 **** 1421 1.54 184.19 92.51 103 0 275 1.69E+00 278.95 9 5.97E-03 60.5 890 1.31 207 0 139.76 1.57E+00 392 10 6.89E-03 48.8 900 1.39 396.63 198.44 239 0 587 11 2.74E-03 **** 591.42 1.23E+00 545 2.66 295.60 95 0 700 10 2.79E-03 **** 1.08E+00 424 1.37 704.53 97 352.04 0 Т 1166.86 1162 11 2.01E-03 **** 7.27E-01 185 0.98 69 0 582.83 1193.18 1187 12 3.91E-03 50.0 7.14E-01 252 1.77 0 595.98 135 1219.70 1213 18 3.88E-03 72.6 7.02E-01 609.22 134 335 1.98 0 Flags: "T" = Tentatively associated Summary of Nuclide Activity 12 Total number of lines in spectrum Number of unidentified lines 8 Number of lines tentatively identified by NID 4 33.33% Nuclide Type : natural Wtd Mean Wtd Mean 2-Sigma Uncorrected Decay Corr Decay Corr 2-Sigma Error %Error Flags pCi/L pCi/L Hlife Decay Nuclide 8.589E+01 51.51 4.424E+01 8.589E+01 1.28E+09Y 1.00 K-40 3.144E+01 186.16 5.853E+01 1.00 3.144E+01 RA-226 1600.00Y 666.54 6.833E-01 45.54E-01 1.02 6.729E-01 1.91Y TH-228 _____ ------1.180E+02 1.180E+02 Total Activity : Grand Total Activity : 1.180E+02 1.180E+02 "M" = Manually accepted Flags: "K" = Keyline not found "A" = Nuclide specific abn. limit "E" = Manually edited Interference Report No interference correction performed Combined Activity-MDA Report ---- Identified Nuclides ----MDA error Act/MDA MDA Act error Activity (pCi/L) Nuclide (pCi/L) 2.629 0.000E+00 4.424E+01 3.267E+01 8.589E+01 K-40 0.387 8.119E+01 0.000E+00 5.853E+01 3.144E+01 RA-226 0.000E+00 0.112 6.099E+00 4.554E+00 TH-228 6.833E-01

---- Non-Identified Nuclides ----

Nuclide	(pCi/L)	Ided		(pCi/L)		
BE-7	1.490E+01		2.090E+01	3.487E+01	0.000E+00	0.427
NA-24	-1.643E+00		2.884E+01	Half-Life		
CR-51	-2.581E+01		2.499E+01	4.033E+01	0.000E+00	-0.640
MN-54	-1.161E+00		2.194E+00	3.513E+00	0.000E+00	-0.330
CO-57	-7.031E-01		2.104E+00	3.450E+00	0.000E+00	-0.204
CO-58	-1.960E+00		2.286E+00	3.606E+00	0.000E+00	-0.544
FE-59	2.742E+00		4.749E+00	8.081E+00	0.000E+00	0.339
CO-60	8.458E-02		2.276E+00	3.740E+00	0.000E+00	0.023
ZN-65	6.174E+00		4.524E+00	7.957E+00	0.000E+00	0.776
SE-75	-2.683E+00		2.913E+00	4.751E+00	0.000E+00	-0.565
SR-85	1.941E+01		2.813E+00	5.331E+00	0.000E+00	3.641
Y-88	-1.159E+00		2.632E+00	4.206E+00	0.000E+00	-0.276
NB-94	-1.548E+00		2.000E+00	3.204E+00	0.000E+00	-0.483
NB-95	5.113E-01		2.336E+00	3.874E+00	0.000E+00	0.132
ZR-95	1.272E-01		4.145E+00	6.827E+00	0.000E+00	0.019
MO-99	4.913E+02		7.378E+02	1.246E+03	0.000E+00	0.394
RU-103	4.086E+00		2.789E+00	4.749E+00	0.000E+00	0.860
RU-106	1.510E+01		2.169E+01	3.371E+01	0.000E+00	0.448
AG-110m	-9.195E-01		2.035E+00	3.309E+00	0.000E+00	-0.278
SN-113	6.063E-01		2.824E+00	4.670E+00	0.000E+00	0.130
SB-124	2.479E+00		5.162E+00	3.943E+00	0.000E+00	0.629
SB-125	-1.396E+00		5.866E+00	9.542E+00	0.000E+00	-0.146
TE-129M	1.519E+01		3.121E+01	5.178E+01	0.000E+00	0.293
I-131	-1.081E+00		7.781E+00	1.277E+01	0.000E+00	-0.085
BA-133	5.095E+00		3.359E+00	4.954E+00	0.000E+00	1.029
CS-134	4.360E+00		3.990E+00	3.800E+00	0.000E+00	1.147
CS-136	-2.461E+00		4.373E+00	6.987E+00	0.000E+00	-0.352
CS-137	-1.545E-01		2.181E+00	3.599E+00	0.000E+00	-0.043
CE-139	8.543E-02		2.167E+00	3.549E+00	0.000E+00	0.024
BA-140	3.534E+00		1.650E+01	2.701E+01	0.000E+00	0.131
LA-140	2.063E+00		5.498E+00	9.329E+00	0.000E+00	0.221
CE-141	2.813E+00		5.585E+00	7.878E+00	0.000E+00	0.357
CE-144	-8.023E+00		1.883E+01	2.601E+01	0.000E+00	-0.308
EU-152	-1.875E+01		8.020E+00	1.022E+01	0.000E+00	-1.835
EU-154	3.134E-01		4.258E+00	7.027E+00	0.000E+00	0.045
AC-228	-1.780E+00		1.032E+01	1.365E+01	0.000E+00	-0.130
TH-232	-1.771E+00		1.026E+01	1.358E+01	0.000E+00	-0.130
U-235	2.904E+01		1.877E+01	2.715E+01	0.000E+00	1.070
U-238	-5.091E+01		2.181E+02	3.586E+02	0.000E+00	-0.142
AM-241	-2.352E+01		3.181E+01	4.302E+01	0.000E+00	-0.547

A,11L28833-2	,06/09/2006	04:08,05/24/2		3.311E+00,WG	L28833-2	ΕX
B,11L28833-2	,LIBD	,06/	07/2006 09:40	,1135L090204		
C,K-40 ,YES,	8.589E+01,	4.424E+01,		2.629		
C,RA-226 ,YES,	3.144E+01,	5.853E+01,	8.119E+01,,	0.387		
C,TH-228 ,YES,	6.833E-01,	4.554E+00,	6.099E+00,,	0.112		
C,BE-7 ,NO ,	1.490E+01,	2.090E+01,	3.487E+01,,	0.427		
C, CR-51 , NO ,	-2.581E+01,	2.499E+01,	4.033E+01,,	-0.640		
C,MN-54 ,NO ,	-1.161E+00,	2.194E+00,	3.513E+00,,	-0.330		
C,CO-57 ,NO ,	-7.031E-01,	2.104E+00,	3.450E+00,,	-0.204		
C,CO-58 ,NO ,	-1.960E+00,	2.286E+00,	3.606E+00,,	-0.544		
C,FE-59 ,NO ,	2.742E+00,	4.749E+00,	8.081E+00,,	0.339		
C, CO-60 , NO ,	8.458E-02,	2.276E+00,	3.740E+00,,	0.023		
C,ZN-65 ,NO ,	6.174E+00,	4.524E+00,	7.957E+00,,	0.776		
C,SE-75 ,NO ,	-2.683E+00,	2.913E+00,	4.751E+00,,	-0.565		
C, SR-85 , NO ,	1.941E+01,	2.813E+00,	5.331E+00,,	3.641		
C,Y-88 ,NO ,	-1.159E+00,	2.632E+00,	4.206E+00,,	-0.276		
C,NB-94 ,NO ,	-1.548E+00,	2.000E+00,	3.204E+00,,	-0.483		
C,NB-95 ,NO ,	5.113E-01,	2.336E+00,	3.874E+00,,	0.132		
C,ZR-95 ,NO ,	1.272E-01,	4.145E+00,	6.827E+00,,	0.019		
C, MO-99 , NO ,	4.913E+02,	7.378E+02,	1.246E+03,,	0.394		
C,RU-103 ,NO ,	4.086E+00,	2.789E+00,	4.749E+00,,	0.860		
C,RU-106 ,NO ,	1.510E+01,	2.169E+01,	3.371E+01,,	0.448		
C,AG-110m ,NO ,	-9.195E-01,	2.035E+00,	3.309E+00,,	-0.278		
C, SN-113 , NO ,	6.063E-01,	2.824E+00,	4.670E+00,,	0.130		
C,SB-124 ,NO ,	2.479E+00,	5.162E+00,	3.943E+00,,	0.629		
C,SB-125 ,NO ,	-1.396E+00,	5.866E+00,	9.542E+00,,	-0.146		
C,TE-129M ,NO ,	1.519E+01,	3.121E+01,	5.178E+01,,	0.293		
C,I-131 ,NO ,	-1.081E+00,	7.781E+00,	1.277E+01,,	-0.085		
C, BA-133 , NO ,	5.095E+00,	3.359E+00,	4.954E+00,,	1.029		
C,CS-134 ,NO ,	4.360E+00,	3.990E+00,	3.800E+00,,	1.147		
C,CS-136 ,NO ,	-2.461E+00,	4.373E+00,	6.987E+00,,	-0.352		
-	-1.545E-01,	2.181E+00,	3.599E+00,,	-0.043		
-	8.543E-02,	2.167E+00,	3.549E+00,	0.024		
C,CE-139 ,NO ,	3.534E+00,	1.650E+01,	2.701E+01,,	0.131		
C,BA-140 ,NO ,	2.063E+00,	5.498E+00,	9.329E+00,,	0.221		
C,LA-140 ,NO ,	2.813E+00,	5.585E+00,	7.878E+00,,	0.357		
C,CE-141 ,NO ,	-8.023E+00,	1.883E+01,	2.601E+01,,	-0.308		
C,CE-144 ,NO ,		8.020E+00,	1.022E+01,,	-1.835		
C,EU-152 ,NO ,	-1.875E+01,	4.258E+00,	7.027E+00,,	0.045		
C,EU-154 ,NO ,	3.134E-01, 1.780E+00	1.032E+01,	1.365E+01,,	-0.130		
C,AC-228 ,NO ,	-1.780E+00,		1.358E+01,,	-0.130		
C,TH-232 ,NO ,	-1.771E+00,	1.026E+01,	2.715E+01,,	1.070		
C,U-235 ,NO ,	2.904E+01,	1.877E+01,	3.586E+02,,	-0.142		
C,U-238 ,NO ,	-5.091E+01,	2.181E+02,	4.302E+01,,	-0.547		
C,AM-241 ,NO ,	-2.352E+01,	3.181E+01,	+.JUZUTUI//	0.01/		

Sec. Review: Analyst: LIMS: ____ VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 9-JUN-2006 09:52:03.07 TBE04 P-40312B HpGe ******** Aquisition Date/Time: 9-JUN-2006 05:02:56.11 LIMS No., Customer Name, Client ID: WG L28833-3 EXELON ZION Smple Date: 25-MAY-2006 09:15:00. : 04L28833-3 Sample ID Geometry : 043L082004 Sample Type : WG BKGFILE : 04BG060305MT Quantity : 3.09630E+00 L Start Channel : 90Energy Tol : 1.00000Real Time : 0 04:01:08.08End Channel : 4090Pk Srch Sens: 5.00000Live time : 0 04:01:05.55 MDA Constant : 0.00 Library Used: LIBD Energy Area Bkgnd FWHM Channel %Eff Cts/Sec %Err Fit Pk It 6.64E-01 9.27E-03 25.6 3.14E+00 1.27 133.13 1 66.34* 134 355 1 154.74 1.06E+00 5.36E-03 49.8 4.48E+00 78 414 1.34 2 3 77.14 1.54E+00 5.33E-03 52.2 7.96E-01 77 186.09 3 393 2.12 1 92.82* 2.04E+00 7.84E-03 33.2 3.44E+00 113 382 1.33 280.82 4 140.19* 1 1.92E+00 2.43E-03128.2 9.13E-01 371.32 468 1.57 5 1 185.45* 35 1.87E+00 5.38E-03 49.6 2.54E+00 6 1 198.31* 78 353 1.75 397.04 1.68E+00 1.94E-03 93.9 2.23E+00 1.01 477.54 7 1 238.56* 28 191 132 184 198 0.98 483.87 1.67E+00 2.12E-03 67.3 4.67E+00 31 8 1 241.73* 64 1.45E+00 4.40E-03 43.1 1.21E+00 1.36 590.80 9 295.21* 1 1.28E+00 7.17E-03 32.4 1.01E+00 104 1.60 704.14 10 1 351.89* 8.63E-01 3.19E-03 40.2 9.88E-01 1.52 1191.73 11 595.75 46 87 1 158 9 127 8.49E-01 1.09E-02 18.5 1.73E+00 1.53 1218.41 12 1 609.09* 5.27E-01 5.94E-04179.1 2.51E+00 45 3.18 2239.70 13 1 1119.96* 4.88E-01 1.27E-03 94.2 1.13E+00 18 22 3.21 2475.21 40 14 1 1237.78* 4.49E-01 1.52E-03 73.4 1.01E+00 48 1.81 2754.67 15 1 1377.60 4.30E-01 7.02E-05***** 7.69E-01 1 42 38 16 1 1460.68* 1.83 2920.73 3.77E-01 2.90E-03 26.8 4.84E-01 11 2.91 3527.90 17 1 1764.49* 0.80 3558.89 3.75E-01 1.37E-03 49.8 7.24E+00 20 20 1 1780.00 18

L28833 R2 / 67 of 162

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

MUCTIUC	Type: macare	~ _			Uncorrected	Dogate Corr	2-Sigma
					oncorrected	#	
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pCi/L	%Error
K-40	1460.81	1	10.67*	4.296E-01	1.338E+00	1.338E+00	3296.67
RA-226	186.21	35	3.28*	1.923E+00	3.358E+01	3.358E+01	256.33
TH-228	238.63	28	44.60*	1.680E+00	2.257E+00	2.291E+00	187.82
	240.98	31	3.95	1.666E+00	2.817E+01	2.859E+01	134.63
U-235	143.76		10.50*	2.041E+00	Lix	ne Not Found	
	163.35		4.70	2.007E+00	Li	ne Not Found	
	185.71	35	54.00	1.923E+00	2.040E+00	2.040E+00	256.33
	205.31		4.70	1.833E+00	Li:	ne Not Found	

Flag: "*" = Keyline

L28833 R2 / 68 of 162

Page : 2 Summary of Nuclide Activity Acquisition date : 9-JUN-2006 05:02:56 Sample ID : 04L28833-3 Total number of lines in spectrum 18 14 Number of unidentified lines Number of lines tentatively identified by NID 4 22.22% Nuclide Type : natural 2-Sigma Uncorrected Decay Corr Decay Corr 2-Sigma Error %Error Flags pĊi/L Nuclide Hlife Decay pCi/L 44.10E+00 3296.67 1.338E+00 1.338E+00 1.00 K-40 1.28E+09Y 8.608E+01 256.33 1.00 3.358E+01 3.358E+01 RA-226 1600.00Y 4.302E+00 187.82 2.291E+00 1.01 2.257E+00 1.91Y TH-228 U-235 7.04E+08Y 5.229E+00 256.33 K 2.040E+00 1.00 2.040E+00 _____ -----Total Activity : 3.922E+01 3.925E+01 3.925E+01 Grand Total Activity : 3.922E+01 "M" = Manually accepted Flags: "K" = Keyline not found "A" = Nuclide specific abn. limit "E" = Manually edited

L28833 R2 / 69 of 162

3

Unidentified Energy Lines Sample ID : 04L28833-3

Page : 3 Acquisition date : 9-JUN-2006 05:02:56

Sample .	Sample ID : 04L28833-3 Acquisición date : 5 Sen 2000 Tra								
It Ene	ergy A	rea Bko	gnd FW	HM Cha	nnel :	Left P	w Cts/Sec	%Err %Ef	f Flags
3 7' 1 9' 1 14 1 19 1 29 1 35 1 59 1 60 1 111 1 123 1 137 1 176	7.14 2.82 0.19 8.31 5.21 1.89 5.75	78 77 113 78 64 104 46		34       15         12       18         33       28         75       39         36       59         60       70         52       119         53       121         18       223         21       247         81       275         91       352	0.80 04.14 01.73 .8.41 39.70 75.21 54.67 27.90	$\begin{array}{cccc} 147 & 1 \\ 182 & 1 \\ 276 \\ 391 & 1 \\ 587 \\ 699 & 1 \\ 1186 & 1 \\ 1213 & 1 \\ 2234 & 1 \\ 2467 & 1 \\ 2747 & 1 \\ 3522 & 1 \end{array}$	7 9.27E-03 2 5.36E-03 9 7.84E-03 1 5.38E-03 9 4.40E-03 3 7.17E-03 0 $3.19E-03$ 4 1.09E-02 2 5.94E-04 9 1.27E-03 6 1.52E-03 2 2.90E-03 2 1.37E-03	99.7       1.06         ***       1.54         66.4       2.04         99.2       1.87         86.1       1.45         64.8       1.26         80.5       8.63         37.1       8.45         ****       5.27         ****       4.87         ****       4.48         53.6       3.7	E = 01 5E + 00 E + 00 4E + 00 7E + 00 3E + 00 3E - 01 9E - 01 9E - 01 9E - 01 9E - 01 5E - 01 5E - 01
Flags:	"T" = Ter	ntatively	associ	ated					
Summary	of Nucli	de Activ	ity						
Number	number of of unide of lines	entified	lines		ed by	1	.8 .4 .4 .22.	22%	
	RA-226 1600.00Y 1.00 3.358E+01 3.358E+01 8.608E+01 256.33								
Gra	nd Total J	Activity	: 3.7	50E+01	3.'	754E+01	L		
	"K" = Ke		found		"M" "A"	= Man = Nucl	ually accept lide specif:	ted ic abn. li	.mit
Interf	erence Re	port							
No int	erference	correct	ion per	formed					
Combin	ed Activi	ty-MDA R	eport						
I	dentified	l Nuclide	s						
Nuclid		ctivity (pCi/L)		Act err	or		MDA Ci/L)	MDA erro:	r Act/MDA
K-40 RA-226 TH-228	3	.338E+00 3.358E+01 2.615E+00		4.410E+ 8.608E+ 4.276E-	+01	1.0	10E+01 19E+02 15E+00	0.000E+0 0.000E+0 0.000E+0	0 0.330

---- Non-Identified Nuclides ----

	Key-Line					
	Activity 1	K.L.	Act error	MDA	MDA error	Act/MDA
Nuclide	(pCi/L)	Ided		(pCi/L)		
			0 000.01		0 0000.00	0 007
BE-7	1.672E+00		2.753E+01	4.564E+01	0.000E+00	0.037
NA-24	-3.128E+01		2.945E+01	Half-Life too		0 (11
CR-51	-3.334E+01		3.443E+01	5.458E+01	0.000E+00	-0.611
MN-54	3.413E-01		2.842E+00	4.675E+00	0.000E+00	0.073
CO-57	2.755E+00		2.471E+00	4.264E+00	0.000E+00	0.646
CO-58	7.177E-02		3.386E+00	5.544E+00	0.000E+00	0.013
FE-59	2.776E+00		6.899E+00	1.162E+01	0.000E+00	0.239
CO-60	-1.532E-01		3.309E+00	5.635E+00	0.000E+00	-0.027
ZN-65	9.119E+00		7.950E+00	1.220E+01	0.000E+00	0.747
SE-75	-4.500E+00		3.861E+00	6.161E+00	0.000E+00	-0.730
SR-85	1.796E+01		3.800E+00	7.308E+00	0.000E+00	2.458
Y-88	-1.565E+00		3.616E+00	5.643E+00	0.000E+00	-0.277
NB-94	1.607E+00		2.581E+00	4.422E+00	0.000E+00	0.364
NB-95	2.824E+00		3.268E+00	5.644E+00	0.000E+00	0.500
ZR-95	1.245E+00		5.638E+00	9.395E+00	0.000E+00	0.133
MO-99	-5.890E+02		8.344E+02	1.308E+03	0.000E+00	-0.450
RU-103	2.315E+00		3.622E+00	6.154E+00	0.000E+00	0.376
RU-106	1.208E+01		2.704E+01	4.379E+01	0.000E+00	0.276
AG-110m	-1.553E+00		2.767E+00	4.442E+00	0.000E+00	-0.350
SN-113	-3.300E-01		3.929E+00	6.363E+00	0.000E+00	-0.052
SB-124	5.455E+00		6.240E+00	5.422E+00	0.000E+00	1.006
SB-125	-4.801E-01		7.960E+00	1.322E+01	0.000E+00	-0.036
TE-129M	3.826E+00		3.915E+01	6.519E+01	0.000E+00	0.059
I-131	-2.037E-01		9.891E+00	1.614E+01	0.000E+00	-0.013
BA-133	8.105E+00		4.721E+00	7.195E+00	0.000E+00	1.126
CS-134	1.029E+01		4.842E+00	6.290E+00	0.000E+00	1.636
CS-136	3.716E+00		6.304E+00	1.068E+01	0.000E+00	0.348
CS-137	1.251E+00		2.933E+00	4.987E+00	0.000E+00	0.251
CE-139	-1.393E+00		2.708E+00	4.401E+00	0.000E+00	-0.317
BA-140	-5.884E+00		2.117E+01	3.418E+01	0.000E+00	-0.172
LA-140	-5.793E-01		7.181E+00	1.179E+01	0.000E+00	-0.049
CE-141	7.468E-01		6.833E+00	9.749E+00	0.000E+00	0.077
CE-144	2.625E+01		2.221E+01	3.326E+01	0.000E+00	0.789
EU-152	-6.206E+00		1.008E+01	1.345E+01	0.000E+00	-0.461
EU-154	5.494E+00		5.024E+00	8.661E+00	0.000E+00	0.634
AC-228	-7.453E-01		1.040E+01	1.768E+01	0.000E+00	-0.042
TH-232	-7.416E-01		1.034E+01	1.759E+01	0.000E+00	-0.042
U-235	3.507E+00		2.327E+01	3.326E+01	0.000E+00	0.105
U-238	1.620E+02		3.034E+02	5.195E+02	0.000E+00	0.312
AM-241	-1.358E+01		2.814E+01	4.383E+01	0.000E+00	-0.310

A,04L28833-3	,06/09/2006	09:52,05/25/2	2006 09:15,	3.096E+00,WG	L28833-3 EA
B,04L28833-3 C,K-40 ,YES,	,LIBD	,06/	02/2006 09:04	,043L082004	
C,K-40 ,YES,	1.338E+00,	4.410E+01,	4.110E+01,,	0.033	
C,RA-226 ,YES,	3.358E+01,	8.608E+01,	1.019E+02,,	0.330	
		4.276E+00,			
C,BE-7 ,NO ,		2.753E+01,			
C,CR-51 ,NO ,	-3.334E+01,	3.443E+01,	5.458E+01,,	-0.611	
C.MN-54 NO	3.413E-01,	2.842E+00,	4.675E+00,,	0.073	
C,CO-57 ,NO ,	2.755E+00,	2.471E+00,	4.264E+00,,	0.646	
$C_{-}CO-58$ NO	7.177E-02,	3.386E+00,	5.544E+00,,	0.013	
C,FE-59 ,NO ,	2.776E+00,	6.899E+00,	1.162E+01,,	0.239	
C,CO-60 ,NO ,	-1.532E-01,	3.309E+00,	5.635E+00,,	-0.027	
C,ZN-65 ,NO ,	9.119E+00,	7.950E+00,	1.220E+01,,	0.747	
C,SE-75 ,NO ,	-4.500E+00,	3.861E+00,	6.161E+00,,	-0.730	
C,SR-85 ,NO ,	1.796E+01,	3.800E+00,	7.308E+00,,	2.458	
C,Y-88 ,NO ,	-1.565E+00,	3.616E+00,	5.643E+00,,	-0.277	
C,NB-94 ,NO ,	1.607E+00,	2.581E+00,	4.422E+00,,	0.364	
	2.824E+00,		5.644E+00,,	0.500	
C,ZR-95 ,NO ,	1.245E+00,	5.638E+00,	9.395E+00,,	0.133	
C,MO-99 ,NO ,	-5.890E+02,	8.344E+02,	1.308E+03,,	-0.450	
C,RU-103 ,NO ,	2.315E+00,	3.622E+00,	6.154E+00,,	0.376	
C,RU-106 ,NO ,	1.208E+01,	2.704E+01,	4.379E+01,,	0.276	
C,AG-110m ,NO ,		2.767E+00,	4.442E+00,,	-0.350	
C,SN-113 ,NO ,			6.363E+00,,	-0.052	
C,SB-124 ,NO ,	5.455E+00,		5.422E+00,,	1.006	
C,SB-125 ,NO ,	-4.801E-01,	7.960E+00,		-0.036	
C,TE-129M ,NO ,	3.826E+00,	3.915E+01,	6.519E+01,,	0.059	
C,I-131 ,NO ,		9.891E+00,	1.614E+01,,	-0.013	
C, BA-133 , NO ,	8.105E+00,			1.126	
C,CS-134 ,NO ,			6.290E+00,,	1.636	
C,CS-136 ,NO ,	3.716E+00,			0.348	
C,CS-137 ,NO ,	1.251E+00,		4.987E+00,,	0.251	
C,CE-139 ,NO ,	-1.393E+00,		4.401E+00,,	-0.317	
C,BA-140 ,NO ,				-0.172	
C,LA-140 ,NO ,				-0.049	
	7.468E-01,	6.833E+00,	9.749E+00,,	0.077	
C,CE-144 ,NO ,		2.221E+01,	3.326E+01,,	0.789	
C,EU-152 ,NO ,	-6.206E+00,	1.008E+01,	1.345E+01,,	-0.461	
C,EU-154 ,NO ,	5.494E+00,	5.024E+00,	8.661E+00,,	0.634	
C,AC-228 ,NO ,	-7.453E-01,	1.040E+01,	1.768E+01,,	-0.042	
C,TH-232 ,NO ,	-7.416E-01,	1.034E+01,	1.759E+01,,	-0.042	
C,U-235 ,NO ,	3.507E+00,	2.327E+01,	3.326E+01,,	0.105	
C,U-238 ,NO ,	1.620E+02,	3.034E+02,	5.195E+02,,	0.312	
C,AM-241 ,NO ,	-1.358E+01,	2.814E+01,	4.383E+01,,	-0.310	
	······································	•			

Sec. Review: Analyst: LIMS: _ VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 9-JUN-2006 11:09:03.15 TBE10 12892256 HpGe ******** Aquisition Date/Time: 9-JUN-2006 05:03:53.83 LIMS No., Customer Name, Client ID: WG L28833-4 EXELON ZION Smple Date: 25-MAY-2006 11:23:00. : 10L28833-4 Sample ID Geometry : 1035L091004 Sample Type : WG BKGFILE : 10BG060306MT : 3.29280E+00 L Quantity Real Time : 0 06:05:05.09 Start Channel : 80 Energy Tol : 1.00000 Pk Srch Sens: 5.00000 Live time : 0 06:05:00.60 : 4090 End Channel Library Used: LIBD MDA Constant : 0.00 Fit Cts/Sec %Err FWHM Channel %Eff Area Bkgnd Pk It Energy 6.37E-01 9.52E-03 29.9 8.96E-01 1.57 131.96 208 1061 1 1 66.42* 8.82E-01 8.78E-03 34.0 3.02E+00 148.87 1.49 1087 2 2 74.88* 192 9.45E-01 2.13E-02 11.9 153.46 3 77.17* 467 821 1.222 1.19E+00 5.39E-03 43.9 1.17E+00 173.82 849 1.18 118 4 1 87.34* 1.68E+00 8.52E-03 27.6 4.87E-01 827 1.47 279.69 187 5 1 140.25 1.55E+00 3.70E-03 65.0 1.29E+00 1.56 395.98 696 81 6 1 198.38* 1.40E+00 2.55E-03 84.0 2.43E+00 1.57 476.29 56 525 7 238.51* 1 1.39E+00 2.44E-02 8.7 483.80 535 506 1.57 8 1 242.26 5.8 6.71E-01 1.21E+00 4.14E-02498 1.24 590.02 906 9 1 295.35 1.07E+00 6.61E-02 4.4 8.93E-01 1.28 703.50 508 1448 352.06* 10 1 7.06E-01 6.37E-03 24.5 1.80E+00 4.46 1192.00 222 140 11 1 596.16 6.94E-01 6.72E-02 3.5 1.82E+00 1.50 1218.60 199 1472 12 1 609.45* 5.78E-01 6.60E-03 16.5 1.72E+00 1.59 1537.50 103 768.79 144 13 1 4.97E-01 4.17E-03 31.0 2.91E+00 117 2.90 1868.36 91 14 1 934.10 4.33E-01 1.40E-02 8.6 1.48E+00 1.79 2241.52 1120.51* 72 307 15 1 4.23E-01 2.62E-03 29.1 1.89E+00 2.53 2311.91 53 57 16 1155.68 1 4.01E-01 3.73E-03 27.3 1.86E+00 1.54 2477.57 93 82 17 1238.43* 1 3.71E-01 5.87E-03 11.3 1.26E+00 22 2.08 2757.04 128 18 1 1378.03 3.65E-01 2.91E-03 21.8 6.15E-01 33 2.73 2817.61 64 1408.28 19 1 3.56E-01 1.43E-03 77.6 7.72E-01 2.18 2923.22 31 65 1 1461.03* 20 3.17E-01 3.09E-03 18.6 1.25E+00 15 2.48 3461.44 68 21 1 1729.84 3.13E-01 9.51E-03 12.4 2.51E+00 2.10 3531.71 63 1764.93* 208 22 1 2.90E-01 9.79E-04 35.3 2.92E+00 2.74 4018.34 21 11 23 1 2007.94

L28833 R2 / 72 of 162

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide	Type: natura	al			Uncorrected	Decay Corr	2-Sigma
		_	0 7 1	0 77 6 6		pCi/L	%Error
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	<u> </u>	-
K-40	1460.81	31	10.67*	3.559E-01	3.100E+01	3.100E+01	155.29
TH-228	238.63	56	44.60*	1.401E+00	3.353E+00	3.403E+00	168.00
	240.98		3.95	1.392E+00	Li	ne Not Found	

Flaq: "*" = Keyline

L28833 R2 / 73 of 162

Summary of Nuclide Activity	Page : 2				
Sample ID : 10L28833-4	Acquisition date : 9-JUN-2006 05:03:53				
Total number of lines in spectrum	23				
Number of unidentified lines	20				
Number of lines tentatively identified	1 by NID 3 13.04%				
Nuclide Type : natural					
Uncorrected Nuclide Hlife Decay pCi/L K-40 1.28E+09Y 1.00 3.100E+01 TH-228 1.91Y 1.01 3.353E+00  Total Activity : 3.435E+01	3.100E+01 4.813E+01 155.29 3.403E+00 5.717E+00 168.00				
Grand Total Activity : 3.435E+01	3.440E+01				
Flags: "K" = Keyline not found	"M" = Manually accepted				
"E" = Manually edited	"A" = Nuclide specific abn. limit				

L28833 R2 / 74 of 162 Page :

3

Unidentified Energy Lines Sample ID : 10L28833-4

Acquisition date : 9-JUN-2006 05:03:53

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Ρw	Cts/Sec	%Err	%Eff	Flags
1	66.42	208	1061	1.57	131.96	128	9	9.52E-03	59.8	6.37E-0	01
2	74.88	192	1087		148.87			8.78E-03			01
2	77.17	467	821	1.22	153.46			2.13E-02			
1	87.34	118	849		173.82	171	7	5.39E-03	87.7	1.19E+(	00
1	140.25	187	827	1.47	279.69	276	8	8.52E-03	55.3		
1		81	696	1.56	395.98	392	9	3.70E-03	****	1.55E+(	00
1	242.26	535	506	1.57	483.80	472	21	2.44E-02	17.5	1.39E+0	
1	295.35	906	498	1.24	590.02	585	11	4.14E-02	11.6	1.21E+	00
1	352.06	1448	508	1.28	703.50	697	14	6.61E-02	8.8	1.07E+	00
1	596.16	140	222	4.46				6.37E-03		7.06E-	01
1	609.45	1472	199	1.50	1218.60	1211	15	6.72E-02	7.0	6.94E-	
1	768.79	144	103	1.59	1537.50	1532	12	6.60E-03	33.1	5.78E-	01
1		91	117	2.90				4.17E-03		4.97E-	01
1	1120.51		72	1.79	2241.52	2235	13	1.40E-02	17.2	4.33E-	
1	1155.68	57	53	2.53	2311.91	2306	12	2.62E-03	58.3		
1		82	93	1.54				3.73E-03		4.01E-	01
1	1378.03	128	22	2.08				5.87E-03			
1	1408.28	64	33	2.73				2.91E-03			
1	1729.84	68	15	2.48				3.09E-03			
1	1764.93	208	63	2.10				9.51E-03			
1	2007.94	21	11	2.74	4018.34	4013	10	9.79E-04	70.6	2.90E-	01
Fla	gs: "T" =	Tentati	vely ass	sociate	ed						
Sum	mary of Nu	clide A	ctivity								
Nu	Total number of lines in spectrum 23 Number of unidentified lines 20 Number of lines tentatively identified by NID 3 13.04%										
			- 7								
Nuc	lide Type		ז נU	Wtd Mea ncorred	cted Dec	ay Co	rr	Decay C	orr	2-Sigma	
K-4	lide H 0 1.28E 228 1	Ilife E+09Y 91Y	Decay 1.00	pCi/I 3.100E+ 3.353E+	-01 3.	pCi/L 100E+ 403E+	01	2-Sigma 4.813E 5.717E	Error +01	%Error 155.29 168.00	Flags
тп.,	220 I	/					55	لللا / بلا / • ت			

Total Activity : 3.435E+01 3.440E+01

Grand Total Activity : 3.435E+01 3.440E+01 Flags: "K" = Keyline not found "M" = Manually accepted "A" = Nuclide specific abn. limit "E" = Manually edited

_____

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Identified Nuclides ----

				L28833 R2	/ 75 of 162
	Activity	Act error	MDA	MDA error	Act/MDA
Nuclide	(pCi/L)		(pCi/L)		
	-		_		1
K-40	3.100E+01	4.813E+01	5.135E+01	0.000E+00	0.604
TH-228	3.403E+00	5.717E+00	9.243E+00	0.000E+00	0.368
Non-I	dentified Nuclide	S			
	Key-Line				
	Activity K.I		MDA	MDA error	Act/MDA
Nuclide	(pCi/L) Ide	ed	(pCi/L)		: -
	2 4145 01	2 1 5 0 7 . 0 1		0 0007.00	0 (21
BE-7 NA-24	3.414E+01 -4.350E+01	3.158E+01 2.917E+01	5.415E+01 Half-Life too	0.000E+00	0.631
CR-51	-3.210E+01	3.724E+01	5.989E+01	0.000E+00	-0.536
MN-54	-1.251E+00	3.245E+00	5.265E+00	0.000E+00	-0.238
CO-57	-1.421E+00	3.226E+00	5.295E+00	0.000E+00	-0.268
CO-58	-4.167E-01	3.615E+00	5.946E+00	0.000E+00	-0.070
FE-59	1.276E+00	7.469E+00	1.250E+01	0.000E+00	0.102
CO-60	-4.557E-01	3.168E+00	5.146E+00	0.000E+00	-0.089
ZN-65	3.949E+01	1.025E+01	1.735E+01	0.000E+00	2.276
SE-75	-2.281E+00	4.394E+00	7.200E+00	0.000E+00	-0.317
SR-85	2.052E+01	3.917E+00	7.360E+00	0.000E+00	2.788
Y-88	-2.833E+00	3.725E+00	5.747E+00	0.000E+00	-0.493
NB-94	-2.074E-01	2.999E+00	4.865E+00	0.000E+00	-0.043
NB-95	1.193E+01	4.111E+00	6.745E+00	0.000E+00	1.768
ZR-95	1.610E+00	6.228E+00	9.942E+00	0.000E+00	0.162
MO-99	-3.790E+02	9.433E+02	1.540E+03	0.000E+00	-0.246
RU-103	7.419E-01	3.891E+00	6.484E+00	0.000E+00	0.114
RU-106	-1.335E+01	2.981E+01	4.580E+01	0.000E+00	-0.291
AG-110m	-2.770E+00	3.075E+00	4.826E+00	0.000E+00	-0.574
SN-113	-5.295E-01	4.460E+00	7.247E+00	0.000E+00	-0.073
SB-124	3.395E+00	7.588E+00	5.690E+00	0.000E+00	0.597
SB-125	1.670E-01	9.617E+00	1.563E+01	0.000E+00	0.011
TE-129M	4.595E+00	4.646E+01	7.746E+01	0.000E+00	0.059
I-131	6.244E+00	1.128E+01	1.850E+01	0.000E+00	0.338
BA-133	7.729E+01	6.616E+00	1.215E+01	0.000E+00	6.359
CS-134	5.946E+01	7.426E+00	9.596E+00	0.000E+00	6.197
CS-136	-2.942E+00	6.772E+00	1.097E+01	0.000E+00	-0.268
CS-137	2.207E+00	3.275E+00	5.497E+00	0.000E+00	0.402
CE-139	-1.690E+00	3.407E+00	5.530E+00	0.000E+00	-0.306
BA-140	-3.077E+00	2.376E+01	3.901E+01	0.000E+00	-0.079
LA-140	-1.796E+00	7.877E+00	1.283E+01	0.000E+00	-0.140
CE-141	-4.035E-01	8.544E+00	1.191E+01	0.000E+00	-0.034
CE-144	-8.456E+00	2.922E+01	4.062E+01	0.000E+00	-0.208
EU-152	-7.117E+00	1.160E+01	1.566E+01	0.000E+00	-0.454
EU-154	-3.779E+00	6.609E+00	1.082E+01	0.000E+00	-0.349
RA-226	-7.880E+01	8.248E+01	1.274E+02	0.000E+00	-0.619
AC-228	-9.281E-01	1.269E+01	1.994E+01	0.000E+00	-0.047
TH-232	-9.236E-01	1.262E+01	1.984E+01	0.000E+00	-0.047
U-235	2.076E+01	2.913E+01	4.142E+01	0.000E+00	0.501
U-238	-4.178E+02	3.417E+02	5.214E+02	0.000E+00	-0.801
AM-241	-2.925E+01	3.172E+01	4.462E+01	0.000E+00	-0.656

L28833 R2 / 76 of 162

A,10L28833-4	,06/09/2006	11:09,05/25/2			L28833-4 EX
B,10L28833-4	,LIBD	,06/	07/2006 09:32,		1
C,K-40 ,YES,	3.100E+01,	4.813E+01,	5.135E+01,,	0.604	
C,TH-228 ,YES,		5.717E+00,		0.368	
C,BE-7 ,NO ,		3.158E+01,		0.631	
C,CR-51 ,NO ,		3.724E+01,		-0.536	
C, MN-54 , NO ,	-1.251E+00,	3.245E+00,		-0.238	
C,CO-57 ,NO ,	-1.421E+00,	3.226E+00,	5.295E+00,,	-0.268	
C,CO-58 ,NO ,	-4.167E-01,	3.615E+00,	5.946E+00,,	-0.070	
C,FE-59 ,NO ,	1.276E+00,	7.469E+00,	1.250E+01,,	0.102	
C,CO-60 ,NO ,	-4.557E-01,	3.168E+00,	5.146E+00,,	-0.089	
C,ZN-65 ,NO ,	3.949E+01,		1.735E+01,,	2.276	
C,SE-75 ,NO ,		4.394E+00,	7.200E+00,,	-0.317	
C,SR-85 ,NO ,	2.052E+01,	3.917E+00,	7.360E+00,,	2.788	
C,Y-88 ,NO ,		3.725E+00,	5.747E+00,,	-0.493	
C,NB-94 ,NO ,			4.865E+00,,	-0.043	
		4.111E+00,	6.745E+00,,	1.768	
C,ZR-95 ,NO ,	1.610E+00,	6.228E+00,	9.942E+00,,	0.162	
C, MO-99 , NO ,		9.433E+02,		-0.246	
C,RU-103 ,NO ,	7.419E-01,		6.484E+00,,	0.114	
C,RU-106 ,NO ,			4.580E+01,,	-0.291	
C,AG-110m ,NO ,		3.075E+00,	4.826E+00,,	-0.574	
C,SN-113 ,NO ,		4.460E+00,	7.247E+00,,	-0.073	
C,SB-124 ,NO ,		7.588E+00,	5.690E+00,,	0.597	
C,SB-125 ,NO ,		9.617E+00,	1.563E+01,,	0.011	
C,TE-129M ,NO ,		4.646E+01,	7.746E+01,,	0.059	
C,I-131 ,NO ,		1.128E+01,	1.850E+01,,	0.338	
C, BA-133 , NO ,		6.616E+00,	1.215E+01,,	6.359	
C,CS-134 ,NO ,		7.426E+00,	9.596E+00,,	6.197	
C,CS-136 ,NO ,		6.772E+00,	1.097E+01,,	-0.268	
C,CS-137 ,NO ,		3.275E+00,	5.497E+00,,	0.402	
C,CE-139 ,NO ,	-1.690E+00,	3.407E+00,	5.530E+00,,	-0.306	
C, BA-140 , NO ,	-3.077E+00,	2.376E+01,	3.901E+01,,	-0.079	
C,LA-140 ,NO ,	-1.796E+00,	7.877E+00,	1.283E+01,,	-0.140	
C,CE-141 ,NO ,	-4.035E-01,	8.544E+00,	1.191E+01,,	-0.034	
C,CE-144 ,NO ,	-8.456E+00,	2.922E+01,	4.062E+01,,	-0.208	
C,EU-152 ,NO ,		1.160E+01,	1.566E+01,,	-0.454	
C,EU-154 ,NO ,		6.609E+00,	1.082E+01,,	-0.349	
C,RA-226 ,NO ,		8.248E+01,	1.274E+02,,	-0.619	
C,AC-228 ,NO ,		1.269E+01,	1.994E+01,,	-0.047	
C, TH-232 , NO ,		1.262E+01,	1.984E+01,,	-0.047	
C,U-235 ,NO ,		2.913E+01,	4.142E+01,,	0.501	
C,U-238 ,NO ,		3.417E+02,	5.214E+02,,	-0.801	
C,AM-241 ,NO ,	-2.925E+01,	3.172E+01,	4.462E+01,,	-0.656	

L28833 R2 / 77 of 162 Analyst: LIMS: ____ Sec. Review: ______ VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 9-JUN-2006 09:39:44.17 TBE11 P-20610B HpGe ******** Aquisition Date/Time: 9-JUN-2006 05:04:04.32 LIMS No., Customer Name, Client ID: WG L28833-5 EXELON ZION : 11L28833-5 Smple Date: 24-MAY-2006 11:35:00. Sample ID Geometry : 113L082304 Sample Type : WG : 3.20950E+00 L BKGFILE : 11BG060306MT Ouantity Start Channel : 40 Energy Tol : 1.00000 Real Time : 0 04:04:06.61 End Channel : 4090 Pk Srch Sens: 5.00000 Live time : 0 04:04:01.31 MDA Constant : 0.00 Library Used: LIBD %Eff Cts/Sec %Err Fit Pk It Area Bkqnd FWHM Channel Enerqy 1 0 66.53 120 628 1.53 132.08 6.94E-01 8.20E-03 34.5 2 57 1.79 279.22 1.90E+00 3.91E-03 71.3 0 139.89* 441 1.80E+00 5.88E-03 52.5 3 0 185.05* 86 433 1.45 369.79 90 262 1.29 590.83 1.37E+00 6.15E-03 39.2 4 0 295.30* 1.20E+00 6.34E-03 32.9 5 0 352.00* 93 180 0.98 704.46 0 596.19 86 1.58 1193.61 8.03E-01 5.59E-03 24.7 6 82 7 0 609.36* 91 91 1.38 1219.98 7.90E-01 6.21E-03 25.5 8 0 819.42 20 21 1.04 1640.39 6.25E-01 1.35E-03 43.7 45 1.16 1824.37 5.74E-01 1.25E-03 94.8 9 0 911.39* 18 10 50 1.16 2243.23 4.86E-01 1.38E-03 74.5 0 1120.90* 20 50 22 3.92E-01 3.44E-03 32.9 11 0 1460.63* 1.71 2921.76 13 12 0 1761.69 49 1.79 3522.36 3.39E-01 3.35E-03 21.5

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Uncorrected Decay Corr 2-Siqma %Eff pCi/L %Error Nuclide Area %Abn pCi/L Energy 6.937E+01 K-40 1460.81 50 10.67* 6.937E+01 65.89 3.919E-01 ----- Line Not Found ------AC-228 835.50 _ _ _ _ _ _ 1.75 6.158E-01 911.07 18 27.70* 5.744E-01 6.601E+00 6.635E+00 189.68 U-235 143.76 _____ 10.50* 1.906E+00 ----- Line Not Found _ _ _ _ _ _ 163.35 -----4.70 1.876E+00 ----- Line Not Found ------54.00 5.092E+00 5.092E+00 185.71 86 1.802E+00 105.08 205.31 4.70 ----- Line Not Found 1.718E+00 

Flag: "*" = Keyline

Nuclide Type: natural

L28833 R2 / 78 of 162

2 Page : Summary of Nuclide Activity Acquisition date : 9-JUN-2006 05:04:04 Sample ID : 11L28833-5 12 Total number of lines in spectrum Number of unidentified lines 8 Number of lines tentatively identified by NID 4 33.33% Nuclide Type : natural Uncorrected Decay Corr Decay Corr 2-Sigma 2-Sigma Error %Error Flags pĊi/L Hlife Decay pCi/L Nuclide 4.571E+01 6.937E+01 65.89 K-40 1.28E+09Y 1.00 6.937E+01 12.59E+00 189.68 6.635E+00 1.01 6.601E+00 AC-228 5.75Y 105.08 K 5.092E+00 5.350E+00 U-235 7.04E+08Y 1.00 5.092E+00 _____ _____ 8.109E+01 Total Activity : 8.106E+01 8.109E+01 Grand Total Activity : 8.106E+01 "M" = Manually accepted Flags: "K" = Keyline not found "A" = Nuclide specific abn. limit "E" = Manually edited

L28833 R2 / 79 of 162 Unidentified Energy Lines Page : 3 Sample ID : 11L28833-5 Acquisition date : 9-JUN-2006 05:04:04 FWHM Channel Left Pw Cts/Sec %Err It Energy Area Bkqnd %Eff Flags 0 66.53 120 628 1.53 132.08 130 6 8.20E-03 68.9 6.94E-01 0 57 1.79 275 9 3.91E-03 **** 139.89 441 279.22 1.90E+00 585 12 6.15E-03 78.4 0 295.30 90 262 1.29 590.83 1.37E+00 0 352.00 93 180 0.98 704.46 699 11 6.34E-03 65.7 1.20E+000 596.19 1.58 1193.61 1189 11 5.59E-03 49.5 82 86 8.03E-01 609.36 1.38 1219.98 1215 11 6.21E-03 51.0 7.90E-01 0 91 91 0 819.42 20 21 1.04 1640.39 1637 6 1.35E-03 87.4 6.25E-01 Т 0 1120.90 20 50 1.16 2243.23 2237 10 1.38E-03 **** 4.86E-01 13 3522.36 3515 14 3.35E-03 43.0 0 1761.69 49 1.79 3.39E-01 Flags: "T" = Tentatively associated Summary of Nuclide Activity Total number of lines in spectrum 12 Number of unidentified lines 8 Number of lines tentatively identified by NID 4 33.33% Nuclide Type : natural Wtd Mean Wtd Mean Uncorrected Decay Corr Decay Corr 2-Siqma Nuclide Hlife Decay pCi/L pCi/L 2-Sigma Error %Error Flags K-40 1.28E+09Y 1.00 6.937E+01 6.937E+01 4.571E+01 65.89 AC-228 5.75Y 1.01 6.601E+00 6.635E+00 12.59E+00 189.68 105.08 U-235 7.04E+08Y 1.00 5.092E+00 5.092E+00 5.350E+00 _____ _____ Total Activity : 8.106E+01 8.109E+01 Grand Total Activity : 8.106E+01 8.109E+01 Flags: "K" = Keyline not found "M" = Manually accepted "E" = Manually edited "A" = Nuclide specific abn. limit Interference Report No interference correction performed Combined Activity-MDA Report ---- Identified Nuclides ----Activity Act error MDA MDA error Act/MDA Nuclide (pCi/L)(pCi/L)K-40 6.937E+01 4.571E+01 4.681E+01 0.000E+00 1.482 AC-228 6.635E+00 1.259E+01 1.716E+01 0.387 0.000E+00 U-235 5.092E+00 5.350E+00 4.012E+01 0.000E+00 0.127 ---- Non-Identified Nuclides ----Key-Line Activity K.L. Act error MDA MDA error Act/MDA

Nuclide	(pCi/L)	Ided		(pCi/L)		
BE-7	-8.778E+00		3.104E+01	4.998E+01	0.000E+00	-0.176
NA-24	-5.485E+01		6.601E+01	Half-Life		
CR-51	-3.258E+01		3.809E+01	6.113E+01	0.000E+00	-0.533
MN-54	1.353E+00		2.887E+00	4.875E+00	0.000E+00	0.277
CO-57	1.401E+00		3.152E+00	5.251E+00	0.000E+00	0.267
CO-58	6.135E-01		3.505E+00	5.183E+00	0.000E+00	0.118
FE-59	-4.976E+00		7.417E+00	1.170E+01	0.000E+00	-0.425
CO-60	5.012E-01		2.945E+00	4.906E+00	0.000E+00	0.102
ZN-65	5.494E+00		8.373E+00	1.243E+01	0.000E+00	0.442
SE-75	-4.768E+00		4.453E+00	7.164E+00	0.000E+00	-0.666
SR-85	1.630E+01		4.038E+00	7.541E+00	0.000E+00	2.161
Y-88	-3.280E+00		3.491E+00	5.116E+00	0.000E+00	-0.641
NB-94	-3.292E-01		2.836E+00	4.648E+00	0.000E+00	-0.071
NB-95	4.210E+00		3.447E+00	6.069E+00	0.000E+00	0.694
ZR-95	-4.021E+00		6.060E+00	9.555E+00	0.000E+00	-0.421
MO-99	-3.556E+01		1.146E+03	1.882E+03	0.000E+00	-0.019
RU-103	1.534E+00		3.803E+00	6.320E+00	0.000E+00	0.243
RU-106	1.402E+01		2.970E+01	4.984E+01		0.281
AG-110m	1.080E+00		2.956E+00	4.990E+00		0.216
SN-113	1.022E+00		4.399E+00	7.297E+00		0.140
SB-124	-2.488E+00		8.333E+00	5.573E+00		-0.446
SB-125	1.062E+00		8.784E+00	1.447E+01		0.073
TE-129M	-3.779E+00		4.636E+01	7.547E+01		-0.050
I-131	-1.255E+01		1.200E+01	1.894E+01		-0.663
BA-133	8.957E+00		4.962E+00	7.608E+00		1.177
CS-134	4.438E+00		7.227E+00	5.756E+00		0.771
CS-136	4.196E+00	+	3.668E+00	1.082E+01		0.388
CS-137	3.518E+00		3.188E+00	5.589E+00		0.629
CE-139	-6.947E-01		3.181E+00	5.176E+00		-0.134
BA-140	5.571E+00		2.543E+01	4.177E+01		0.133
LA-140	4.906E-01		7.965E+00	1.329E+01		0.037
CE-141	1.234E+00		8.461E+00	1.185E+01		0.104
CE-144	7.753E+00		2.879E+01	4.058E+01		0.191
EU-152	-4.330E+00		1.132E+01	1.547E+01		-0.280
EU-154	8.465E-01		6.394E+00	1.057E+01		0.080
RA-226	1.905E+01		7.913E+01	1.261E+02		0.151
TH-228	-9.760E-01		6.422E+00	1.002E+01		-0.097
TH-232	6.601E+0C		1.252E+01	2.003E+01		0.330
U-238	-1.246E+02		3.181E+02	5.141E+02		-0.242
AM-241	-2.479E+01	-	4.324E+01	6.271E+01	0.000E+00	-0.395

L28833 R2 / 81 of 162

					·
A,11L28833-5	,06/09/2006	09:39,05/24/2	2006 11:35,	3.210E+00,WG	L28833-5 EX
B,11L28833-5	,LIBD	,06/	′07/2006 09:40	),113L082304	
B,11L28833-5 C,K-40 ,YES,	6.937E+01,	4.571E+01,	4.681E+01,,	1.482	
C,AC-228 ,YES,	6.635E+00,	1.259E+01,	1.716E+01,,	0.387	
	5.092E+00,		4.012E+01,,		
C, BE-7 , NO ,		3.104E+01,			
C, CR-51 , NO ,			6.113E+01,,		
C, MN-54 , NO ,	1.353E+00,				
C, CO-57 , NO ,	1.401E+00,	3.152E+00.	5.251E+00,,		
C, CO-58 , NO ,	6.135E-01,	3.505E+00.	5.183E+00,,	0.118	
C,FE-59 ,NO ,	-4.976E+00,				
C,CO-60 ,NO ,	5.012E-01,	2.945E+00.	4.906E+00,	0.102	
C,ZN-65 ,NO ,	5.494E+00,	8.373E+00.	1.243E+01,,		
C,SE-75 ,NO ,	-4.768E+00,	4 453E+00	7.164E+00.		
C,SR-85 ,NO ,	1.630E+01,	4.038E+00	7 541E+00.	2.161	
C,Y-88 ,NO ,	-3 280E+01,	3.491E+00	5.116E+00	-0.641	
C,NB-94 ,NO ,	-3.292E-01,	2.836E+00	4 648E+00	-0.071	
C, ND = 94, NO,	4.210E+00,	3.447E+00	6.069E+00,,		
C,NB-95 ,NO , C,ZR-95 ,NO ,	4.2100+00,	5.4470400, 6.060E+00			
C, MO-99 , NO ,	-3.556E+01,	1.146E+03,	1.882E+03,,		
C, MO = 33, $MO$ ,	1.534E+00,	3 803E+00,	6.320E+00,,		
C,RU-103 ,NO , C,RU-106 ,NO ,	1.402E+01,	2 970F±01	4.984E+01,,		
C,AG-110m ,NO ,	1 080E+01,	2.976E+01, 2.956E+00	4.990E+00,,		
C, AG=110 m, NO,	1.022E+00,	2.330E+00, 4 399E+00	7.297E+00,,		
		8.333E+00,			
C,SB-124 ,NO ,	1.062E+00,				
C,SB-125 ,NO , C,TE-129M ,NO ,			7.547E+01,,		
	-1.255E+01,				
C,I-131 ,NO , C,BA-133 ,NO ,	8.957E+00,				
C,CS-134 ,NO ,	4.438E+00,	7.227E+00,	5.756E+00,,		
C,CS-134 ,NO , C,CS-136 ,NO ,	4.196E+00,	3.668E+00,	1.082E+01,,		
C,CS-137 ,NO ,	3.518E+00,		5.589E+00,,		
C,CE-139 ,NO ,					
C,BA-140 ,NO ,					
	4.906E-01,				
	1.234E+00,		1.185E+01,,		
C,CE-141 ,NO ,					
C,CE-144 ,NO ,	-4.330E+00,	1.132E+01,	1.547E+01,,	-0.280	
C,EU-152 ,NO ,	8.465E-01,	6.394E+00,	1.057E+01,,		
C,EU-154 ,NO ,	1.905E+01,	7.913E+01,	1.261E+02,,		
C,RA-226 ,NO ,	-9.760E-01,	6.422E+00,	1.002E+01,,		
C,TH-228 ,NO ,	-9.780E-01, 6.601E+00,	1.252E+00,	2.003E+01,,		
C,TH-232 ,NO , C,U-238 ,NO ,	-1.246E+02,	3.181E+02,	5.141E+02,,		
C,U-238 ,NO , C,AM-241 ,NO ,	-2.479E+01,	4.324E+01,	6.271E+01,,		
	2.17017017	1.0010101011	0.2/12/01//	0.000	

L28833 R2 / 82 of 162 Sec. Review: Analyst: LIMS: VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 9-JUN-2006 09:35:51.65 TBE13 P-10727B HpGe ******** Aquisition Date/Time: 9-JUN-2006 05:04:15.79 LIMS No., Customer Name, Client ID: WG L28833-6 EXELON ZION Smple Date: 24-MAY-2006 10:14:00. : 13L28833-6 Sample ID Geometry : 133L082404 Sample Type : WG : 13BG060306MT BKGFILE : 3.08320E+00 L Quantity Energy Tol : 1.00000 Real Time : 0 04:06:15.51 Start Channel : 25 Pk Srch Sens: 5.00000 Live time : 0 04:06:11.14 End Channel : 4090 Library Used: LIBD MDA Constant : 0.00 Cts/Sec %Err Fit %Eff Bkqnd FWHM Channel Pk It Energy Area 1.16E-02 1.05E-02 14.1 2.32E+00 14 1.18 67.88 155 1 10 33.87 2.13E-02 1.89E-02 15.7 72.15 124 2.43 280 2 10 36.00 4.50E-02 1.48E-02 19.5 2.27 78.42 219 238 3 10 39.14 85.90 9.17E-02 1.18E-02 26.4 2.55 4 10 42.89 174391 1.47E-01 1.31E-02 17.3 5 10 45.96* 194 329 2.10 92.04 1.74E+00 6.54E-03 64.4 9.99E+00 800 1.77 185.75 97 6 1 92.84* 2.27E+00 8.65E-03 37.6 3.14E+00 279.05 573 2.42 7 139.52* 128 1 2.18E+00 2.73E-03116.7 5.79E-01 1.09 371.21 514 8 1 185.62* 40 2.13E+00 1.80E-03154.0 5.38E+00 396.36 445 1.91 9 1 198.20* 27 1.94E+00 1.87E-03168.8 3.65E+00 476.19 238.13* 28 450 1.66 10 1 1.70E+00 9.82E-03 27.3 2.40E+00 145 306 2.06 589.89 1 295.00* 11 1.15 703.28 1.51E+00 7.23E-03 32.0 1.04E+00 351.71* 107 238 12 1 1.04E+00 8.41E-04261.5 1.52E+00 178 1.66 1165.57 12 13 1 582.86* 1.02E+00 4.26E-03 42.3 1.93E+00 148 2.02 1192.06 596.10 63 14 1 1.01E+00 1.66E-02 11.9 1.81E+00 245 117 1.73 1217.89 15 1 609.01* 7.36E-01 1.65E-03119.8 2.76E+00 131 11.25 1823.13 911.47* 24 1 16 6.27E-01 2.06E-03 59.3 4.24E+00 30 58 2.00 2240.84 1 1120.12* 17 5.14E-01 5.13E-04254.0 3.00E+00 23 2.75 2923.23 8 18 1 1460.82* 4.55E-01 3.10E-03 35.5 1.68E+00 33 2.78 3530.33 1763.76* 46 19 1

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pĊi/L	%Error
K-40	1460.81	8	10.67*	5.143E-01	8.200E+00	8.200E+00	508.00
RA-226	186.21	40	3.28*	2.179E+00	3.349E+01	3.349E+01	233.32
AC-228	835.50		1.75	7.877E-01	Liı	ne Not Found	
	911.07	24	27.70*	7.358E-01	7.099E+00	7.136E+00	239.51
TH-228	238.63	28	44.60*	1.940E+00	1.894E+00	1.924E+00	337.51
	240.98		3.95	1.927E+00	Li:	ne Not Found	
TH-232	583.14	12	30.25	1.040E+00	2.344E+00	2.344E+00	522.96
	911.07	24	27.70*	7.358E-01	7.099E+00	7.099E+00	239.51
	969.11		16.60	7.014E-01	Li:	ne Not Found	
U-235	143.76		10.50*	2.278E+00	Li:	ne Not Found	
	163.35		4.70	2.256E+00	Li:	ne Not Found	···· ··· ··· ··· ···

2 Ciam

TT. .... De see Comm

L28833 R2 / 83 of 162

185.71	40	54.00	2.179E+00	2.034E+00	2.034E+00	233.32
205.31		4.70	2.093E+00	Lir	ne Not Found	

Flag: "*" = Keyline

L28833 R2 / 84 of 162

Page : 2 Summary of Nuclide Activity Acquisition date : 9-JUN-2006 05:04:15 Sample ID : 13L28833-6 Total number of lines in spectrum 19 Number of unidentified lines 14 Number of lines tentatively identified by NID 5 26.32% Nuclide Type : natural 2-Sigma Uncorrected Decay Corr Decay Corr pCi/L 2-Sigma Error %Error Flags Decay pCi/L Nuclide Hlife 41.66E+00 508.00 1.00 8.200E+00 8.200E+00 K-40 1.28E+09Y 7.814E+01 233.32 RA-226 1600.00Y 1.00 3.349E+01 3.349E+01 17.09E+00 239.51 5.75Y 1.01 7.099E+00 7.136E+00 AC-228 1.02 1.894E+00 1.924E+00 6.494E+00 337.51 TH-228 1.91Y 17.00E+00 239.51 1.00 7.099E+00 7.099E+00 TH-232 1.41E+10Y U-235 7.04E+08Y 1.00 2.034E+00 4.746E+00 233.32 K 2.034E+00 ______ -----5.988E+01 Total Activity : 5.981E+01 5.988E+01 Grand Total Activity : 5.981E+01 Flags: "K" = Keyline not found "M" = Manually accepted "A" = Nuclide specific abn. limit "E" = Manually edited

Unidentified Energy Lines Sample ID : 13L28833-6 Page : 3

L28833 R2 / 85 of 162

Acquisition date : 9-JUN-2006 05:04:15

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Ρw	Cts/Sec	%Err	%Eff	Flags
10 10 10 10 1 1 1 1 1 1	33.87 36.00 39.14 42.89 45.96 92.84 139.52 198.20 295.00 351.71 596.10 609.01 1120.12	155 280 219 174 194 97 128 27 145 107 63 245 30	14 124 238 391 329 800 573 445 306 238 148 117 58	1.18 2.43 2.27 2.55 2.10 1.77 2.42 1.91 2.06 1.15 2.02 1.73 2.00	67.88 72.15 78.42 85.90 92.04 185.75 279.05 396.36 589.89 703.28 1192.06 1217.89 2240.84	64 64 64 181 274 392 584 699 1187 1212 2235	33 33 33 12 10 9 12 10 13 12 12	1.05E-02 1.89E-02 1.48E-02 1.18E-02 1.31E-02 6.54E-03 8.65E-03 1.80E-03 9.82E-03 7.23E-03 4.26E-03 1.66E-02 2.06E-03 3.10E-03	31.3 39.0 52.7 34.6 **** 75.2 **** 54.6 63.9 84.5	1.16E-02 2.13E-02 4.50E-02 9.17E-02 1.47E-01 1.74E+00 2.27E+00 2.13E+00 1.51E+00 1.02E+00 1.01E+00 6.27E-01 4.55E-01	- - ) ) ) ) ) )
1	1763.76	46	33	2.78	3530.33	3522	ТЭ	3.IUE-03	/1.0	4.556-01	L.

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of	lines in spectrum		19	
Number of unide			14	
Number of lines	tentatively identified	by NID	5	26.32%

Nuclide Type : natural

NUCITUE	Type : nact	ITAT	Wtd Mean Uncorrected	Wtd Mean Decay Corr	Decay Corr	2-Sigma
Nuclide K-40 RA-226 AC-228 TH-228	Hlife 1.28E+09Y 1600.00Y 5.75Y 1.91Y	Decay 1.00 1.00 1.01 1.02	pCi/L 8.200E+00 3.349E+01 4.755E+00 1.894E+00	pĊi/L 8.200E+00 3.349E+01 4.780E+00 1.924E+00	2-Sigma Error 41.66E+00 7.814E+01 21.07E+00 6.494E+00	%Error Flags 508.00 233.32 440.78 337.51
TH-232	1.41E+10Y Total Act:	1.00	2.344E+00	2.344E+00  5.074E+01	12.26E+00	522.96

Grand Total Activity : 5.068E+01 5.074E+01

Flags:	"K" :	= Keyline not found		Manually accepted
I Iago.		= Manually edited	"A" =	Nuclide specific abn. limit

Interference Report

Interfe	ring	Interf	ered
Nuclide	Line	Nuclide	Line
TH-232	911.07	AC-228	911.07

Combined Activity-MDA Report

---- Identified Nuclides ----

Activity Act error	MDA	MDA error	Act/MDA
--------------------	-----	-----------	---------

Nuclide	(pCi/L)		(pCi/L)		
K-40	8.200E+00	4.166E+01	4.301E+01	0.000E+00	0.191
RA-226	3.349E+01	7.814E+01	1.079E+02	0.000E+00	0.310
AC-228	4.780E+00	2.107E+01	1.788E+01	0.000E+00	0.267
TH-228	1.924E+00	6.494E+00	8.318E+00	0.000E+00	0.231
TH-232	2.344E+00	1.226E+01	1.790E+01	0.000E+00	0.131

---- Non-Identified Nuclides ----

Nuclide	Key-Line Activity K.L. (pCi/L) Ided		MDA (pCi/L)	MDA error	Act/MDA
BE-7	9.289E-01	2.876E+01	4.743E+01	0.000E+00	0.020
NA-24	-8.487E+01	6.771E+01	Half-Life to	o short	
CR-51	-6.588E+00	3.582E+01	5.852E+01	0.000E+00	-0.113
MN-54	7.643E-02	2.885E+00	4.797E+00	0.000E+00	0.016
CO-57	1.017E+00	2.855E+00	4.659E+00	0.000E+00	0.218
CO-58	1.488E-02	3.360E+00	5.472E+00	0.000E+00	0.003
FE-59	6.329E-01	6.660E+00	1.112E+01	0.000E+00	0.057
CO-60	-2.200E+00	2.945E+00	4.539E+00	0.000E+00	-0.485
ZN-65	9.402E+00	7.775E+00	1.193E+01	0.000E+00	0.788
SE-75	4.218E-01	4.038E+00	6.725E+00	0.000E+00	0.063
SR-85	2.330E+01	3.784E+00	7.361E+00	0.000E+00	3.166
Y-88	-2.558E+00	3.296E+00	5.057E+00	0.000E+00	-0.506
NB-94	-1.241E+00	2.812E+00	4.529E+00	0.000E+00	-0.274
NB-95	1.923E+00	3.508E+00	5.887E+00	0.000E+00	0.327
ZR-95	-4.738E+00	6.117E+00	9.613E+00	0.000E+00	-0.493
MO-99	2.093E+02	1.180E+03	1.951E+03	0.000E+00	0.107
RU-103	1.958E+00	3.721E+00	6.243E+00	0.000E+00	0.314
RU-106	-6.076E+00	2.846E+01	4.561E+01	0.000E+00	-0.133
AG-110m	1.207E+00	2.832E+00	4.773E+00	0.000E+00	0.253
SN-113	2.890E+00	4.063E+00	6.770E+00	0.000E+00	0.427
SB-124	-4.119E-04	7.756E+00	5.309E+00	0.000E+00	0.000
SB-125	-3.221E+00	8.264E+00	1.351E+01	0.000E+00	-0.238
TE-129M	1.141E+01	4.254E+01	7.099E+01	0.000E+00	0.161
I-131	1.320E+00	1.123E+01	1.839E+01	0.000E+00	0.072
BA-133	1.246E+01	4.809E+00	7.449E+00	0.000E+00	1.673
CS-134	1.546E+01	6.876E+00	6.385E+00	0.000E+00	2.422
CS-136	2.128E+00	6.465E+00	1.071E+01	0.000E+00	0.199
CS-137	-1.687E-01	3.192E+00	5.095E+00	0.000E+00	-0.033
CE-139	-3.657E-01	2.907E+00	4.783E+00	0.000E+00	-0.076
BA-140	2.712E+00	2.350E+01	3.862E+01	0.000E+00	0.070
LA-140	-6.006E+00	7.844E+00	1.209E+01	0.000E+00	-0.497
CE-141	6.508E+00	7.662E+00	1.113E+01	0.000E+00	0.585
CE-144	1.164E+01	2.484E+01	3.582E+01	0.000E+00	0.325
EU-152	-7.804E+00	1.104E+01	1.471E+01	0.000E+00	-0.531
EU-154	2.098E+00	5.827E+00	9.507E+00	0.000E+00	0.221
U-235	3.551E+00	2.649E+01	3.720E+01	0.000E+00	0.095
U-238	1.933E+02	3.413E+02	5.588E+02	0.000E+00	0.346
AM-241	-1.931E+01	2.549E+01	4.165E+01	0.000E+00	-0.464

L28833 R2 / 87 of 162

A,13L28833-6	,06/09/2006	09:35,05/24/2		3.083E+00,WG	L28833-6 EX
B,13L28833-6	,LIBD	,06/	07/2006 09:34	,133L082404	
C,K-40 ,YES,	.200E+00	4.166E+01,	4.301E+01,,	0.191	
C,RA-226 ,YES,	3.349E+01,	7.814E+01,	1.079E+02,,	0.310	
C,AC-228 ,YES,	4.780E+00,	2.107E+01,	1.788E+01,,	0.267	
C,TH-228 ,YES,	1.924E+00,	6.494E+00,		0.231	
C,TH-232 ,YES,	2.344E+00,	1.226E+01,		0.131	
C, BE-7 , NO ,	9.289E-01,	2.876E+01,		0.020	
C,CR-51 ,NO ,	-6.588E+00,	3.582E+01,	5.852E+01,,	-0.113	
C,MN-54 ,NO ,	7.643E-02,	2.885E+00,	4.797E+00,,	0.016	
C, CO-57 , NO ,	1.017E+00,	2.855E+00,	4.659E+00,,	0.218	
C,CO-58 ,NO ,	1.488E-02,	3.360E+00,	5.472E+00,,	0.003	
C,FE-59 ,NO ,	6.329E-01,	6.660E+00,	1.112E+01,,	0.057	
C,CO-60 ,NO ,	-2.200E+00,	2.945E+00,	4.539E+00,,	-0.485	
C,ZN-65 ,NO ,	9.402E+00,	7.775E+00,	1.193E+01,,	0.788	
	4.218E-01,	4.038E+00,	6.725E+00,,	0.063	
C,SR-85 ,NO ,	2.330E+01,	3.784E+00,	7.361E+00,,	3.166	
C,Y-88 ,NO ,	-2.558E+00,	3.296E+00,	5.057E+00,,	-0.506	
C,NB-94 ,NO ,	-1.241E+00,	2.812E+00,	4.529E+00,,	-0.274	
C,NB-95 ,NO ,	1.923E+00,	3.508E+00,	5.887E+00,,	0.327	
C,ZR-95 ,NO ,	-4.738E+00,	6.117E+00,	9.613E+00,,	-0.493	
C, MO-99 , NO ,	2.093E+02,	1.180E+03,	1.951E+03,,	0.107	
C,RU-103 ,NO ,	1.958E+00,	3.721E+00,	6.243E+00,,	0.314	
C,RU-106 ,NO ,	-6.076E+00,	2.846E+01,	4.561E+01,,	-0.133	
C,AG-110m ,NO ,	1.207E+00,	2.832E+00,	4.773E+00,,	0.253	
C, SN-113 , NO ,	2.890E+00,	4.063E+00,	6.770E+00,,	0.427	
C,SB-124 ,NO ,	-4.119E-04,	7.756E+00,	5.309E+00,,	0.000	
C,SB-124 ,NO , C,SB-125 ,NO ,	-3.221E+00,	8.264E+00,	1.351E+01,,	-0.238	
C,TE-129M ,NO ,	1.141E+01,	4.254E+01,	7.099E+01,,	0.161	
C,I-131 ,NO ,	1.320E+00,	1.123E+01,	1.839E+01,,	0.072	
C, BA-133 , NO ,	1.246E+01,	4.809E+00,	7.449E+00,,	1.673	
C,CS-134 ,NO ,	1.546E+01,	6.876E+00,	6.385E+00,,	2.422	
C,CS-134 ,NO ,	2.128E+00,	6.465E+00,	1.071E+01,,	0.199	
	-1.687E-01,	3.192E+00,	5.095E+00,,	-0.033	
C,CS-137 ,NO , C,CE-139 ,NO ,	-3.657E-01,	2.907E+00,	4.783E+00,,	-0.076	
	2.712E+00,	2.350E+01,	3.862E+01,,	0.070	
-	-6.006E+00,	7.844E+00,	1.209E+01,,	-0.497	
	6.508E+00,	7.662E+00,	1.113E+01,,	0.585	
C,CE-141 ,NO ,	1.164E+01,	2.484E+01,	3.582E+01,,	0.325	
C,CE-144 ,NO ,	-7.804E+00,	1.104E+01,	1.471E+01,,	-0.531	
C,EU-152 ,NO ,	2.098E+00,	5.827E+00,	9.507E+00,,	0.221	
C,EU-154 ,NO ,	3.551E+00,	2.649E+01,	3.720E+01,,	0.095	
C,U-235 ,NO ,	1.933E+02,	3.413E+02,	5.588E+02,,	0.346	
C,U-238 ,NO ,	-1.931E+01,	2.549E+01,	4.165E+01,,	-0.464	
C,AM-241 ,NO ,	-T.JOIDIA	2.01011011	1.2000.01/1		

L28833 R2 / 88 of 162

Sec. Review: Analyst: LIMS:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 9-JUN-2006 09:57:18.51 TBE14 P-10933A HpGe ******** Aquisition Date/Time: 9-JUN-2006 05:04:26.17 

LIMS No., Customer Name, Client ID: WG L28833-7 EXELON ZION

Sample Type Quantity Start Channel End Channel	: 90 : 4090	80E+00 L Energy Tol : 1.00000 Pk Srch Sens: 5.00000	Geometry : BKGFILE : Real Time :	24-MAY-2006 14:35:00. 1435L091304 14BG060306MT 0 04:52:44.01 0 04:52:41.02
MDA Constant		Library Used: LIBD	J HIVE CIME .	0 01.02.11.02

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	1	66.57	121	585	1.24	134.13		6.91E-03		
2		139.78	191	731	2.62	280.92		1.09E-02		
3	1	185.84*	6	481	1.31	373.25		3.42E-04		
4	1	198.59*	72	470	1.32	398.79		4.12E-03		
5	1	238.76*	11	435	1.22	479.26		6.42E-043		
6	1	295.38	143	304	1.47	592.65		8.12E-03		
7	1	352.18*	85	267	1.71	706.34		4.84E-03		
8	1	596.01	111	98	2.16	1193.80	7.79E-01	6.34E-03	19.8	1.48E+00
9	1	609.01*	157	219	2.17	1219.77		8.93E-03		
10	1	1119.65*	46	67	2.82	2237.45	4.81E-01	2.62E-03	47.5	8.78E-01
11	1	1765.09*	43	19	2.48	3517.89	3.44E-01	2.45E-03	32.7	1.11E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural 2-Sigma Uncorrected Decay Corr pCi/L pCi/L %Eff %Error Area %Abn Nuclide Energy 1465.14 5.264E+00 3.28* 5.264E+00 6 1.641E+00 RA-226 186.21 8.254E-01 732.02 44.60* 8.127E-01 TH-228 238.63 11 1.468E+00 _ _ _ _ _ _ ----- Line Not Found -----3.95 1.461E+00 240.98 _____ ----- Line Not Found 10.50* 1.680E+00 U-235 143.76 ---------- Line Not Found _____ _ _ _ _ _ _ _ 4.70 1.685E+00 163.35 6 3.197E-01 3.197E-01 1465.14 54.00 1.641E+00 185.71 ----- Line Not Found _ _ _ _ _ _ 205.31 4.70 1.582E+00 _ _ _ _ _ _ _

Flag: "*" = Keyline

L28833 R2 / 89 of 162

Page : 2 Summary of Nuclide Activity Acquisition date : 9-JUN-2006 05:04:26 Sample ID : 14L28833-7 11 Total number of lines in spectrum Number of unidentified lines 9 18.18% Number of lines tentatively identified by NID 2 Nuclide Type : natural Decay Corr 2-Sigma Uncorrected Decay Corr 2-Sigma Error %Error Flags pCi/L pĊi/L Decay Hlife Nuclide 5.264E+00 77.12E+00 1465.14 5.264E+00 1.00 RA-226 1600.00Y 60.42E-01 732.02 8.254E-01 1.02 8.127E-01 1.91Y TH-228 46.84E-01 1465.14 K 3.197E-01 1.00 3.197E-01 7.04E+08Y U-235 _____ ______ 6.409E+00 Total Activity : 6.396E+00 6.409E+00 Grand Total Activity : 6.396E+00 "M" = Manually accepted Flags: "K" = Keyline not found "A" = Nuclide specific abn. limit "E" = Manually edited

							L28833 R2	2 / 90 of 162
Unidentified D Sample ID : 14				Aco	quisitio	n date : 9	Pa JUN-2006 (	age: 3 )5:04:26
It Energy	Area	Bkgnd	FWHM	Channel	Left Pw	Cts/Sec	%Err %Efi	Flags
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$121 \\ 191 \\ 72 \\ 143 \\ 85 \\ 111 \\ 157 \\ 46 \\ 43$	731 470 304 267 98 219 67	1.24 2.62 1.32 1.47 1.71 2.16 2.17 2.82 2.48	1219.77 2237.45	274 13 395 9 588 10 700 11 1189 11 1210 19 2231 18	$\begin{array}{c} 6.91E-03\\ 1.09E-02\\ 4.12E-03\\ 8.12E-03\\ 4.84E-03\\ 6.34E-03\\ 8.93E-03\\ 2.62E-03\\ 2.45E-03\\ \end{array}$	60.3       1.671         ****       1.601         48.8       1.291         86.9       1.141         39.7       7.791         51.6       7.661         95.0       4.811	E+00 E+00 E+00 E+00 E-01 E-01
Flags: "T" =	Tentative	ely asso	ciate	ed				
Summary of Nu	clide Act	tivity						
Total number Number of un Number of li	identifi	ed lines			11 9 NID 2		.18%	
Nuclide Type	: natura	l Wt	.d Mea	an Wt	d Mean			
RA-226 1600	).00Y	Unc ecay	orrec pCi/J 264E	cted Dec L +00 5.	ay Corr pCi/L 264E+00 254E-01	Decay C 2-Sigma 77.12E 60.42E	Error %Err +00 1465.1	or Flags 4
Tota	al Activi	ty: 6.	076E	+00 6.	089E+00			
Grand Tota	al Activi	ty: 6	076E	+00 б.	089E+00			
Flags: "K" = "E" =	Keyline Manually		nd			ally accep de specif	ted ic abn. lim	nit
Interference	Report							
No interfere	nce corre	ection p	erfor	med				
Combined Act	ivity-MDA	A Report						
Identif	ied Nucli	ldes						
Nuclide	Activit (pCi/I	-	Act	error		DA i/L)	MDA error	Act/MDA
RA-226 TH-228	5.264E- 8.254E-			12E+01 42E+00		3E+02 6E+00	0.000E+00 0.000E+00	0.043 0.092
Non-Ide	ntified 1	Nuclides						
Nuclide	Key-Lin Activit (pCi/l	ty K.L.		error		DA i/L)	MDA error	Act/MDA

## L28833 R2 / 91 of 162

					•
BE-7	4.080E+00	3.158E+01	5.229E+01	0.000E+00	0.078
NA-24	-9.852E+01	5.444E+01	Half-Life to	o short	
K-40	-1.400E+01	4.228E+01	7.575E+01	0.000E+00	-0.185
CR-51	2.880E+00	3.824E+01	6.284E+01	0.000E+00	0.046
MN-54	-6.662E-01	3.122E+00	5.032E+00	0.000E+00	-0.132
CO-57	-7.707E-01	3.177E+00	5.244E+00	0.000E+00	-0.147
CO-58	-2.126E+00	3.325E+00	5.237E+00	0.000E+00	-0.406
FE-59	-3.750E-01	6.840E+00	1.115E+01	0.000E+00	-0.034
CO-60	-3.732E-01	3.116E+00	5.086E+00	0.000E+00	-0.073
ZN-65	1.418E+01	7.407E+00	1.196E+01	0.000E+00	1.186
SE-75	-3.504E+00	4.440E+00	7.185E+00	0.000E+00	-0.488
SR-85	2.392E+01	4.055E+00	7.814E+00	0.000E+00	3.061
Y-88	-1.366E+00	3.859E+00	6.132E+00	0.000E+00	-0.223
NB-94	-7.005E-01	2.889E+00	4.709E+00	0.000E+00	-0.149
NB-95	2.886E+00	3.592E+00	6.118E+00	0.000E+00	0.472
ZR-95	-5.329E+00	6.282E+00	9.865E+00	0.000E+00	-0.540
MO-99	9.464E+02	1.164E+03	1.989E+03	0.000E+00	0.476
RU-103	2.462E+00	3.776E+00	6.373E+00	0.000E+00	0.386
RU-106	1.497E+01	3.025E+01	4.822E+01	0.000E+00	0.311
AG-110m	-2.018E+00	3.087E+00	4.957E+00	0.000E+00	-0.407
SN-113	1.658E+00	4.417E+00	7.261E+00	0.000E+00	0.228
SB-124	7.201E+00	7.111E+00	5.871E+00	0.000E+00	1.226
SB-125	-3.578E+00	8.777E+00	1.433E+01	0.000E+00	-0.250
TE-129M	1.993E+01	4.505E+01	7.566E+01	0.000E+00	0.263
I-131	-6.065E+00	1.181E+01	1.887E+01	0.000E+00	-0.321
BA-133	1.512E+01	5.105E+00	8.002E+00	0.000E+00	1.889
CS-134	1.779E+01	6.298E+00	6.407E+00	0.000E+00	2.777
CS-136	3.041E+00	6.332E+00	1.062E+01	0.000E+00	0.286
CS-137	9.017E-01	3.262E+00	5.467E+00	0.000E+00	0.165
CE-139	-1.436E+00	3.306E+00	5.368E+00	0.000E+00	-0.267
BA-140	-4.530E+00	2.492E+01	4.045E+01	0.000E+00	-0.112
LA-140	-6.301E+00	7.871E+00	1.219E+01	0.000E+00	-0.517
CE-141	-1.009E+00	8.298E+00	1.157E+01	0.000E+00	-0.087
CE-144	-3.475E+00	2.850E+01	3.991E+01	0.000E+00	-0.087
EU-152	-6.083E+00	1.167E+01	1.566E+01	0.000E+00	-0.388
EU-154	-3.331E-01	6.438E+00	1.067E+01	0.000E+00	-0.031
AC-228	2.821E-02	1.165E+01	1.889E+01	0.000E+00	0.001
TH-232	2.806E-02	1.159E+01	1.879E+01	0.000E+00	0.001
U-235	8.790E+00	2.793E+01	3.954E+01	0.000E+00	0.222
U-238	1.097E+02	3.497E+02	5.859E+02	0.000E+00	0.187
AM-241	-7.455E+01	4.638E+01	6.630E+01	0.000E+00	-1.125
171.1 CLIT	,				

L28833 R2 / 92 of 162

				120055	
A,14L28833-7	,06/09/2006	09:57,05/24/2		3.261E+00,WG	L28833-7 EX
B,14L28833-7	,LIBD	,06/	02/2006 08:23	,1435L091304	
C,RA-226 ,YES,	5.264E+00,	7.712E+01,	1.233E+02,,	0.043	
C,TH-228 ,YES,	8.254E-01,	6.042E+00,	8.966E+00,,	0.092	
C,BE-7 ,NO ,	4.080E+00,	3.158E+01,	5.229E+01,,	0.078	
C,K-40 ,NO ,	-1.400E+01,	4.228E+01,	7.575E+01,,	-0.185	
C, CR-51 , NO ,	2.880E+00,	3.824E+01,	6.284E+01,,	0.046	
C, MN-54 , NO ,	-6.662E-01,	3.122E+00,	5.032E+00,,	-0.132	
C, CO-57 , NO ,	-7.707E-01,	3.177E+00,	5.244E+00,,	-0.147	
C, CO-58 , NO ,	-2.126E+00,	3.325E+00,	5.237E+00,,	-0.406	
	-3.750E-01,	6.840E+00,	1.115E+01,,	-0.034	
	-3.732E-01,	3.116E+00,	5.086E+00,,	-0.073	
•	1.418E+01,	7.407E+00,	1.196E+01,,	1.186	
•	-3.504E+00,	4.440E+00,	7.185E+00,,	-0.488	
C,SE-75 ,NO ,	2.392E+01,	4.055E+00,	7.814E+00,,	3.061	
C,SR-85 ,NO ,	-1.366E+00,	3.859E+00,	6.132E+00,,	-0.223	
C,Y-88 ,NO ,	-7.005E-01,	2.889E+00,	4.709E+00,,	-0.149	
C,NB-94 ,NO ,	2.886E+00,	3.592E+00,	6.118E+00,,	0.472	
C,NB-95 ,NO ,	-5.329E+00,	6.282E+00,	9.865E+00,,	-0.540	
C,ZR-95,NO,	9.464E+02,	1.164E+03,	1.989E+03,,	0.476	
C,MO-99 ,NO ,	2.462E+00,	3.776E+00,	6.373E+00,,	0.386	
C,RU-103 ,NO ,	1.497E+01,	3.025E+01,	4.822E+01,,	0.311	
C,RU-106 ,NO ,	-2.018E+00,	3.087E+00,	4.957E+00,,	-0.407	
C,AG-110m ,NO , C,SN-113 ,NO ,	1.658E+00,	4.417E+00,	7.261E+00,,	0.228	
	7.201E+00,	7.111E+00,	5.871E+00,,	1.226	
C,SB-124 ,NO ,	-3.578E+00,	8.777E+00,	1.433E+01,,	-0.250	
C,SB-125 ,NO , C,TE-129M ,NO ,	1.993E+01,	4.505E+01,	7.566E+01,,	0.263	
	-6.065E+00,	1.181E+01,	1.887E+01,,	-0.321	
	1.512E+01,	5.105E+00,	8.002E+00,,	1.889	
C, BA-133 , NO ,	1.779E+01,	6.298E+00,	6.407E+00,,	2.777	
C,CS-134 ,NO ,	3.041E+00,	6.332E+00,	1.062E+01,,	0.286	
C,CS-136 ,NO ,	9.017E-01,	3.262E+00,	5.467E+00,,	0.165	
C,CS-137 ,NO ,	-1.436E+00,	3.306E+00,	5.368E+00,,	-0.267	
C,CE-139 ,NO ,	-4.530E+00,	2.492E+01,	4.045E+01,,	-0.112	
C,BA-140 ,NO ,	-4.330E+00,	7.871E+00,	1.219E+01,,	-0.517	
C,LA-140 ,NO ,		8.298E+00,	1.157E+01,,	-0.087	
C,CE-141 ,NO ,	-1.009E+00,	2.850E+01,	3.991E+01,,	-0.087	
C,CE-144 ,NO ,	-3.475E+00,	1.167E+01,	1.566E+01,,	-0.388	
C,EU-152 ,NO ,	-6.083E+00,	6.438E+00,	1.067E+01,,	-0.031	
C,EU-154 ,NO ,	-3.331E-01,	1.165E+01,	1.889E+01,,	0.001	
C,AC-228 ,NO ,	2.821E-02,	1.159E+01,	1.879E+01,,	0.001	
C,TH-232 ,NO ,	2.806E-02,	2.793E+01,	3.954E+01,,	0.222	
C,U-235 ,NO ,	8.790E+00,	3.497E+02,	5.859E+02,,	0.187	
C,U-238 ,NO ,	1.097E+02,	4.638E+01,	6.630E+01,,	-1.125	
C,AM-241 ,NO ,	-7.455E+01,	4.000ETVI	0.0001.01,		

Analyst: LIMS: ____ Sec. Review: VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 9-JUN-2006 09:34:13.73 TBE15 P-10635B HpGe ******** Aquisition Date/Time: 9-JUN-2006 05:04:37.05 LIMS No., Customer Name, Client ID: WG L28833-8 EXELON ZION Smple Date: 25-MAY-2006 10:58:00. : 15L28833-8 Sample ID Geometry : 153L082604 Sample Type : WG BKGFILE : 15BG060306MT Quantity : 3.04410E+00 L Real Time : 0 04:10:02.48 Start Channel : 40 Energy Tol : 1.50000 Live time : 0 04:10:01.00 Pk Srch Sens: 5.00000 End Channel : 4090 Library Used: LIBD MDA Constant : 0.00 Fit Bkgnd FWHM Channel Cts/Sec %Err %Eff Pk It Energy Area 2.70E+00 7.70E-03 33.0 7.75E-01 410 1.50 267.41 116 1 139.57 1 2.44E+00 5.76E-03 35.5 1.93E+00 285 1.31 385.99 86 2 1 198.53 1.01E+00 2.65E-03 38.5 9.28E-01 59 2.24 1183.79 40 3 1 595.37 9.91E-01 5.39E-03 23.6 2.34E+00 78 1.65 1210.40 4 1 608.60 81 10 2.03 3529.17 4.07E-01 2.00E-03 28.6 8.27E-01 1 1763.20 30 5

L28833 R2 / 93 of 162

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Flaq: "*" = Keyline

L28833 R2 / 94 of 162

2

Page : Summary of Nuclide Activity Acquisition date : 9-JUN-2006 05:04:37 Sample ID : 15L28833-8 5 Total number of lines in spectrum 5 Number of unidentified lines Number of lines tentatively identified by NID 0.00% 0 **** There are no nuclides meeting summary criteria **** "M" = Manually accepted Flags: "K" = Keyline not found "A" = Nuclide specific abn. limit "E" = Manually edited

									L28	833 R2	/ 95 of 3	162
	lentified						_				je: 3	
Samp	ole ID : 1	.5L28833-8	3		Ac	quisiti	.on da	te : 9	9-JUN-	2006 05	:04:37	
It	Energy	Area	Bkgnd	FWHM	Channel	Left F	Pw Ct	s/Sec	%Err	%Eff	Flags	
1	139.57	116			267.41							
1		86			385.99							
		40										
		81										
1	1763.20	30	10	2.03	3529.17	3521 1	13 2.0	08-03	57.2	4.07E-	·ΟΙ	
Flags: "T" = Tentatively associated												
Summ	nary of Nu	aclide Act	civity									
	cal number				L		5					
	nber of un						5		6			
	nber of li * There ar						0 cia **		.00%			
Flag	gs: "K" = "E" =	Keyline :	not fou	nd	۳M۳	= Manı						
	"E" =	Manually	edited		"A"	= Nuc]	lide s	pecif	ic abr	ı. limit	-	
Inte	erference	Report										
No i	interferer	nce corre	ction p	erform	ied							
Comb	bined Acti	ivity-MDA	Report									
	- Non-Ider	ntified N	uclides									
		Key-Lin	е						-			
		Activit		Act	error	ľ	MDA		MDA e	error	Act/MDA	A
Nuc	lide	(pCi/L	) Ided			(p(	Ci/L)					
BE-'	7	3.438E-	01	2.14	98101					E = 0.0		)
NA-2	24	1 1707.				3.5'	78E+01	•	0.000		0.010	/
K-4(	~	-1.178E+	01	1.71	5E+01	Hal:	f-Life	too		штоо	0.010	,
TC T (	0	-1.178E+ 8.573E+		3.36	5E+01 55E+01	Hal: 6.40	f-Lif∈ 07E+01	too	short 0.000	)E+00	1.338	3
CR-5	51	8.573E+ 1.606E+	01 00	3.30 2.61	5E+01 5E+01 4E+01	Hal: 6.40 4.33	f-Life 07E+01 33E+01	too	short 0.000 0.000	)E+00 )E+00	1.338 0.037	3 7
CR-5 MN-5	51 54	8.573E+ 1.606E+ -5.334E-	01 00 01	3.36 2.61 2.29	5E+01 5E+01 4E+01 91E+00	Hal: 6.40 4.33 3.73	f-Life 07E+01 33E+01 10E+00	too	short 0.000 0.000 0.000	)E+00 )E+00 )E+00	1.338 0.037 -0.144	3 7 <del>1</del>
CR-5 MN-5 CO-5	51 54 57	8.573E+ 1.606E+ -5.334E- 2.253E-	01 00 01 02	3.36 2.61 2.29 2.05	5E+01 5E+01 4E+01 91E+00 50E+00	Hal: 6.40 4.33 3.73 3.24	f-Life 07E+01 33E+01 10E+00 40E+00		short 0.000 0.000 0.000 0.000	)E+00 )E+00 )E+00 )E+00	1.338 0.037 -0.144 0.007	3 7 <del>1</del> 7
CR-9 MN-9 CO-9 CO-9	51 54 57 58	8.573E+ 1.606E+ -5.334E- 2.253E- -3.706E+	01 00 01 02 00	3.36 2.61 2.29 2.05 2.49	5E+01 5E+01 4E+01 91E+00 50E+00 99E+00	Hal: 6.40 4.33 3.73 3.24 3.60	f-Lif∈ 07E+01 33E+01 10E+0C 40E+0C 69E+0C	too	short 0.000 0.000 0.000 0.000 0.000	)E+00 )E+00 )E+00 )E+00 )E+00	1.338 0.037 -0.144 0.007 -1.010	3 7 1 7 0
CR-9 MN-9 CO-9 FE-9	51 54 57 58 59	8.573E+ 1.606E+ -5.334E- 2.253E- -3.706E+ 8.700E+	01 00 01 02 00 00	3.36 2.61 2.29 2.05 2.49 5.62	5E+01 5E+01 4E+01 91E+00 50E+00 99E+00 27E+00	Hal: 6.40 4.33 3.73 3.24 3.60 1.03	f-Life 07E+01 33E+01 10E+0C 40E+0C 69E+0C 35E+01		short 0.000 0.000 0.000 0.000 0.000	)E+00 )E+00 )E+00 )E+00 )E+00 )E+00	1.338 0.037 -0.144 0.007 -1.010 0.843	3 7 1 2 7 2
CR - 9 MN - 9 CO - 9 FE - 9 CO - 9	51 54 57 58 59 60	8.573E+ 1.606E+ -5.334E- 2.253E- -3.706E+ 8.700E+ -4.711E-	01 00 01 02 00 00 00 02	3.36 2.61 2.29 2.05 2.49 5.62 2.33	5E+01 5E+01 4E+01 9E+00 9E+00 9E+00 27E+00 39E+00	Hal: 6.40 4.33 3.77 3.24 3.60 1.03 3.80	f-Life 07E+01 33E+01 10E+00 40E+00 69E+00 35E+01 02E+00	too	short 0.000 0.000 0.000 0.000 0.000 0.000	DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00	1.338 0.037 -0.144 0.007 -1.010 0.841 -0.012	3 7 1 2 2
CR - 5 MN - 5 CO - 5 FE - 5 CO - 6 ZN - 6	51 54 57 58 59 60 65	8.573E+ 1.606E+ -5.334E- 2.253E- -3.706E+ 8.700E+ -4.711E- 6.956E+	01 00 01 02 00 00 02 00	3.36 2.61 2.29 2.05 2.49 5.62 2.33 5.63	5E+01 5E+01 4E+01 91E+00 50E+00 9E+00 27E+00 39E+00 38E+00	Hal: 6.40 4.33 3.77 3.24 3.60 1.03 3.80 1.03	f-Life 07E+01 33E+01 10E+0C 40E+0C 69E+0C 35E+01 02E+0C 10E+01	too	short 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00	1.338 0.037 -0.144 0.007 -1.010 0.841 -0.012 0.688	3 7 1 7 0 1 2 3
CR - 9 MN - 9 CO - 9 FE - 9 CO - 9 ZN - 9 SE - 1	51 54 57 58 59 60 65 75	8.573E+ 1.606E+ -5.334E- 2.253E- 2.253E- -3.706E+ 8.700E+ -4.711E- 6.956E+ 3.890E+	01 00 02 00 00 00 02 00 00 00	3.36 2.61 2.29 2.05 2.49 5.62 2.33 5.63 2.95	5E+01 5E+01 4E+01 0E+00 9E+00 9E+00 27E+00 38E+00 50E+00	Hal: 6.40 4.33 3.77 3.24 3.60 1.03 3.80 1.03 5.00	f-Life 07E+01 33E+01 10E+00 40E+00 69E+00 35E+01 02E+00 10E+01 05E+00	too	short 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00	1.338 0.037 -0.144 0.007 -1.010 0.841 -0.012 0.688 0.777	3 7 4 2 2 3 7
CR - 5 MN - 5 CO - 5 FE - 5 CO - 6 ZN - 6 SE - 5 SR - 5	51 54 57 58 59 60 65 75 85	8.573E+ 1.606E+ -5.334E- 2.253E- -3.706E+ 8.700E+ -4.711E- 6.956E+ 3.890E+ 8.482E+	01 00 02 00 00 00 00 00 00 00	3.36 2.61 2.29 2.05 5.62 2.33 5.63 2.95 2.95	5E+01 5E+01 4E+01 0E+00 9E+00 9E+00 39E+00 39E+00 38E+00 0E+00 38E+00	Hal: 6.40 4.33 3.77 3.24 3.60 1.03 3.80 1.03 5.00 5.15	f-Life 07E+01 33E+01 10E+00 40E+00 69E+00 35E+01 02E+00 10E+01 05E+00 95E+00	too	short 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00	1.338 0.037 -0.144 0.007 -1.010 0.841 -0.012 0.688 0.777 1.633	3 7 4 7 0 L 2 3 3 7 3
CR - 9 MN - 9 CO - 9 FE - 9 CO - 9 ZN - 9 SE - 1 SR - 9 Y - 8	51 54 57 58 59 60 65 75 85 85	8.573E+ 1.606E+ -5.334E- 2.253E- -3.706E+ 8.700E+ -4.711E- 6.956E+ 3.890E+ 8.482E+ -5.042E-	01 00 01 02 00 00 00 00 00 00 00 01	3.36 2.61 2.29 2.05 2.49 5.62 2.33 5.62 2.33 5.62 2.33 2.95 2.79	5E+01 5E+01 4E+01 50E+00 50E+00 27E+00 39E+00 38E+00 50E+00 38E+00 50E+00 44E+00	Hal: 6.40 4.33 3.73 3.24 3.60 1.03 3.80 1.03 5.00 5.19 4.63	f-Life 07E+01 33E+01 10E+0C 40E+0C 35E+01 02E+0C 10E+01 05E+0C 95E+0C 14E+0C	e too	short 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00	1.338 0.037 -0.144 0.007 -1.010 0.841 -0.012 0.688 0.777 1.633 -0.109	3 7 1 2 2 3 3 7 3 9
CR - 9 MN - 9 CO - 9 FE - 9 CO - 9 ZN - 9 SE - 7 SE - 7 SR - 8 Y - 89 NB - 9	51 54 57 58 59 60 65 75 85 8 94	8.573E+ 1.606E+ -5.334E- 2.253E- -3.706E+ 8.700E+ -4.711E- 6.956E+ 3.890E+ 8.482E+ -5.042E- 2.428E+	01 00 01 02 00 00 00 00 00 00 01 00	3.36 2.61 2.29 2.49 5.62 2.33 5.62 2.33 5.62 2.33 2.95 2.79 2.84 2.19	5E+01 5E+01 4E+01 50E+00 50E+00 27E+00 39E+00 38E+00 50E+00 38E+00 50E+00 38E+00 50E+00 38E+00 50E+00	Hal: 6.40 4.33 3.77 3.24 3.60 1.03 3.80 1.03 5.00 5.19 4.63 3.80	f-Life 07E+01 33E+01 10E+0C 40E+0C 69E+0C 35E+01 02E+0C 10E+01 05E+0C 95E+0C 14E+0C 04E+0C	e too	short 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00	1.338 0.037 -0.144 0.007 -1.010 0.843 -0.012 0.688 0.777 1.633 -0.109 0.638	3 7 4 7 0 1 2 3 7 3 9 3 3
CR - 9 MN - 9 CO - 9 FE - 9 CO - 9 SE - 7 SE - 7 SR - 9 Y - 8 NB - 9 NB - 9	51 54 57 58 59 60 65 75 85 85 8 94 95	8.573E+ 1.606E+ -5.334E- 2.253E- -3.706E+ 8.700E+ -4.711E- 6.956E+ 3.890E+ 8.482E+ -5.042E- 2.428E+ -8.819E-	01 00 01 02 00 00 00 00 00 00 01 00 01	3.36 2.61 2.29 2.05 2.49 5.62 2.33 5.62 2.33 5.62 2.33 2.95 2.79 2.84 2.19 2.84 2.19	5E+01 5E+01 4E+01 50E+00 9E+00 27E+00 39E+00 38E+00 50E+00 38E+00 38E+00 38E+00 34E+00 34E+00	Hal: 6.40 4.33 3.77 3.24 3.60 1.03 3.80 1.03 5.00 5.12 4.63 3.80 4.20	f-Life 07E+01 33E+01 10E+0C 40E+0C 69E+0C 35E+01 02E+0C 10E+01 05E+0C 95E+0C 14E+0C 69E+0C	e too	short 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DE+00	$\begin{array}{c} 1.338\\ 0.037\\ -0.144\\ 0.007\\ -1.010\\ 0.841\\ -0.012\\ 0.688\\ 0.777\\ 1.633\\ -0.109\\ 0.638\\ -0.207\end{array}$	3 7 4 7 0 1 2 3 3 7 3 9 9 3 7 7
CR - 9 MN - 9 CO - 9 FE - 9 CO - 9 SE - 9 SE - 9 SR - 9 NB - 9 NB - 9 ZR - 9	51 54 57 58 59 60 65 75 85 8 94 95 95	8.573E+ 1.606E+ -5.334E- 2.253E- 2.253E- -3.706E+ 8.700E+ -4.711E- 6.956E+ 3.890E+ 8.482E+ -5.042E- 2.428E+ -8.819E- -1.092E+	01 00 01 02 00 00 00 00 00 00 01 00 01 00	3.36 2.61 2.29 2.05 2.49 5.62 2.33 5.63 2.95 2.84 2.19 2.84 2.19 2.84 2.19 2.63 4.66	5E+01 5E+01 4E+01 0E+00 9E+00 27E+00 38E+00 38E+00 38E+00 38E+00 38E+00 38E+00 34E+00 34E+00 57E+00	Hal: 6.40 4.33 3.77 3.24 3.60 1.03 3.80 1.03 5.00 5.12 4.63 3.80 4.63 7.65	f-Life 07E+01 33E+01 10E+00 40E+00 69E+00 35E+01 02E+00 10E+01 05E+00 95E+00 14E+00 69E+00 22E+00	e too	short 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DE+00	$\begin{array}{c} 1.338\\ 0.037\\ -0.144\\ 0.007\\ -1.010\\ 0.841\\ -0.012\\ 0.688\\ 0.777\\ 1.633\\ -0.109\\ 0.638\\ -0.207\\ -0.143\end{array}$	3 7 1 2 3 3 7 3 3 7 3 3
CR - 9 MN - 9 CO - 9 FE - 9 CO - 9 SE - 9 SR - 9 NB - 9 NB - 9 ZR - 9 MO - 9	51 54 57 58 59 60 65 75 85 8 94 95 95 99	8.573E+ 1.606E+ -5.334E- 2.253E- -3.706E+ 8.700E+ -4.711E- 6.956E+ 3.890E+ 8.482E+ -5.042E- 2.428E+ -8.819E- -1.092E+ 1.056E+	01 00 02 00 00 00 00 00 00 01 00 01 00 01 00 02	3.36 2.61 2.29 2.05 2.49 5.62 2.33 5.63 2.95 2.79 2.84 2.19 2.84 2.19 2.63 4.60 7.02	5E+01 5E+01 4E+01 0E+00 9E+00 9E+00 39E+00 38E+00 38E+00 38E+00 38E+00 34E+00 34E+00 34E+00 34E+00 32E+00 34E+00 22E+00 34E+00 22E+00	Hal: 6.40 4.33 3.77 3.24 3.60 1.03 3.80 1.03 5.00 5.19 4.63 3.80 4.63 3.80 4.63 3.80 1.11	f-Life 07E+01 33E+01 10E+00 40E+00 69E+00 35E+00 10E+01 05E+00 95E+00 14E+00 04E+00 22E+00 78E+03	e too	short 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DE+00	$\begin{array}{c} 1.338\\ 0.037\\ -0.144\\ 0.007\\ -1.010\\ 0.841\\ -0.012\\ 0.688\\ 0.777\\ 1.633\\ -0.109\\ 0.638\\ -0.207\\ -0.143\\ 0.090\end{array}$	3 7 1 2 2 3 7 3 9 3 3 7 3 3 7 3 3 7 3 3 0
CR - 9 MN - 9 CO - 9 FE - 9 CO - 9 ZN - 9 SE - 7 SR - 9 NB - 9 NB - 9 ZR - 9	51 54 57 58 59 60 65 75 85 8 94 95 95 95 99 103	8.573E+ 1.606E+ -5.334E- 2.253E- -3.706E+ 8.700E+ -4.711E- 6.956E+ 3.890E+ 8.482E+ -5.042E- 2.428E+ -8.819E- -1.092E+ 1.056E+ 3.893E-	01 00 01 02 00 00 00 00 00 00 01 00 01 00 01 00 01 00 01	3.36 2.61 2.29 2.49 5.62 2.33 5.62 2.33 2.95 2.95 2.95 2.63 2.95 2.63 2.63 2.63 2.63 2.63 2.63 2.63 2.63	5E+01 5E+01 4E+01 0E+00 9E+00 9E+00 39E+00 38E+00 38E+00 38E+00 34E+00 34E+00 34E+00 34E+00 27E+02 27E+02 19E+00	Hal: 6.40 4.33 3.77 3.24 3.60 1.03 5.00 5.19 4.63 3.80 4.20 7.63 1.1 4.55	f-Life 07E+01 33E+01 10E+00 40E+00 69E+00 35E+01 02E+00 10E+01 05E+00 95E+00 04E+00 69E+00 78E+03 46E+00	<pre>too</pre>	short 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DE+00	1.336 0.037 -0.144 0.007 -1.010 0.843 -0.012 0.686 0.777 1.633 -0.109 0.638 -0.207 -0.143 0.090 0.086	3 7 1 2 2 3 7 3 9 3 7 3 9 3 7 3 9 5 5
CR - 9 MN - 9 CO - 9 FE - 9 CO - 9 ZN - 0 SE - 1 SR - 1 SR - 1 NB - 1 NB - 1 ZR - 1 NB - 1 ZR - 1 RU - 1 RU - 1	51 54 57 58 59 60 65 75 85 8 94 95 95 95 99 103 106	8.573E+ 1.606E+ -5.334E- 2.253E- -3.706E+ 8.700E+ -4.711E- 6.956E+ 3.890E+ 8.482E+ -5.042E- 2.428E+ -8.819E- -1.092E+ 1.056E+ 3.893E- 1.319E+	01 00 01 02 00 00 00 00 00 00 01 00 01 00 01 00 01 01	3.36 2.61 2.29 2.05 2.49 5.62 2.33 5.62 2.35 2.95 2.36 2.95 2.63 2.95 2.63 2.63 2.63 2.63 2.63 2.63 2.63 2.63	5E+01 5E+01 4E+01 0E+00 9E+00 9E+00 39E+00 39E+00 38E+00 38E+00 38E+00 34E+00 34E+00 34E+00 34E+00 32E+00 34E+00 57E+00 27E+02 19E+00 52E+01	Hal: 6.40 4.3: 3.72 3.24 3.60 1.03 5.00 5.19 4.63 3.80 4.20 7.63 1.1 4.55 3.60	f - Life 07E + 01 33E + 01 10E + 00 40E + 00 69E + 00 35E + 01 02E + 00 10E + 00 95E + 00 95E + 00 95E + 00 22E + 00 69E + 00 4E + 0	e too	short 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DE+00	1.338 $0.037$ $-0.144$ $0.007$ $-1.010$ $0.841$ $-0.012$ $0.688$ $0.777$ $1.633$ $-0.109$ $0.638$ $-0.207$ $-0.143$ $0.090$ $0.086$ $0.363$	3 7 1 2 7 3 3 7 3 3 7 3 3 7 3 5 5 1
CR - 9 MN - 9 CO - 9 FE - 9 CO - 9 ZN - 9 SE - 7 SE	51 54 57 58 59 60 65 75 85 8 94 95 95 95 95 99 103 106 110m	8.573E+ 1.606E+ -5.334E- 2.253E- -3.706E+ 8.700E+ -4.711E- 6.956E+ 3.890E+ 8.482E+ -5.042E- 2.428E+ -8.819E- -1.092E+ 1.056E+ 3.893E- 1.319E+ 4.374E-	01 00 01 02 00 00 02 00 00 00 01 00 01 00 01 01 01 01	3.36 2.67 2.29 2.49 5.62 2.33 5.62 2.33 5.63 2.95 2.79 2.84 2.19 2.63 4.66 7.02 2.71 2.31	5E+01 5E+01 4E+01 9E+00 9E+00 9E+00 38E+00 38E+00 38E+00 38E+00 34E+00 34E+00 34E+00 34E+00 57E+00 27E+02 19E+00 52E+01 79E+00	Hal: 6.40 4.33 3.77 3.24 3.60 1.03 3.80 1.03 5.00 5.12 4.63 3.80 4.20 7.63 1.11 4.54 3.66 3.90	f-Life 07E+01 33E+01 10E+00 69E+00 35E+01 02E+00 10E+00 05E+00 04E+00 69E+00 69E+00 22E+00 78E+00 78E+00 46E+00 49E+01 22E+00	e too	short 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 D	$\begin{array}{c} 1.338\\ 0.037\\ -0.144\\ 0.007\\ -1.010\\ 0.841\\ -0.012\\ 0.688\\ 0.777\\ 1.633\\ -0.109\\ 0.638\\ -0.207\\ -0.143\\ 0.090\\ 0.086\\ 0.361\\ 0.112\end{array}$	3 7 4 7 0 1 2 3 3 7 3 9 9 3 7 3 9 5 1 2
CR - 9 MN - 9 CO - 9 FE - 9 CO - 9 SE - 1 SE	51 54 57 58 59 60 65 75 85 8 94 95 95 99 103 106 110m 113	8.573E+ 1.606E+ -5.334E- 2.253E- -3.706E+ 8.700E+ -4.711E- 6.956E+ 3.890E+ 8.482E+ -5.042E- 2.428E+ -8.819E- 1.092E+ 1.056E+ 3.893E- 1.319E+ 4.374E- -8.807E-	01 00 01 02 00 00 00 00 00 00 01 00 01 00 01 01 01	3.36 2.61 2.29 2.05 2.49 5.62 2.33 5.63 2.95 2.84 2.19 2.84 2.63 4.66 7.02 2.71 2.31 2.31	5E+01 5E+01 4E+00 50E+00 9E+00 27E+00 38E+00 38E+00 38E+00 38E+00 34E+00 34E+00 34E+00 34E+00 57E+00 27E+02 27E+02 19E+00 52E+01 79E+00 56E+00	Hal: 6.40 4.33 3.77 3.24 3.60 1.03 5.00 5.19 4.63 3.80 4.20 7.65 1.11 4.56 3.99 4.7	f - Life 07E + 01 33E + 01 10E + 00 40E + 00 69E + 00 35E + 01 02E + 00 10E + 00 95E + 00 95E + 00 95E + 00 22E + 00 69E + 00 4E + 0	e too	short 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DE+00	1.338 $0.037$ $-0.144$ $0.007$ $-1.010$ $0.841$ $-0.012$ $0.688$ $0.777$ $1.633$ $-0.109$ $0.638$ $-0.207$ $-0.143$ $0.090$ $0.086$ $0.363$	3 7 1 7 7 9 7 3 9 7 3 9 7 3 9 7 3 9 5 1 2 2 4
CR - 9 MN - 9 CO - 9 FE - 9 CO - 9 ZN - 9 SE - 7 SE	51 54 57 58 59 60 65 75 85 85 85 94 95 95 95 95 99 103 106 110m 113 124	8.573E+ 1.606E+ -5.334E- 2.253E- -3.706E+ 8.700E+ -4.711E- 6.956E+ 3.890E+ 8.482E+ -5.042E- 2.428E+ -8.819E- -1.092E+ 1.056E+ 3.893E- 1.319E+ 4.374E-	01 00 01 02 00 00 00 00 00 00 01 00 01 00 01 01 01	3.36 2.61 2.29 2.05 2.49 5.62 2.35 2.95 2.79 2.84 2.19 2.63 4.66 7.02 2.71 2.37 2.95 2.95 5.95	5E+01 5E+01 4E+01 9E+00 9E+00 9E+00 38E+00 38E+00 38E+00 38E+00 34E+00 34E+00 34E+00 34E+00 57E+00 27E+02 19E+00 52E+01 79E+00	Hal: 6.40 4.33 3.77 3.24 3.60 1.03 3.80 1.03 5.00 5.19 4.63 3.80 4.20 7.63 1.12 4.56 3.69 3.69 4.7 4.2	f-Life 07E+01 33E+01 10E+00 69E+00 69E+00 35E+00 10E+01 05E+00 95E+00 14E+00 69E+00 22E+00 78E+00 22E+00 81E+00 81E+00	e too	short 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	DE+00	1.338 $0.037$ $-0.144$ $0.007$ $-1.010$ $0.841$ $-0.012$ $0.638$ $0.777$ $1.633$ $-0.109$ $0.638$ $-0.207$ $-0.143$ $0.090$ $0.086$ $0.361$ $0.112$ $-0.184$	3 7 1 2 3 7 3 9 3 7 3 9 3 7 3 9 5 1 2 4 9

				L28833 R2	/ 96 of 162
TE-129M I-131 BA-133 CS-134 CS-136 CS-137 CE-139 BA-140 LA-140 CE-141 CE-144 EU-152 EU-154 RA-226 AC-228 TH-228 TH-228 TH-232	9.827E+00 5.212E+00 -3.320E+00 4.159E+00 1.923E+00 1.364E+00 6.305E-02 -9.985E-01 -2.851E+00 3.692E+00 2.601E-02 -1.492E+01 9.722E-01 -8.261E-02 1.249E+01 3.450E+00 1.243E+01	3.402E+01 7.605E+00 3.094E+00 3.906E+00 4.874E+00 2.571E+00 2.056E+00 1.648E+01 5.652E+00 5.060E+00 1.734E+01 6.953E+00 4.168E+00 5.064E+01 8.058E+00 4.112E+00 8.018E+00	5.590E+01 1.286E+01 4.860E+00 4.405E+00 8.252E+00 4.323E+00 3.403E+00 2.713E+01 8.735E+00 7.410E+00 2.478E+01 1.044E+01 6.630E+00 8.102E+01 1.469E+01 6.625E+00 1.462E+01 2.517E+01	L28833 R2 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	<pre>/ 96 of 162 0.176 0.405 -0.683 0.944 0.233 0.315 0.019 -0.037 -0.326 0.498 0.001 -1.430 0.147 -0.001 0.851 0.521 0.851 0.840</pre>
U-235 U-238 AM-241	2.114E+01 1.372E+02 -1.995E+01	1.683E+01 2.586E+02 2.082E+01	2.517E+01 4.379E+02 3.351E+01	0.000E+00 0.000E+00 0.000E+00	0.313 -0.595

L28833 R2 / 97 of 162

				120055	
A,15L28833-8	,06/09/2006	09:34,05/25/2	006 10:58,	3.044E+00,WG	L28833-8 EX
B,15L28833-8	,LIBD	,06/	06/2006 10:43	3,153L082604	
C,BE-7 ,NO ,	3.438E-01,		3.578E+01,,		
C,K-40 ,NO ,	8.573E+01,		6.407E+01,,		
C, CR-51 , NO ,	1.606E+00,		4.333E+01,,		
C,MN-54 ,NO ,	-5.334E-01,	2.291E+00,	3.710E+00,,	-0.144	,
C,CO-57 ,NO ,	2.253E-02,		3.240E+00,,	0.007	
C,CO-58 ,NO ,	-3.706E+00,	2.499E+00,	3.669E+00,,	-1.010	
C,FE-59 ,NO ,	8.700E+00,			0.841	
C,CO-60 ,NO ,		2.339E+00,		-0.012	
C,ZN-65 ,NO ,	6.956E+00,			0.688	
C,SE-75 ,NO ,	3.890E+00,	2.950E+00,	5.005E+00,,	0.777	
C, SR-85 , NO ,	8.482E+00,	2.798E+00,	5.195E+00,,	1.633	
C,Y-88 ,NO ,		2.844E+00,	4.614E+00,,	-0.109	
C,NB-94 ,NO ,	2.428E+00,	2.192E+00,	3.804E+00,,	0.638	
C,NB-95 ,NO ,		2.634E+00,	4.269E+00,,	-0.207	
C,ZR-95 ,NO ,		4.667E+00,		-0.143	
C, MO-99 , NO ,	1.056E+02,	7.027E+02,	1.178E+03,,		
C,RU-103 ,NO ,	3.893E-01,	2.719E+00,	4.546E+00,,	0.086	
C,RU-106 ,NO ,	1.319E+01,	2.152E+01,	3.649E+01,,		
C,AG-110m ,NO ,	4.374E-01,	2.379E+00,	3.922E+00,,		
C, SN-113 , NO ,	-8.807E-01,	2.966E+00,	4.781E+00,,	-0.184	
C,SB-124 ,NO ,			4.267E+00,,		
C,SB-125 ,NO ,		6.161E+00,	9.722E+00,,		
		3.402E+01,	5.590E+01,,		
C,I-131 ,NO ,		7.605E+00,			
C, BA-133 , NO ,	-3.320E+00,		4.860E+00,,		
C,CS-134 ,NO ,			4.405E+00,,		
C,CS-136 ,NO ,			8.252E+00,,		
C,CS-137 ,NO ,	1.364E+00,		4.323E+00,,		
C,CE-139 ,NO ,	6.305E-02,	2.056E+00,			
C, BA-140 , NO ,			2.713E+01,,		
C,LA-140 ,NO ,		5.652E+00,			
	3.692E+00,	5.060E+00,	7.410E+00,,	0.498	
C,CE-144 ,NO ,		1.734E+01,	2.478E+01,,	0.001	
C,EU-152 ,NO ,		6.953E+00,	1.044E+01,,		
C,EU-154 ,NO ,		4.168E+00,			
C,RA-226 ,NO ,		5.064E+01,	8.102E+01,,		
C, AC-228 , NO ,	1.249E+01,	8.058E+00,	1.469E+01,,		
C, TH-228 , NO ,		4.112E+00,	6.625E+00,,		
C, TH-232 , NO ,	1.243E+01,	8.018E+00,	1.462E+01,,		
C, U-235 , NO ,	2.114E+01,	1.683E+01,	2.517E+01,,		
C,U-238 ,NO ,	1.372E+02,	2.586E+02,	4.379E+02,,		
C,AM-241 ,NO ,	-1.995E+01,	2.082E+01,	3.351E+01,,		
-, , , ,	,	······································			

Anaflyst: LIMS: Sec. Review: _____ VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 9-JUN-2006 09:37:59.69 TBE23 03017322 HpGe ******** Aquisition Date/Time: 9-JUN-2006 05:04:50.80 _____ LIMS No., Customer Name, Client ID: WG L28833-9 EXELON ZION Smple Date: 25-MAY-2006 11:15:00. Sample ID : 23L28833-9 Geometry : 233L082404 Sample Type : WG BKGFILE : 23BG060306MT Quantity : 3.00680E+00 L Start Channel : 50 Energy Tol : 1.50000 Real Time : 0 04:12:16.09 Pk Srch Sens: 5.00000 Live time : 0 04:12:05.68 End Channel : 4090 Library Used: LIBD MDA Constant : 0.00 Fit %Eff Cts/Sec %Err Pk It Area Bkgnd FWHM Channel Energy 8.00E-02 3.08E-03 47.2 1.96E+00 4 33.62* 47 33 0.93 67.56 1 70.81 1.06E-01 1.42E-03153.0 2 4 35.24* 21 115 1.57 1.93E+00 2.95E-03115.9 3 0 92.29* 45 653 1.46 184.83 2.18E+00 1.97E-03179.3 1.17 371.05 4 0 185.47* 30 633 2.11E+00 7.25E-03 38.9 5 472 0.99 396.49 0 198.20* 110 1.89E+00 1.52E-02 23.7 571 4.43 480.89 6 0 240.43 230 7 0 294.94* 150 332 1.03 589.85 1.64E+00 9.93E-03 26.1 8 0 351.46* 280 1.07 702.82 1.44E+00 1.21E-02 20.5 182 1.25 1217.28 9.41E-01 2.55E-02 8.5 0 608.80* 386 127 9 47 25 1.86 1820.98 7.09E-01 3.08E-03 31.2 10 0 910.72* 1.37 2239.28 6.16E-01 4.72E-03 22.6 71 11 0 1119.88* 36 12 0 1764.29* 55 22 1.32 3528.49 4.38E-01 3.64E-03 26.2

L28833 R2 / 98 of 162

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

	7 1				Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pĊi/L	%Error
RA-226	186.21	30	3.28*	2.175E+00	2.487E+01	2.487E+01	358.58
AC-228	835.50		1.75	7.515E-01	Li	ne Not Found	
	911.07	47	27.70*	7.085E-01	1.411E+01	1.418E+01	62.37

Flag: "*" = Keyline

L28833 R2 / 99 of 162

Summary of Nuclide Activity Sample ID : 23L28833-9	Page : 2 Acquisition date : 9-JUN-2006 05:04:50							
Total number of lines in spectrum Number of unidentified lines Number of lines tentatively identified	12 9 d by NID 3 25.00%							
Nuclide Type : natural								
Uncorrected Nuclide Hlife Decay pCi/L RA-226 1600.00Y 1.00 2.487E+01 AC-228 5.75Y 1.00 1.411E+01	2.487E+01 8.917E+01 358.58							
Total Activity : 3.898E+01	3.904E+01							
Grand Total Activity : 3.898E+01 3.904E+01								
Flags: "K" = Keyline not found "E" = Manually edited	"M" = Manually accepted "A" = Nuclide specific abn. limit							

L28833 R2 / 100 of 162 Page : 3 Unidentified Energy Lines Acquisition date : 9-JUN-2006 05:04:50 Sample ID : 23L28833-9 Flags Channel Left Pw Cts/Sec %Err %Eff FWHM Area Bkgnd Ιt Energy 65 17 3.08E-03 94.4 8.00E-02 67.56 33 0.93 47 33.62 4 65 17 1.42E-03 **** 1.06E-01 70.81 1.57 21 115 4 35.24 1.93E+00 181 9 2.95E-03 **** 1.46 184.83 0 92.29 45 653 9 7.25E-03 77.8 2.11E+00 396.49 392 0.99 198.20 110 472 0 474 15 1.52E-02 47.4 1.89E+00 Т 480.89 230 571 4.43 240.43 0 1.64E+00 585 11 9.93E-03 52.2 332 1.03 589.85 150 0 294.94 698 11 1.21E-02 41.0 1.44E+00 1.07 702.82 280 351.46 182 0 1217.28 1211 13 2.55E-02 17.1 9.41E-01 127 1.25 0 608.80 386 6.16E-01 2239.28 2234 11 4.72E-03 45.1 1.37 1119.88 71 36 0 3528.49 3522 14 3.64E-03 52.3 4.38E-01 55 22 1.32 1764.29 0 Flags: "T" = Tentatively associated Summary of Nuclide Activity 12 Total number of lines in spectrum 9 Number of unidentified lines Number of lines tentatively identified by NID 3 25.00% Nuclide Type : natural Wtd Mean Wtd Mean 2-Sigma Uncorrected Decay Corr Decay Corr %Error Flags pCi/L 2-Sigma Error pCi/L Nuclide Hlife Decay 8.917E+01 358.58 2.487E+01 2.487E+01 1.00 RA-226 1600.00Y 62.37 0.884E+01 1.418E+011.411E+01 5.75Y 1.00 AC-228 _____ _____ 3.904E+01 3.898E+01 Total Activity : Grand Total Activity : 3.898E+01 3.904E+01 "M" = Manually accepted Flags: "K" = Keyline not found "A" = Nuclide specific abn. limit "E" = Manually edited Interference Report No interference correction performed Combined Activity-MDA Report ---- Identified Nuclides ----Act/MDA MDA error MDA Activity Act error (pCi/L)Nuclide (pCi/L)0.205 0.000E+00 1.216E+02 8.917E+01 2.487E+01 RA-226 0.840 0.000E+00 1.687E+01 1.418E+01 8.843E+00 AC-228 ---- Non-Identified Nuclides ----Key-Line Act/MDA MDA MDA error Act error Activity K.L. (pCi/L)Ided Nuclide (pCi/L)

BE-7	0 7517.00	0.0757.01	4 0045.01		0 1 0 0
BE-7 NA-24	8.751E+00 -3.395E+01	2.875E+01 1.936E+01	4.924E+01 Half-Life to	0.000E+00	0.178
K-40	-3.174E+01	4.190E+01	8.014E+01	0.000E+00	-0.396
CR-51	-2.381E+01	4.190E+01 3.649E+01	6.077E+01	0.000E+00 0.000E+00	-0.398
MN-54	-2.381E+01 -8.655E-01	2.929E+01	4.941E+00	0.000E+00 0.000E+00	-0.175
CO-57	-6.784E-01	3.153E+00	4.941E+00 5.268E+00	0.000E+00 0.000E+00	-0.129
CO-58	-2.098E+00	3.025E+00	4.998E+00	0.000E+00 0.000E+00	-0.420
FE-59	1.604E+00	6.096E+00	4.998E+00 1.085E+01	0.000E+00	0.148
CO-60	3.159E+00	2.861E+00	5.375E+00	0.000E+00	0.588
ZN-65	1.804E+01	7.339E+00	1.295E+01	0.000E+00	1.394
SE-75	2.082E+00	4.282E+00	7.393E+00	0.000E+00	0.282
SR-85	1.421E+01	4.282E+00 3.748E+00	7.073E+00	0.000E+00 0.000E+00	2.009
Y-88	-1.295E+00	3.149E+00	5.397E+00	0.000E+00	-0.240
NB-94	1.900E+00	2.593E+00	4.635E+00	0.000E+00	0.410
NB-95	5.301E+00	3.264E+00	6.055E+00	0.000E+00	0.410
ZR-95	-3.824E+00	5.404E+00	8.948E+00	0.000E+00	-0.427
MO-99	5.920E+02	7.934E+02	1.429E+03	0.000E+00	0.414
RU-103	3.525E+00	3.689E+00	6.480E+00	0.000E+00	0.414 0.544
RU-106	4.142E+00	2.572E+01	4.485E+01	0.000E+00	0.092
AG-110m	1.973E+00	2.801E+00	5.001E+00	0.000E+00	0.395
SN-113	-1.283E+00	4.071E+00	6.824E+00	0.000E+00	-0.188
SB-124	-5.914E+00	4.129E+00	5.444E+00	0.000E+00	-1.086
SB-125	6.788E+00	8.379E+00	1.463E+01	0.000E+00	0.464
TE-129M	2.652E+01	4.341E+01	7.526E+01	0.000E+00	0.352
I-131	-5.250E+00	1.052E+01	1.755E+01	0.000E+00	-0.299
BA-133	1.080E+01	4.849E+00	7.692E+00	0.000E+00	1.404
CS-134	2.049E+01	4.305E+00	7.587E+00	0.000E+00	2.700
CS-136	-1.258E+00	5.719E+00	9.719E+00	0.000E+00	-0.129
CS-137	4.484E+00	3.065E+00	5.646E+00	0.000E+00	0.794
CE-139	-1.456E+00	3.279E+00	5.418E+00	0.000E+00	-0.269
BA-140	-1.419E+01	2.224E+01	3.642E+01	0.000E+00	-0.389
LA-140	4.241E+00	6.039E+00	1.145E+01	0.000E+00	0.370
CE-141	-5.646E+00	7.241E+00	1.192E+01	0.000E+00	-0.474
CE-144	-3.229E+01	2.476E+01	4.040E+01	0.000E+00	-0.799
EU-152	-1.894E+00	1.069E+01	1.524E+01	0.000E+00	-0.124
EU-154	2.577E+00	6.460E+00	1.092E+01	0.000E+00	0.236
TH-228	2.711E+00	7.269E+00	1.021E+01	0.000E+00	0.266
TH-232	1.411E+01 +	8.800E+00	1.662E+01	0.000E+00	0.849
U-235	-1.593E+00	2.533E+01	4.099E+01	0.000E+00	-0.039
U-238	3.093E+01	3.288E+02	5.535E+02	0.000E+00	0.056
AM-241	-9.892E+00	1.742E+01	2.834E+01	0.000E+00	-0.349

L28833 R2 / 102 of 162

					·	
A,23L28833-9	,06/09/2006	09:38,05/25/2	2006 11:15,	3.007E+00,WG	L28833-9	ΕX
B,23L28833-9 C,RA-226 ,YES,	,LIBD	,06,	/01/2006 10:14	,233L082404		
C,RA-226 ,YES,	2.487E+01,	8.917E+01,	1.216E+02,,	0.205		
C,AC-228 ,YES,	1.418E+01,	8.843E+00,	1.687E+01,,	0.840		
C,BE-7 ,NO ,	8.751E+00,					
C,K-40 ,NO ,			8.014E+01,,			
C,CR-51 ,NO ,	-2.381E+01,	3.649E+01,	6.077E+01,,	-0.392		
C,MN-54 ,NO ,	-8.655E-01,	2.929E+00,	4.941E+00,,	-0.175		
C,CO-57 ,NO ,	-6.784E-01,	3.153E+00,	5.268E+00,,	-0.129		
	-2.098E+00,			-0.420		
C.FE-59 ,NO ,	1.604E+00,	6.096E+00,	1.085E+01,,	0.148		
C,CO-60 ,NO ,	3.159E+00,	2.861E+00,	5.375E+00,,	0.588		
	1.804E+01,					
	2.082E+00,			0.282		
C,SR-85 ,NO ,	1.421E+01,	3.748E+00,	7.073E+00,,	2.009		
C,Y-88 ,NO ,						
C,NB-94 ,NO ,						
C,NB-95 ,NO ,	5.301E+00,	3.264E+00,	6.055E+00,,	0.875		
C,ZR-95 ,NO ,	-3.824E+00,	5.404E+00,	8.948E+00,,	-0.427		
C,MO-99 ,NO ,	5.920E+02,	7.934E+02,	1.429E+03,,	0.414		
C,RU-103 ,NO ,	3.525E+00,	3.689E+00,	6.480E+00,,	0.544		
	4.142E+00,					
C,AG-110m ,NO ,						
C,SN-113 ,NO ,	-1.283E+00,	4.071E+00,	6.824E+00,,	-0.188		
C,SB-124 ,NO ,	-5.914E+00,	4.129E+00,	5.444E+00,,			
	6.788E+00,					
C,TE-129M ,NO ,	2.652E+01.	4.341E+01,	7.526E+01,,			
C,I-131 ,NO ,	-5.250E+00,	1.052E+01,				
C, BA-133 , NO ,	1.080E+01,	4.849E+00,		1.404		
C,CS-134 ,NO ,	2.049E+01,	4.305E+00,		2.700		
C,CS-136 ,NO ,		5.719E+00,		-0.129		
C,CS-137 ,NO ,	4.484E+00,			0.794		
C,CE-139 ,NO ,		3.279E+00,				
	-1.419E+01,					
	4.241E+00,					
	-5.646E+00,	7.241E+00,	1.192E+01,,			
C,CE-144 ,NO ,			• •			
C,EU-152 ,NO ,	-1.894E+00,	1.069E+01,	1.524E+01,,	-0.124		
C,EU-154 ,NO ,		6.460E+00,	1.092E+01,,	0.236		
C, TH-228 , NO ,	2.711E+00,	7.269E+00,	1.021E+01,,	0.266		
C, TH-232 , NO ,	1.411E+01,	8.800E+00,	1.662E+01,,	0.849		
C,U-235 ,NO ,	-1.593E+00,	2.533E+01,	4.099E+01,,	-0.039		
C,U-238 ,NO ,	3.093E+01,	3.288E+02,	5.535E+02,,	0.056		
C,AM-241 ,NO ,	-9.892E+00,	1.742E+01,	2.834E+01,,	-0.349		
C, AN 241 , NO ,	J. UJ211+UU,		5.00 million//	0.010		

L28833 R2 / 103 of 162

Sec. Review: Analyst: LIMS:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 9-JUN-2006 12:55:40.65 TBE04 P-40312B HpGe ******* Aquisition Date/Time: 9-JUN-2006 09:27:48.87 ______ LIMS No., Customer Name, Client ID: WGL28833-10 EXELON/ZION

Sample ID	:	04L2883	3-10		Smple Date:	25-MAY-2006 14:22:00.
	:	WG			Geometry :	
Ouantity	:	3.02800	E+00 L			04BG060306MT
Start Channel	:	90	Energy Tol :	1.00000	Real Time :	0 03:27:42.58
End Channel			Pk Srch Sens:	5.00000	Live time :	0 03:27:40.47
MDA Constant	:	0.00	Library Used:	LIBD		
			_			

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	1	66.47*	76	272	1.05	133.40		6.11E-03		
2	1	139.98	69	312	1.25	280.41		5.50E-03		
3	1	185.35*	15	210	1.37	371.13	1.92E+00	1.24E-03	L84.6	8.43E-01
4	1	238.84*	11	353	3.09	478.08	1.68E+00	8.85E-043	379.9	3.64E+00
5	1	352.07*	77	130	1.98	704.51	1.28E+00	6.20E-03	34.3	1.21E+00
6	1	583.35*	23	56	1.97	1166.93	8.77E-01	1.85E-03	70.4	2.99E+00
7	1	609.39*	39	82	1.24	1219.00	8.48E-01	3.10E-03	52.4	3.12E+00
8	1	1240.89	32	48	0.55	2481.43	4.87E-01	2.60E-03	48.5	1.78E+01
9	1	1460.78*	5	37	1.86	2920.93	4.30E-01	3.73E-043	376.4	1.15E+00
10	1	1764.27*	14	14	2.66	3527.46	3.77E-01	1.13E-03	66.6	4.83E-01

Flaq: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural 2-Sigma Uncorrected Decay Corr pCi/L %Error %Abn %Eff pCi/L Nuclide Energy Area 7.259E+00 752.85 7.259E+00 10.67* 1460.81 5 4.296E-01 K-40 369.19 1.754E+01 3.28* 1.924E+00 1.754E+01 RA-226 186.21 15 1.071E+00 759.85 44.60* 1.679E+00 1.056E+00 TH-228 238.63 11 ----- Line Not Found 3.95 1.669E+00 240.98 _____ ----- Line Not Found _ _ _ _ _ _ _ 10.50* 2.041E+00 ____ 143.76 U-235 ----- Line Not Found ____ 4.70 2.007E+00 163.35 _____ 1.065E+00 369.19 1.065E+00 185.71 15 54.00 1.924E+00 ----- Line Not Found _ _ _ _ _ _ 4.70 1.833E+00 205.31 _____

Flag: "*" = Keyline

L28833 R2 / 104 of 162

Page : 2 Summary of Nuclide Activity Acquisition date : 9-JUN-2006 09:27:48 Sample ID : 04L28833-10 Total number of lines in spectrum 10 Number of unidentified lines 6 Number of lines tentatively identified by NID 4 40.00% Nuclide Type : natural Decay Corr 2-Sigma Uncorrected Decay Corr 2-Sigma Error %Error Flags pCi/L pCi/L Hlife Decay Nuclide 7.259E+00 54.65E+00 752.85 7.259E+00 1.28E+09Y K-40 1.00 369.19 6.476E+01 1.00 1.754E+01 1.754E+01 RA-226 1600.00Y 8.139E+00 759.85 1.071E+00 1.91Y 1.01 1.056E+00 TH-228 3.933E+00 369.19 K 1.00 1.065E+00 1.065E+00 U-235 7.04E+08Y _ _ _ _ _ _ _ _ _ _ _____ 2.694E+01 2.692E+01 Total Activity : Grand Total Activity : 2.692E+01 2.694E+01 "M" = Manually accepted Flags: "K" = Keyline not found "A" = Nuclide specific abn. limit "E" = Manually edited

Unidentified Energy Lines			L28833 R2 / 105 of 162 Page : 3
Sample ID : 04L28833-10			-JUN-2006 09:27:48
It Energy Area Bkgnd	FWHM Channel Le	ft Pw Cts/Sec	%Err %Eff Flags
166.47762721139.98693121352.07771301583.3523561609.39398211240.89324811764.271414	1.25 280.41 2 1.98 704.51 6 1.97 1166.93 11 1.24 1219.00 12 0.55 2481.43 24	77 9 5.50E-03	68.6 1.28E+00 **** 8.77E-01 T **** 8.48E-01 96.9 4.87E-01
Flags: "T" = Tentatively ass	sociated		
Summary of Nuclide Activity			
Total number of lines in sp Number of unidentified line Number of lines tentatively	25	10 6 2D 4 40.	00%
Nuclide Type : natural	Vtd Mean Wtd M	lean	
Un Nuclide Hlife Decay K-40 1.28E+09Y 1.00 RA-226 1600.00Y 1.00 TH-228 1.91Y 1.01	ncorrected Decay pCi/L pCi 7.259E+00 7.259 1.754E+01 1.754 1.056E+00 1.071	Corr Decay Co /L 2-Sigma E DE+00 54.65E+ LE+01 6.476E+ LE+00 8.139E+	Error %Error Flags +00 752.85 +01 369.19
Total Activity :	2.586E+01 2.585	7E+01	
Grand Total Activity :	2.586E+01 2.58'	7E+01	
Flags: "K" = Keyline not fo "E" = Manually edite	und "M" = d "A" =	Manually accept Nuclide specif	ced ic abn. limit
Interference Report			
No interference correction	performed		
Combined Activity-MDA Repor	t		
Identified Nuclides			
Activity Nuclide (pCi/L)	Act error	MDA (pCi/L)	MDA error Act/MDA
K-407.259E+00RA-2261.754E+01TH-2281.071E+00	5.465E+01 6.476E+01 8.139E+00	5.149E+01 1.089E+02 8.641E+00	0.000E+00 0.141 0.000E+00 0.161 0.000E+00 0.124
Non-Identified Nuclide	S		
Key-Line Activity K.I Nuclide (pCi/L) Ide		MDA (pCi/L)	MDA error Act/MDA

BE-7	5.338E+00	2.977E+01	4.968E+01	0.000E+00	0.107
NA-24	-3.215E+01	2.460E+01	Half-Life		
CR-51	-1.806E+01	3.493E+01	5.618E+01	0.000E+00	-0.321
MN-54	-2.094E+00	2.952E+00	4.542E+00	0.000E+00	-0.461
CO-57	2.717E-01	2.780E+00	4.667E+00	0.000E+00	0.058
CO-58	-2.840E+00	3.480E+00	5.346E+00	0.000E+00	-0.531
FE-59	8.160E+00	7.478E+00	1.328E+01	0.000E+00	0.615
CO-60	-3.920E-01	3.339E+00	5.333E+00	0.000E+00	-0.074
ZN-65	1.390E+00	6.676E+00	1.110E+01	0.000E+00	0.125
SE-75	-1.384E+00	4.050E+00	6.649E+00	0.000E+00	-0.208
SR-85	2.100E+01	4.150E+00	8.154E+00	0.000E+00	2.576
Y-88	-6.627E-01	3.370E+00	5.368E+00	0.000E+00	-0.123
NB-94	6.094E-01	2.805E+00	4.700E+00	0.000E+00	0.130
NB-95	5.277E+00	3.638E+00	6.517E+00	0.000E+00	0.810
ZR-95	-1.880E+00	6.161E+00	9.911E+00	0.000E+00	-0.190
MO-99	1.430E+02	9.674E+02	1.608E+03	0.000E+00	0.089
RU-103	1.816E+00	3.962E+00	6.688E+00	0.000E+00	0.271
RU-106	-1.039E+01	3.009E+01	4.778E+01	0.000E+00	-0.217
AG-110m	5.385E-02	3.185E+00	5.292E+00	0.000E+00	0.010
SN-113	1.753E+00	4.081E+00	6.781E+00	0.000E+00	0.258
SB-124	-9.013E+00	4.776E+00	5.474E+00	0.000E+00	-1.646
SB-125	2.002E+00	8.337E+00	1.405E+01	0.000E+00	0.143
TE-129M	6.786E+00	4.335E+01	7.244E+01	0.000E+00	0.094
I-131	9.703E+00	1.066E+01	1.816E+01	0.000E+00	0.534
BA-133	3.131E+00	4.997E+00	7.215E+00	0.000E+00	0.434
CS-134	-3.241E+00	4.368E+00	5.644E+00	0.000E+00	-0.574
CS-136	1.690E+00	6.270E+00	1.045E+01	0.000E+00	0.162
CS-137	3.152E+00	3.325E+00	5.829E+00	0.000E+00	0.541
CE-139	1.095E+00	2.864E+00	4.786E+00	0.000E+00	0.229
BA-140	-1.028E+00	2.335E+01	3.820E+01	0.000E+00	-0.027
LA-140	1.273E+00	7.631E+00	1.285E+01	0.000E+00	0.099
CE-141	3.180E+00	7.208E+00	1.045E+01	0.000E+00	0.304
CE-144	1.016E+01	2.406E+01	3.622E+01	0.000E+00	0.281
EU-152	-5.760E+00	1.154E+01	1.550E+01	0.000E+00	-0.371
EU-154	5.762E+00	5.677E+00	9.780E+00	0.000E+00	0.589
AC-228	-8.668E+00	1.231E+01	1.929E+01	0.000E+00	-0.449
TH-232	-8.625E+00	1.225E+01	1.919E+01	0.000E+00	-0.449
U-235	7.006E+00	2.426E+01	3.494E+01	0.000E+00	0.201
U-238	-1.172E+02	3.231E+02	5.162E+02	0.000E+00	-0.227
AM-241	-4.419E+01	2.932E+01	4.372E+01	0.000E+00	-1.011
and a set of the					

L28833 R2 / 107 of 162

				120055	
A,04L28833-10	,06/09/2006	12:55,05/25/2	2006 14:22,		GL28833-10 EX
B 041,28833-10	, I,TBD	,06/	′02/2006 09:04	,043L082004	
C,K-40 ,YES,	7.259E+00,	5.465E+01,	5.149E+01,,	0.141	
C,RA-226 ,YES,	1.754E+01,	6.476E+01,	1.089E+02,,	0.161	
C,TH-228 ,YES,	1.071E+00,	8.139E+00,	8.641E+00,,	0.124	
C,BE-7 ,NO ,		2.977E+01,		0.107	
C,CR-51 ,NO ,		3.493E+01,			
C, MN-54 , NO ,	-2.094E+00	2.952E+00,	4.542E+00,,	-0.461	
C, CO-57 , NO ,	2.717E-01,		4.667E+00,,	0.058	
C, CO-58 , NO ,			5.346E+00,,	-0.531	
C,FE-59 ,NO ,	8 160E+00	7.478E+00,		0.615	
C,CO-60 ,NO ,	-3.920E-01,	3 339E+00	5.333E+00,,	-0.074	
C, CO-80, NO,	-3.920E 01, 1 390E+00	6.676E+00,		0.125	
	1.3900+00,	4.050E+00,	6.649E+00		
C,SE-75 ,NO ,	2.100E+01,	4.150E+00,	8.154E+00	2.576	
C,SR-85 ,NO ,	Z.100E+01,	3.370E+00,	5 368E+00	-0.123	
C,Y-88 ,NO ,	-6.62/E-01	2.805E+00,	$4.700E\pm00$	0.130	
C,NB-94 ,NO ,	5.277E+00,	2.005E+00,	6.517E+00,,	0.810	
C,NB-95 ,NO ,	5.27/E+00,	6.161E+00,	0.011E+00,,	-0.190	
C,ZR-95 ,NO ,	-1.880E+00,	9.674E+02,	1.608E+03,	0.089	
C,MO-99 ,NO ,	1.430E+02,	9.674E+02,	6.688E+00,,	0.271	
C,RU-103 ,NO ,	1.816E+00,	3.962E+00,	4.778E+01,,		
C,RU-106 ,NO ,	-1.039E+01,				
C,AG-110m ,NO ,	5.385E-02,	3.185E+00,	5.292E+00,,		
	1.753E+00,	4.081E+00,	6.781E+00,,		
C,SB-124 ,NO ,	-9.013E+00,	4.776E+00,			
C,SB-125 ,NO ,	2.002E+00,	8.337E+00,			
C,TE-129M ,NO ,	6.786E+00,	4.335E+01,			
	9.703E+00,	1.066E+01,			
C,BA-133 ,NO ,	3.131E+00,	4.997E+00,	7.215E+00,,	0.434	
C,CS-134 ,NO ,	-3.241E+00,	4.368E+00,	5.644E+00,,		
C,CS-136 ,NO ,		6.270E+00,	1.045E+01,,	0.162	
C,CS-137 ,NO ,	3.152E+00,	3.325E+00,	5.829E+00,,		
C,CE-139 ,NO ,	1.095E+00,	2.864E+00,			
C,BA-140 ,NO ,		2.335E+01,			
C,LA-140 ,NO ,			1.285E+01,,		
C,CE-141 ,NO ,	3.180E+00,	7.208E+00,	1.045E+01,,	0.304	
C,CE-144 ,NO ,		2.406E+01,			
C,EU-152 ,NO ,	-5.760E+00,	1.154E+01,	1.550E+01,,	-0.371	
C,EU-154 ,NO ,	5.762E+00,	5.677E+00,	9.780E+00,,	0.589	
C,AC-228 ,NO ,	-8.668E+00,	1.231E+01,	1.929E+01,,	-0.449	
C,TH-232 ,NO ,	-8.625E+00,	1.225E+01,	1.919E+01,,	-0.449	
C,U-235 ,NO ,	7.006E+00,	2.426E+01,	3.494E+01,,	0.201	
C,U-238 ,NO ,	-1.172E+02,	3.231E+02,	5.162E+02,,	-0.227	
C,AM-241 ,NO ,	-4.419E+01,	2.932E+01,	4.372E+01,,	-1.011	

L28833 R2 / 108 of 162

Sec. Review: Analyst: LIMS:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 9-JUN-2006 12:47:32.16 TBE07 P-10768B HpGe ******** Aquisition Date/Time: 9-JUN-2006 09:27:51.53 LIMS No., Customer Name, Client ID: WG L28833-11 EXELON/ZION

Sample Sample Quantit Start C End Cha MDA Con	Type : W y : 3 hannel : 4 nnel : 4	.00130E+00 ] 0 Energ 090 Pk S:	gy Tol rch Se	l : 1.00000 ens: 5.00000 sed: LIBD	Geometry BKGFILE	: 073L082 : 07BG060 : 0 03:19	0306MT 9:32.53	
Pk It	Energy	Area B	kgnd	FWHM Channel	%Eff	Cts/Sec	%Err Fit	
1 1	66.45*	85	335	1.04 133.48			40.6 5.34E-01	
2 1	140.25*	76	284	1.27 281.19			43.1 1.64E+00	
31	198.41*	98	243	1.78 397.59			34.2 1.69E+00	
4 1	596.05	44	144	1.89 1193.28			60.7 1.16E+00	
51	1461.29*	61	27	2.48 2923.57	5.83E-01	5.08E-03	30.2 5.36E-01	

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide	Type: natural				Uncorrected	Decav Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pCi/L	%Error
K-40	1460.81	61	10.67*	5.826E-01	7.365E+01	7.365E+01	60.38

Flag: "*" = Keyline

L28833 R2 / 109 of 162

Summary of Nuclide Activity Sample ID : 07L28833-11	Page : 2 Acquisition date : 9-JUN-2006 09:27:51						
Total number of lines in spectrum 5 Number of unidentified lines 4 Number of lines tentatively identified by NID 1 20.00%							
Nuclide Type : natural							
Uncorrected Nuclide Hlife Decay pCi/L K-40 1.28E+09Y 1.00 7.365E+01	Decay Corr Decay Corr 2-Sigma pCi/L 2-Sigma Error %Error Flags 7.365E+01 4.447E+01 60.38						
Total Activity : 7.365E+01	7.365E+01						
Grand Total Activity : 7.365E+01	7.365E+01						
Flags: "K" = Keyline not found "E" = Manually edited	"M" = Manually accepted "A" = Nuclide specific abn. limit						

				L28833 R2 /	110 of 162
Unidentified Sample ID : 0		Acqu	isition date :		e: 3 :27:51
It Energy	Area Bkgnd	FWHM Channel I	left Pw Cts/Sec	c %Err %Eff	Flags
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	98 243	1.04 133.48 1.27 281.19 1.78 397.59 1.89 1193.28 1	277 8 6.32E-03 393 10 8.17E-03		-00 -00
Flags: "T" =	Tentatively ass	ociated			
Summary of Nu	clide Activity				
Number of un	of lines in sp identified line nes tentatively		5 4 NID 1 2	0.00%	
Nuclide Type Nuclide H K-40 1.28B	W Ur Ilife Decay E+09Y 1.00 7	corrected Deca pCi/L p .365E+01 7.3	Ci/L 2-Sigma	Corr 2-Sigma Error %Erro E+01 60.38	
Tota	al Activity : 7		65E+01		
Grand Tota	al Activity : 7	7.365E+01 7.3	65E+01		
	Keyline not fou Manually edited		= Manually acce = Nuclide speci		2
Interference	Report				
No interferer	nce correction p	performed			
Combined Act:	ivity-MDA Report				
Identif:	ied Nuclides				
Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
K-40	7.365E+01	4.447E+01	4.745E+01	0.000E+00	1.552
Non-Ide	ntified Nuclide:	5			
Nuclide	Key-Line Activity K.L (pCi/L) Ideo		MDA (pCi/L)	MDA error	Act/MDA
BE-7 NA-24 CR-51 MN-54 CO-57 CO-58 FE-59	2.391E+01 -5.289E+00 -2.746E+01 -6.901E-01 2.065E-02 -6.447E-01 -1.722E+00	2.694E+01 8.221E+00 3.154E+01 2.790E+00 2.775E+00 3.211E+00 6.367E+00	4.583E+01 Half-Life too 5.073E+01 4.538E+00 4.537E+00 5.252E+00 1.034E+01	0.000E+00 b short 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.522 -0.541 -0.152 0.005 -0.123 -0.166

				L28833 R2 /	/ 111 of 162
CO-60	-2.860E+00	2.757E+00	4.057E+00	0.000E+00	-0.705
ZN-65	3.236E-01	6.001E+00	9.968E+00	0.000E+00	0.032
SE-75	-1.683E+00	3.864E+00	6.206E+00	0.000E+00	-0.271
SR-85	2.531E+01	3.864E+00	7.778E+00	0.000E+00	3.254
Y-88	1.674E+00	3.029E+00	5.302E+00	0.000E+00	0.316
NB-94	2.107E+00	2.894E+00	4.907E+00	0.000E+00	0.429
NB-95	7.277E-01	3.074E+00	5.180E+00	0.000E+00	0.140
ZR-95	-1.325E+00	5.708E+00	9.133E+00	0.000E+00	-0.145
MO-99	-1.262E+02	6.841E+02	1.099E+03	0.000E+00	-0.115
RU-103	1.256E+00	3.571E+00	5.902E+00	0.000E+00	0.213
RU-106	-9.470E+00	2.725E+01	4.397E+01	0.000E+00	-0.215
AG-110m	1.101E-01	2.753E+00	4.522E+00	0.000E+00	0.024
SN-113	1.026E-01	3.693E+00	6.090E+00	0.000E+00	0.017
SB-124	-1.534E+01	4.722E+00	5.043E+00	0.000E+00	-3.042
SB-125	4.035E+00	7.904E+00	1.326E+01	0.000E+00	0.304
TE-129M	9.987E-01	4.021E+01	6.569E+01	0.000E+00	0.015
I-131	-1.547E+00	8.910E+00	1.462E+01	0.000E+00	-0.106
BA-133	4.223E+00	3.775E+00	6.528E+00	0.000E+00	0.647
CS-134	-1.129E-01	3.674E+00	5.093E+00	0.000E+00	-0.022
CS-136	-1.693E+00	5.562E+00	9.024E+00	0.000E+00	-0.188
CS-137	6.152E-01	2.948E+00	4.890E+00	0.000E+00	0.126
CE-139	-8.620E-01	2.723E+00	4.501E+00	0.000E+00	-0.191
BA-140	-5.109E-01	1.986E+01	3.292E+01	0.000E+00	-0.016
LA-140	-3.317E+00	6.676E+00	1.046E+01	0.000E+00	-0.317
CE-141	4.992E+00	7.032E+00	1.001E+01	0.000E+00	0.499
CE-144	-6.107E+00	2.459E+01	3.367E+01	0.000E+00	-0.181
EU-152	-1.603E+01	8.807E+00	1.355E+01	0.000E+00	-1.183
EU-154	-3.081E+00	5.651E+00	9.081E+00	0.000E+00	-0.339
RA-226	1.762E+00	7.093E+01	1.180E+02	0.000E+00	0.015
AC-228	7.111E+00	1.120E+01	1.892E+01	0.000E+00	0.376
TH-228	6.525E+00	5.184E+00	8.895E+00	0.000E+00	0.733
TH-232	7.078E+00	1.115E+01	1.883E+01	0.000E+00	0.376
U-235	1.246E+01	2.495E+01	3.519E+01	0.000E+00	0.354
U-238	5.128E+02	3.057E+02	5.560E+02	0.000E+00	0.922
AM-241	-2.700E+01	2.717E+01	4.012E+01	0.000E+00	-0.673

L28833 R2 / 112 of 162  $\,$ 

A,07L28833-11	,06/09/2006	12:47,05/26/2	006 09:53,	3.001E+00,WG	5 L28833-11 E
B,07L28833-11	,LIBD	,06/	07/2006 09:32	2,073L082504	
C,K-40 ,YES,	7.365E+01,	4.447E+01,	4.745E+01,,	1.552	
C, BE-7 , NO ,	2.391E+01,	2.694E+01,	4.583E+01,,	0.522	
C,CR-51 ,NO ,	-2.746E+01,	3.154E+01,	5.073E+01,,	-0.541	
C,MN-54 ,NO ,	-6.901E-01,	2.790E+00,		-0.152	
C,CO-57 ,NO ,	2.065E-02,	2.775E+00,		0.005	
C, CO-58 , NO ,	-6.447E-01,	3.211E+00,	5.252E+00,,	-0.123	
C,FE-59 ,NO ,	-1.722E+00,	6.367E+00,	1.034E+01,,	-0.166	
C,CO-60 ,NO ,	-2.860E+00,	2.757E+00,	4.057E+00,,	-0.705	
C,ZN-65 ,NO ,	3.236E-01,	6.001E+00,	9.968E+00,,	0.032	
C,SE-75 ,NO ,	-1.683E+00,	3.864E+00,	6.206E+00,,	-0.271	
C,SR-85 ,NO ,	2.531E+01,	3.864E+00,	7.778E+00,,	3.254	
C,Y-88 ,NO ,	1.674E+00,	3.029E+00,	5.302E+00,,	0.316	
C,NB-94 ,NO ,	2.107E+00,	2.894E+00,	4.907E+00,,	0.429	
C,NB-95 ,NO ,	7.277E-01,	3.074E+00,	5.180E+00,,	0.140	
C,ZR-95 ,NO ,	-1.325E+00,	5.708E+00,	9.133E+00,,	-0.145	
C,MO-99 ,NO ,	-1.262E+02,	6.841E+02,	1.099E+03,,	-0.115	
C,RU-103 ,NO ,	1.256E+00,	3.571E+00,	5.902E+00,,	0.213	
C,RU-106 ,NO ,	-9.470E+00,	2.725E+01,	4.397E+01,,	-0.215	
C,AG-110m ,NO ,	1.101E-01,	2.753E+00,	4.522E+00,,	0.024	
C, SN-113 , NO ,	1.026E-01,	3.693E+00,	6.090E+00,,	0.017	
C,SB-124 ,NO ,	-1.534E+01,	4.722E+00,	5.043E+00,,	-3.042	
C,SB-125 ,NO ,	4.035E+00,	7.904E+00,	1.326E+01,,	0.304	
C,TE-129M ,NO ,	9.987E-01,	4.021E+01,	6.569E+01,,	0.015	
C,I-131 ,NO ,	-1.547E+00,	8.910E+00,	1.462E+01,,		
C, BA-133 , NO ,	4.223E+00,	3.775E+00,	6.528E+00,,	0.647	
C,CS-134 ,NO ,	-1.129E-01,	3.674E+00,	5.093E+00,,		
C,CS-136 ,NO ,	-1.693E+00,	5.562E+00,	9.024E+00,,		
C,CS-137 ,NO ,	6.152E-01,	2.948E+00,	4.890E+00,,		
C,CE-139 ,NO ,	-8.620E-01,	2.723E+00,	4.501E+00,,		
C, BA-140 , NO ,	-5.109E-01,	1.986E+01,	3.292E+01,,		
C,LA-140 ,NO ,	-3.317E+00,	6.676E+00,	1.046E+01,,		
C,CE-141 ,NO ,	4.992E+00,	7.032E+00,	1.001E+01,,		
C,CE-144 ,NO ,	-6.107E+00,	2.459E+01,	3.367E+01,,		
C,EU-152 ,NO ,	-1.603E+01,	8.807E+00,	1.355E+01,,		
C,EU-154 ,NO ,	-3.081E+00,	5.651E+00,	9.081E+00,,		
C,RA-226 ,NO ,	1.762E+00,	7.093E+01,	1.180E+02,,		
C, AC-228 , NO ,	`7.111E+00,	1.120E+01,	1.892E+01,,		
C, TH-228 , NO ,	6.525E+00,	5.184E+00,	8.895E+00,,		
C,TH-232 ,NO ,	7.078E+00,	1.115E+01,	1.883E+01,,		
C,U-235 ,NO ,	1.246E+01,	2.495E+01,	3.519E+01,,		
C,U-238 ,NO ,	5.128E+02,	3.057E+02,	5.560E+02,,		
C,AM-241 ,NO ,	-2.700E+01,	2.717E+01,	4.012E+01,,		
C/mi 211 /10 /	2.,002,01/		······································		

L28833 R2 / 113 of 162

Sec. Review: Analyst: LIMS: ____ VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 9-JUN-2006 13:48:59.47 TBE11 P-20610B HpGe ******** Aquisition Date/Time: 9-JUN-2006 09:30:42.78 LIMS No., Customer Name, Client ID: WG L28833-12 EXELON/ZION Smple Date: 26-MAY-2006 12:30:00. : 11L28833-12 Sample ID Geometry : 113L082304 Sample Type : WG BKGFILE : 11BG060306MT : 3.05700E+00 L Quantity Start Channel : 40Energy Tol : 1.00000Real Time : 0 04:18:06.26End Channel : 4090Pk Srch Sens: 5.00000Live time : 0 04:18:00.76MDA Constant : 0.00Library Used: LIBD Fit %Eff Cts/Sec %Err Area Bkqnd FWHM Channel Pk It Energy 131.20 6.79E-01 1.34E-02 26.9 1.94 208 889 0 66.10 1 327 0.90 278.61 1.90E+00 6.43E-03 35.7 100 139.59* 2 0 1.80E+00 2.05E-03116.2 1.49 371.06 32 327 3 0 185.69* 444 0.93 397.37 1.75E+00 9.29E-03 30.6 144 56 4 0 198.81 1442.32 703.61 1.20E+00 3.62E-03 56.5 0 351.58* 193 5 92 1.48 1192.90 8.04E-01 5.77E-03 24.2 89 6 0 595.83 14 65 59 110 1.20 1220.09 7.90E-01 9.12E-04159.1 7 0 609.42* 75 6.44 1827.03 5.74E-01 4.23E-03 35.5 0 912.72 8 1.61 2921.31 3.92E-01 3.83E-03 26.2 9 0 1460.40* 12

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

MUCTIUC	TYPO: Madal				Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pCi/L	%Error
K-40	1460.81	59	10.67*	3.920E-01	8.103E+01	8.103E+01	52.39
RA-226	186.21	32	3.28*	1.799E+00		3.071E+01	232.32
U-235	143.76		10.50*	1.906E+00		ne Not Found	
	163.35		4.70	1.876E+00	Li:	ne Not Found	
	185.71	32	54.00	1.799E+00		1.865E+00	232.32
	205.31		4.70	1.718E+00	Li:	ne Not Found	

Flag: "*" = Keyline

Nuclide Type: natural

L28833 R2 / 114 of 162

Summary of Nuclide Activity Sample ID : 11L28833-12	Page : 2 Acquisition date : 9-JUN-2006 09:30:42
Total number of lines in spectrum Number of unidentified lines Number of lines tentatively identified	9 7 9 by NID 2 22.22%
Nuclide Type : natural	
Nuclide Hlife Decay pCi/L	8.103E+01 4.245E+01 52.39 3.071E+01 7.134E+01 232.32
Total Activity : 1.136E+02	1.136E+02
Grand Total Activity : 1.136E+02	1.136E+02
Flags: "K" = Keyline not found "E" = Manually edited	"M" = Manually accepted "A" = Nuclide specific abn. limit

Page : 3 Unidentified Energy Lines Acquisition date : 9-JUN-2006 09:30:42 Sample ID : 11L28833-12 %Eff Flaqs Channel Left Pw Cts/Sec %Err Bkqnd FWHM Ιt Energy Area 6.79E-01 9 1.34E-02 53.7 66.10 208 889 1.94 131.20 128 0 0.90 278.61 275 8 6.43E-03 71.4 1.90E+00 327 139.59 100 0 1.75E+00 397.37 391 12 9.29E-03 61.2 0.93 144 4440 198.81 698 12 3.62E-03 **** 1.20E+00 2.32 703.61 193 0 351.58 56 1192.90 1188 13 5.77E-03 48.4 8.04E-01 89 92 1.48 0 595.83 7.90E-01 1220.09 1213 10 9.12E-04 **** 1.20 0 609.42 14 110 1827.03 1817 20 4.23E-03 71.0 5.74E-01 75 6.44 912.72 65 0 Flags: "T" = Tentatively associated Summary of Nuclide Activity 9 Total number of lines in spectrum 7 Number of unidentified lines 2 22.22% Number of lines tentatively identified by NID Nuclide Type : natural Wtd Mean Wtd Mean 2-Sigma Uncorrected Decay Corr Decay Corr 2-Sigma Error %Error Flags pCi/L pCi/L Nuclide Hlife Decay 52.39 4.245E+01 1.00 8.103E+01 8.103E+01 1.28E+09Y K-40 232.32 3.071E+01 7.134E+01 3.071E+01 RA-226 1600.00Y 1.00 _____ ____ 1.117E+02 1.117E+02 Total Activity : 1.117E+02 Grand Total Activity : 1.117E+02 "M" = Manually accepted Flags: "K" = Keyline not found "A" = Nuclide specific abn. limit "E" = Manually edited Interference Report No interference correction performed Combined Activity-MDA Report ---- Identified Nuclides ----MDA error Act/MDA MDA Activity Act error (pCi/L)Nuclide (pCi/L)1.680 4.823E+01 0.000E+00 8.103E+01 4.245E+01 K-40 1.144E+02 0.000E+00 0.268 3.071E+01 7.134E+01 RA-226 ---- Non-Identified Nuclides ----Key-Line Act/MDA MDA error MDA K.L. Act error Activity (pCi/L)Nuclide (pCi/L)Ided -0.1204.789E+01 0.000E+00 -5.739E+00 2.962E+01 BE-7Half-Life too short 8.495E+00 -1.203E+00 NA-24

				L28833 R2 /	116 of 162
	-1.409E+01	3.490E+01	5.690E+01	0.000E+00	-0.248
CR-51 MN-54	-9.446E-01	2.846E+00	4.554E+00	0.000E+00	-0.207
MN - 54 CO - 57	1.270E+00	3.013E+00	5.019E+00	0.000E+00	0.253
CO-58	-1.527E+00	3.352E+00	5.337E+00	0.000E+00	-0.286
FE-59	6.492E-01	6.470E+00	1.079E+01	0.000E+00	0.060
CO-60	-1.722E-01	2.859E+00	4.661E+00	0.000E+00	-0.037
ZN-65	6.905E+00	6.458E+00	1.148E+01	0.000E+00	0.601
SE-75	-3.001E+00	4.251E+00	6.915E+00	0.000E+00	-0.434
SR-85	2.117E+01	4.052E+00	7.797E+00	0.000E+00	2.715
Y-88	1.295E+00	3.547E+00	6.066E+00	0.000E+00	0.213
NB-94	-1.518E+00	2.900E+00	4.646E+00	0.000E+00	-0.327
NB-94 NB-95	3.088E+00	3.168E+00	5.522E+00	0.000E+00	0.559
ZR-95	-1.698E+00	5.880E+00	9.498E+00	0.000E+00	-0.179
MO-99	-6.682E+01	7.302E+02	1.195E+03	0.000E+00	-0.056
RU-103	4.214E+00	3.838E+00	6.574E+00	0.000E+00	0.641
RU-106	9.194E+00	2.686E+01	4.537E+01	0.000E+00	0.203
AG-110m	2.330E+00	3.001E+00	5.172E+00	0.000E+00	0.450
SN-113	-7.286E-01	4.144E+00	6.760E+00	0.000E+00	-0.108
SB-124	-2.680E+00	8.279E+00	5.514E+00	0.000E+00	-0.486
SB-125	1.366E+00	8.657E+00	1.428E+01	0.000E+00	0.096
TE-129M	4.792E+00	4.277E+01	7.026E+01	0.000E+00	0.068
I-131	4.199E+00	9.769E+00	1.637E+01	0.000E+00	0.256
BA-133	4.690E+00	4.787E+00	7.055E+00	0.000E+00	0.665
CS-134	2.879E+00	6.971E+00	5.381E+00	0.000E+00	0.535
CS-136	2.607E+00	5.862E+00	9.886E+00	0.000E+00	0.264
CS-137	5.953E-01	3.190E+00	5.330E+00	0.000E+00	0.112
CE-139	-2.153E+00	3.055E+00	4.903E+00	0.000E+00	-0.439
BA-140	3.121E+00	2.160E+01	3.536E+01	0.000E+00	0.088
LA-140	-5.596E+00	7.459E+00	1.151E+01	0.000E+00	-0.486
CE-141	2.630E-01	7.478E+00	1.043E+01	0.000E+00	0.025
CE-144	2.527E+00	2.669E+01	3.740E+01	0.000E+00	0.068
EU-152	-1.072E+01	1.160E+01	1.537E+01	0.000E+00	-0.697
EU-154	1.576E+00	6.177E+00	1.024E+01	0.000E+00	0.154
AC-228	-2.608E+00	1.504E+01	2.007E+01	0.000E+00	-0.130
TH-228	8.145E+00	6.160E+00	9.946E+00	0.000E+00	0.819
TH-232	-2.596E+00	1.497E+01	1.997E+01	0.000E+00	-0.130
U-235	1.814E+01	2.582E+01	3.696E+01	0.000E+00	0.491
U-238	-2.199E+02	3.184E+02	5.032E+02	0.000E+00	-0.437
AM-241	1.311E+01	4.562E+01	6.308E+01	0.000E+00	0.208

L28833 R2 / 117 of 162

					···· · · · · · · · · · · · · · · · · ·
A,11L28833-12	,06/09/2006	13:49,05/26/2	2006 12:30,	3.057E+00,WG	L28833-12 E
B,11L28833-12	,LIBD	,06/	07/2006 09:4	D,113L082304	
C,K-40 ,YES,	8.103E+01,	4.245E+01,	4.823E+01,,	1.680	
C,RA-226 ,YES,	3.071E+01,		1.144E+02,,	0.268	
C, BE-7 , NO ,	-5.739E+00,	2.962E+01,	4.789E+01,,	-0.120	
C, CR-51 , NO ,	-1.409E+01,	3.490E+01,		-0.248	
C, MN-54 , NO ,	-9.446E-01,	2.846E+00,		-0.207	
C, CO-57 , NO ,	1.270E+00,	3.013E+00,	5.019E+00,,	0.253	
C, CO-58 , NO ,	-1.527E+00,	3.352E+00,	5.337E+00,,	-0.286	
C,FE-59 ,NO ,	6.492E-01,	6.470E+00,	1.079E+01,,	0.060	
C,CO-60 ,NO ,	-1.722E-01,	2.859E+00,	4.661E+00,,	-0.037	
C,ZN-65 ,NO ,	6.905E+00,	6.458E+00,	1.148E+01,,	0.601	
C,SE-75 ,NO ,	-3.001E+00,	4.251E+00,	6.915E+00,,	-0.434	
C,SR-85 ,NO ,	2.117E+01,	4.052E+00,	7.797E+00,,	2.715	
•	1.295E+00,	3.547E+00,	6.066E+00,,	0.213	
•	-1.518E+00,	2.900E+00,	4.646E+00,,		
C,NB-94 ,NO ,	3.088E+00,	3.168E+00,	5.522E+00,,	0.559	
C,NB-95,NO,	-1.698E+00,	5.880E+00,	9.498E+00,,		
C,ZR-95 ,NO ,	-6.682E+01,	7.302E+02,	1.195E+03,,		
C,MO-99 ,NO ,	4.214E+00,	3.838E+00,	6.574E+00,,		
C,RU-103 ,NO ,	9.194E+00,	2.686E+01,	4.537E+01,,		
C,RU-106 ,NO ,	2.330E+00,	3.001E+00,	5.172E+00,,		
C,AG-110m ,NO , C,SN-113 ,NO ,	-7.286E-01,	4.144E+00,	6.760E+00,,		
-	-2.680E+00,	8.279E+00,	5.514E+00,,		
C,SB-124 ,NO ,	1.366E+00,	8.657E+00,	1.428E+01,,		
C,SB-125 ,NO ,	4.792E+00,	4.277E+01,	7.026E+01,,		
C,TE-129M ,NO ,	4.199E+00,	9.769E+00,	1.637E+01,,	-	
C,I-131 ,NO , C,BA-133 ,NO ,	4.690E+00,	4.787E+00,	7.055E+00,,		
· · · ·	2.879E+00,	6.971E+00,	5.381E+00,,		
•	2.607E+00,	5.862E+00,	9.886E+00,,		
C,CS-136 ,NO ,		3.190E+00,	5.330E+00,,		
C,CS-137 ,NO ,		3.055E+00,	4.903E+00,,		
C,CE-139 ,NO ,		2.160E+01,	3.536E+01,,		
C,BA-140 ,NO ,		7.459E+00,	1.151E+01,,		
C,LA-140 ,NO ,		7.478E+00,	1.043E+01,,		
C,CE-141 ,NO ,	2.527E+00,	2.669E+01,	3.740E+01,		
C,CE-144 ,NO ,	-1.072E+01,	1.160E+01,	1.537E+01,,		
C,EU-152 ,NO ,	1.576E+00,	6.177E+00,	1.024E+01,,		
C,EU-154 ,NO ,		1.504E+01,	2.007E+01,		
C,AC-228 ,NO ,		6.160E+00,	9.946E+00,		
C,TH-228 ,NO ,		1.497E+01,	1.997E+01,		
C,TH-232 ,NO , C,U-235 ,NO ,		2.582E+01,	3.696E+01,		
		3.184E+02,	5.032E+02,		
C,U-238 ,NO , C,AM-241 ,NO ,		4.562E+01,	6.308E+01,		
$C, M^{-2+1}, M^{-}$	T. OTTUTOT/	1.00001011	0.0000.017		

L28833 R2 / 118 of 162

Sec. Review: Analyst: LIMS: ____

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 9-JUN-2006 12:59:03.54 TBE13 P-10727B HpGe ******** Aquisition Date/Time: 9-JUN-2006 09:47:29.06 LIMS No., Customer Name, Client ID: WG L28833-13 EXZELON/ZION

Sample ID	:	13L2883	3-13		<b>L</b>	26-MAY-2006 11:02:00.
Sample Type	:	WG			Geometry :	133L082404
Quantity	:	3.00250	E+00 L			13BG060306MT
Start Channel	:	25	Energy Tol :			
End Channel	:	4090	Pk Srch Sens:		Live time :	0 03:11:23.47
MDA Constant	:	0.00	Library Used:	LIBD		

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	6	45.32	105	223	1.54	90.78	1.34E-01	9.16E-03	26.1	1.90E+00
2	6	46.47*	56	267	1.44	93.06	1.58E-01	4.89E-03		
3	1	65.22	139	719	3.53	130.55	7.84E-01	1.21E-02	42.1	4.46E+00
4	1	92.94*	49	490	1.72	185.94	1.74E+00	4.26E-03	101.2	2.54E+00
5	1	139.86*	90	300	1.61	279.73	2.27E+00	7.81E-03	37.4	1.53E+00
6	1	143.49*	65	248	1.35	286.99	2.28E+00	5.70E-03	45.0	1.56E+00
7	1	185.54*	17	262	1.34	371.05	2.18E+00	1.49E-03	202.4	4.45E+00
8	1	198.42*	50	281	1.10	396.78	2.12E+00			
9	1	294.83*	20	179	1.66	589.53	1.70E+00	1.76E-03	131.0	1.62E+00
10	1	351.73*	29	149	1.19	703.31	1.51E+00	2.50E-03		
11	1	595.98	71	76	1.65	1191.83	1.02E+00	6.16E-03	27.3	1.81E+00
12	1	609.26*	37	111	1.45	1218.39	1.01E+00			
13	1	912.49*	19	46	3.86	1825.17	7.35E-01	1.66E-03	95.9	1.79E+00
14	1	1764.44*	11	24	3.33	3531.69	4.55E-01	9.57E-04	106.5	2.07E+00
15	1	1858.05	13	7	1.67	3719.35	4.42E-01	1.16E-03	43.1	2.43E-01

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide	Type: natura	al					
	<i>1 1</i>				Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pĊi/L	%Error
RA-226	186.21	17	3.28*	2.180E+00	1.873E+01	1.873E+01	404.80
U-235	143.76	65	10.50*	2.277E+00	2.147E+01	2.147E+01	90.06
	163.35		4.70	2.256E+00	Liì	ne Not Found	
	185.71	17	54.00	2.180E+00	1.138E+00	1.138E+00	404.80
	205.31		4.70	2.093E+00	Lin	ne Not Found	

Flag: "*" = Keyline

L28833 R2 / 119 of 162

Summary of Nuclide Activity Sample ID : 13L28833-13	Page : 2 Acquisition date : 9-JUN-2006 09:47:29
Total number of lines in spectrum Number of unidentified lines Number of lines tentatively identified	15 13 15 by NID 2 13.33%
Nuclide Type : natural	
Uncorrected Nuclide Hlife Decay pCi/L RA-226 1600.00Y 1.00 1.873E+01 U-235 7.04E+08Y 1.00 2.147E+01	1.873E+01 7.582E+01 404.80
Total Activity : 4.020E+01	4.020E+01
Grand Total Activity : 4.020E+01	4.020E+01
Flags: "K" = Keyline not found "E" = Manually edited	"M" = Manually accepted "A" = Nuclide specific abn. limit

L28833 R2 / 120 of 162

	Page : 3 Sample ID : 13L28833-13 Acquisition date : 9-JUN-2006 09:47:29										
It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
6 1 1 1 1 1 1 1 1	65.22	20 29 71 37	267 719 490 300 281 179	1.44 3.53 1.72 1.61 1.10 1.66 1.19 1.65 1.45 3.86 3.33	93.06 130.55 185.94 279.73 396.78 589.53 703.31 1191.83 1218.39 1825.17 3531.69	87 123 179 276 392 585 699 1184 1213 1819 3527	13 14 12 8 9 9 9 12 14 14 12	9.16E-03 4.89E-03 1.21E-02 4.26E-03 7.81E-03 4.39E-03 1.76E-03 2.50E-03 6.16E-03 3.21E-03 1.66E-03 9.57E-04 1.16E-03	**** 84.3 **** 74.8 **** **** 54.6 **** **** ****	1.34E-0 1.58E-0 7.84E-0 1.74E+0 2.27E+0 2.12E+0 1.70E+0 1.51E+0 1.02E+0 1.01E+0 4.55E-0 4.42E-0	)1 )1 )0 )0 )0 )0 )0 )0 )0 )0 )0 )1 )1
Flags: "T" = Tentatively associated Summary of Nuclide Activity											
Nu	tal number mber of un mber of li	identif:	ied line	s		7 NID	13		.33%		
Nuc	Nuclide Type : natural Wtd Mean Wtd Mean Uncorrected Decay Corr Decay Corr 2-Sigma Uncorrected Decay Corr 2-Sigma Uncorrected Decay Corr 2-Sigma 2-Sigma Error Flags 2.229E+00 2.229E+00 4.480E+00 200.97										
	Tota	al Activ	ity : 2	2.229E-	+00 2	.229E+	00				
	Grand Total Activity : 2.229E+00 2.229E+00										
Fla	.gs: "K" = "E" =	Keyline Manuall						lly accep de specif		n. limit	
Int	erference	Report									
	Τı	nterferi	na		Inte	rfered	1				

Interie	ering	THEFTER					
Nuclide	Line	Nuclide	Line				
U-235	185.71	RA-226	186.21				

Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
U-235	2.229E+00	4.480E+00	4.044E+01	0.000E+00	0.055
Non-Ide	ntified Nuclide	28			

Nuclide		K.L. Ided	Act error	MDA (pCi/L)	MDA error	Act/MDA
BE-7	-1.170E+01		3.072E+01	4.967E+01	0.000E+00	-0.236
NA-24	-1.177E+01		9.457E+00	Half-Life too		
K-40	6.527E+00		4.764E+01	8.936E+01	0.000E+00	0.073
CR-51	-2.134E-01		3.640E+01	5.979E+01	0.000E+00	-0.004
MN-54	-8.724E-02		3.421E+00	5.673E+00	0.000E+00	-0.015
CO-57	-2.539E+00		3.143E+00	4.963E+00	0.000E+00	-0.512
CO-58	-1.345E+00		3.368E+00	5.330E+00	0.000E+00	-0.252
FE-59	4.248E+00		7.573E+00	1.305E+01	0.000E+00	0.326
CO-60	3.653E+00		3.574E+00	6.316E+00	0.000E+00	0.578
ZN-65	2.541E+00		7.228E+00	1.227E+01	0.000E+00	0.207
SE-75	-1.866E+00		4.547E+00	7.448E+00	0.000E+00	-0.251
SR-85	2.492E+01		4.356E+00	8.529E+00	0.000E+00	2.921
Y-88	-1.440E+00		3.796E+00	6.028E+00	0.000E+00	-0.239
NB-94	2.759E+00		3.165E+00	5.449E+00	0.000E+00	0.506
NB-95	3.515E+00		3.440E+00	5.983E+00	0.000E+00	0.588
ZR-95	-4.174E+00		6.282E+00	9.840E+00	0.000E+00	-0.424
MO-99	3.025E+02		8.078E+02	1.354E+03	0.000E+00	0.223
RU-103	4.902E-01		3.962E+00	6.549E+00	0.000E+00	0.075
RU-106	1.758E+00		3.120E+01	4.854E+01	0.000E+00	0.036
AG-110m	7.522E-01		3.323E+00	5.557E+00	0.000E+00	0.135
SN-113	-7.701E-02		4.574E+00	7.423E+00	0.000E+00	-0.010
SB-124	8.011E-01		8.457E+00	5.915E+00	0.000E+00	0.135
SB-125	-4.107E+00		9.070E+00	1.474E+01	0.000E+00	-0.279
TE-129M	-5.604E+01		4.452E+01	6.891E+01	0.000E+00	-0.813
I-131	-9.078E-02		1.082E+01	1.763E+01	0.000E+00	-0.005
BA-133	5.831E+00		5.156E+00	7.591E+00	0.000E+00	0.768
CS-134	3.583E+00		6.162E+00	6.161E+00	0.000E+00	0.582
CS-136	-4.968E+00		6.133E+00	9.397E+00	0.000E+00	-0.529
CS-137	7.409E-01		3.644E+00	5.947E+00	0.000E+00	0.125
CE-139	4.468E+00		3.150E+00	5.409E+00	0.000E+00	0.826
BA-140	1.048E+01		2.294E+01	3.842E+01	0.000E+00	0.273
LA-140	-2.504E+00		7.728E+00	1.230E+01	0.000E+00	-0.204
CE-141	5.780E+00		8.122E+00	1.180E+01	0.000E+00	0.490
CE-144	-2.552E+00		2.781E+01	3.934E+01	0.000E+00	-0.065
EU-152	-6.701E+00		1.243E+01	1.663E+01	0.000E+00	-0.403
EU-154	-6.816E+00		6.335E+00	9.913E+00	0.000E+00	-0.688
RA-226	1.873E+01		7.582E+01	1.380E+02	0.000E+00	0.136
AC-228	-2.769E+00		1.315E+01	2.099E+01	0.000E+00	-0.132
TH-228	4.266E+00		6.471E+00	1.069E+01	0.000E+00	0.399
TH-232	-2.757E+00		1.309E+01	2.089E+01	0.000E+00	-0.132
U-238	1.774E+02		3.776E+02	6.237E+02	0.000E+00	0.285
AM-241	4.589E+01		3.024E+01	4.573E+01	0.000E+00	1.004

L28833 R2 / 122 of 162

				120055	NZ / 122 01 1
A,13L28833-13					L28833-13 E
B,13L28833-13	,LIBD	,06,	/07/2006 09:34	,133L082404	
B,13L28833-13 C,U-235 ,YES,	2.229E+00,	4.480E+00,	4.044E+01,,	0.055	
C,BE-7 ,NO ,	-1.170E+01,	3.072E+01,	4.967E+01,,	-0.236	
C,K-40 ,NO ,	6.527E+00,	4.764E+01,	8.936E+01,,	0.073	
	-2.134E-01,			-0.004	
	-8.724E-02,	3.421E+00,	5.673E+00,,	-0.015	
	-2.539E+00,			-0.512	
	-1.345E+00,			-0.252	
	4.248E+00,			0.326	
	3.653E+00,			0.578	
	2.541E+00,			0.207	
	-1.866E+00,			-0.251	
	2.492E+01,			2.921	
	-1.440E+00,			-0.239	
•	2.759E+00,			0.506	
	3.515E+00,			0.588	
C,ZR-95 ,NO ,				-0.424	
	3.025E+02,			0.223	
	4.902E-01,			0.075	
	1.758E+00,			0.036	
C,AG-110m ,NO ,				0.135	
	-7.701E-02,				
•	8.011E-01,			0.135	
	-4.107E+00,				
C,TE-129M ,NO ,					
C,I-131 ,NO ,				-0.005	
	5.831E+00,		7.591E+00,,	0.768	
	3.583E+00,		6.161E+00,,	0.582	
		6.133E+00,			
	7.409E-01,			0.125	
		3.150E+00,		0.826	
	1.048E+01,			0.273	
	-2.504E+00,			-0.204	
		8.122E+00,		0.490	
	-2.552E+00,	2.781E+01,	3.934E+01,,	-0.065	
C,EU-152 ,NO ,		-			
C,EU-154 ,NO ,	-6.816E+00,	6.335E+00,	9.913E+00,,	-0.688	
C,RA-226 ,NO ,	1.873E+01,	7.582E+01,	1.380E+02,,	0.136	
C, AC-228 , NO ,	-2.769E+00,	1.315E+01,	2.099E+01,	-0.132	
C,TH-228 ,NO ,	4.266E+00,	6.471E+00,	1.069E+01,,	0.399	
C,TH-232 ,NO ,	-2.757E+00,	1.309E+01,	2.089E+01,,	-0.132	
C, U-238 , NO ,	1.774E+02,	3.776E+02,	6.237E+02,,	0.285	
C,AM-241 ,NO ,	4.589E+01,	3.024E+01,	4.573E+01,,	1.004	
	+.JUJUTUI,	J.UZIHTUI,	±.0/011+01//	T.001	

L28833 R2 / 123 of 162

Analyst: LIMS: Sec. Review: VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 9-JUN-2006 09:53:33.17 TBE07 P-10768B HpGe ******** Aquisition Date/Time: 9-JUN-2006 05:03:38.73 _____ LIMS No., Customer Name, Client ID: WG L28833-14 EXELON ZION Smple Date: 26-MAY-2006 13:40:00. : 07L28833-14 Sample ID Geometry : 073L082504 : WG Sample Type BKGFILE : 07BG060306MT : 3.02400E+00 L Quantity Real Time : 0 04:00:02.89 Start Channel : 40 Energy Tol : 1.00000 End Channel : 4090 Pk Srch Sens: 5.00000 MDA Constant : 0.00 Library Used: LIBD Live time : 0 04:00:00.00 Cts/Sec %Err Fit Bkgnd FWHM Channel %Eff Area Pk It Energy 7.99E-01 8.03E-03 34.0 1.82E+00 132.87 427 1.49 66.15* 116 1 1 2.06E+00 6.70E-03 37.6 2.29E+01 2.10 478.95 340 96 1 239.06* 2 1.81E+00 7.60E-03 30.8 3.38E+00 1.81 591.70 237 109 3 1 295.40* 1.61E+00 7.22E-03 32.1 1.33E+00 209 1.08 704.59 351.81* 104 4 1 1.10E+00 6.33E-03 27.7 7.85E-01 115 2.64 1192.61 1 595.72 91 5 1.09E+00 1.02E-02 20.1 1.02E+00 141 1.44 1219.63 1 609.23* 6 147 8.14E-01 8.85E-03 14.6 6.87E+01 1.15 1824.43 59 127 1 911.58* 7 5.83E-01 3.69E-03 32.2 1.33E+00 2.02 2922.96 19 53 2 1460.99* 8 5.82E-01 2.54E-03 38.5 2.11 2929.00 37 10 9 2 1464.01 2.98 3530.90 5.12E-01 2.39E-03 40.1 8.30E-01 22

Flag: "*" = Peak area was modified by background subtraction

34

Nuclide Line Activity Report

1 1765.16*

10

Nuclide	Type: natura	al			Uncorrected	Decay Corr	2-Sigma
Nuclide K-40 AC-228 TH-228	Energy 1460.81 835.50 911.07 238.63 240.98	Area 53  127 96	%Abn 10.67* 1.75 27.70* 44.60* 3.95	%Eff 5.827E-01 8.662E-01 8.141E-01 2.056E+00 2.047E+00	pCi/L 5.304E+01 Lir 3.507E+01 6.528E+00	pCi/L	%Error 64.48  29.23 75.19

Flag: "*" = Keyline

L28833 R2 / 124 of 162

2 Page : Summary of Nuclide Activity Acquisition date : 9-JUN-2006 05:03:38 Sample ID : 07L28833-14 Total number of lines in spectrum 10 Number of unidentified lines 7 30.00% Number of lines tentatively identified by NID 3 Nuclide Type : natural Uncorrected Decay Corr Decay Corr 2-Sigma 2-Sigma Error %Error Flags pCi/L pCi/L Hlife Decay Nuclide 3.420E+01 64.48 5.304E+01 1.00 5.304E+01 K-40 1.28E+09Y 29.23 1.030E+01 3.523E+01 1.00 3.507E+01 5.75Y AC-228 4.976E+00 75.19 1.91Y 1.01 6.528E+00 6.617E+00 TH-228 _____ _____ 9.489E+01 Total Activity : 9.464E+01 Grand Total Activity : 9.464E+01 9.489E+01 "M" = Manually accepted Flags: "K" = Keyline not found "A" = Nuclide specific abn. limit "E" = Manually edited

L28833 R2 / 125 of 162

Page : 3 Sample ID : 07L28833-14 Acquisition date : 9-JUN-2006 05:03:38
It Energy Area Bkgnd FWHM Channel Left Pw Cts/Sec %Err %Eff Flags
166.151164271.49132.8713088.03E-0368.07.99E-011295.401092371.81591.70587117.60E-0361.71.81E+001351.811042091.08704.59699117.22E-0364.11.61E+001595.72911152.641192.611188156.33E-0355.41.10E+001609.231471411.441219.631214131.02E-0240.21.09E+0021464.0137102.112929.002915212.54E-0377.15.82E-0111765.1634222.983530.903523152.39E-0380.25.12E-01
Flags: "T" = Tentatively associated
Summary of Nuclide Activity
Total number of lines in spectrum 10 Number of unidentified lines 7 Number of lines tentatively identified by NID 3 30.00%
Nuclide Type : natural Wtd Mean Wtd Mean
Uncorrected       Decay Corr       Decay Corr       2-Sigma         Nuclide       Hlife       Decay       pCi/L       pCi/L       2-Sigma Error %Error Flags         K-40       1.28E+09Y       1.00       5.304E+01       5.304E+01       3.420E+01       64.48         AC-228       5.75Y       1.00       3.507E+01       3.523E+01       1.030E+01       29.23         TH-228       1.91Y       1.01       6.528E+00       6.617E+00       4.976E+00       75.19
Total Activity : 9.464E+01 9.489E+01
Grand Total Activity : 9.464E+01 9.489E+01
Flags: "K" = Keyline not found "M" = Manually accepted "E" = Manually edited "A" = Nuclide specific abn. limit
Interference Report
No interference correction performed
Combined Activity-MDA Report
Identified Nuclides
ActivityAct errorMDAMDA errorAct/MDANuclide(pCi/L)(pCi/L)
K-405.304E+013.420E+013.751E+010.000E+001.414AC-2283.523E+011.030E+011.451E+010.000E+002.428TH-2286.617E+004.976E+007.245E+000.000E+000.913
Non-Identified Nuclides
Key-Line Activity K.L. Act error MDA MDA error Act/MDA Nuclide (pCi/L) Ided (pCi/L)

L28833 R2 / 126 of 162

BE-7	2.542E+01	2.465E+01	4.202E+01	0.000E+00	0.605
NA-24	-2.699E+00	5.797E+00	Half-Life	too short	
CR-51	-2.000E+01	2.851E+01	4.630E+01	0.000E+00	-0.432
MN-54	1.376E+00	2.499E+00	4.259E+00	0.000E+00	0.323
CO-57	-1.725E-01	2.543E+00	4.149E+00	0.000E+00	-0.042
CO-58	-2.574E+00	2.839E+00	4.459E+00	0.000E+00	-0.577
FE-59	8.619E+00	5.771E+00	1.043E+01	0.000E+00	0.826
CO-60	1.856E+00	2.437E+00	4.229E+00	0.000E+00	0.439
ZN-65	6.078E+00	5.582E+00	9.850E+00	0.000E+00	0.617
SE-75	4.361E-01	3.549E+00	5.818E+00	0.000E+00	0.075
SR-85	2.046E+01	3.377E+00	6.658E+00	0.000E+00	3.074
Y-88	1.855E-01	2.804E+00	4.672E+00	0.000E+00	0.040
NB-94	-8.191E-01	2.495E+00	4.002E+00	0.000E+00	-0.205
NB-95	1.535E+00	2.715E+00	4.650E+00	0.000E+00	0.330
ZR-95	-1.902E+00	4.926E+00	7.813E+00	0.000E+00	-0.243
MO-99	1.638E+02	5.824E+02	9.626E+02	0.000E+00	0.170
RU-103	1.380E+00	3.271E+00	5.413E+00	0.000E+00	0.255
RU-106	-3.303E+00	2.531E+01	4.024E+01	0.000E+00	-0.082
AG-110m	-9.994E-01	2.480E+00	3.975E+00	0.000E+00	-0.251
SN-113	1.146E+00	3.403E+00	5.681E+00	0.000E+00	0.202
SB-124	-1.588E+00	6.582E+00	4.401E+00	0.000E+00	-0.361
SB-125	6.533E-02	7.205E+00	1.181E+01	0.000E+00	0.006
TE-129M	2.160E+01	3.693E+01	6.182E+01	0.000E+00	0.349
I-131	-2.620E+00	7.944E+00	1.296E+01	0.000E+00	-0.202
BA-133	9.456E+00	4.157E+00	6.514E+00	0.000E+00	1.452
CS-134	7.772E+00	5.911E+00	5.130E+00	0.000E+00	1.515
CS-136	-2.253E+00	4.807E+00	7.730E+00	0.000E+00	-0.291
CS-137	1.850E+00	2.599E+00	4.424E+00	0.000E+00	0.418
CE-139	-1.321E+00	2.547E+00	4.191E+00	0.000E+00	-0.315
BA-140	-7.654E+00	1.762E+01	2.863E+01	0.000E+00	-0.267
LA-140	4.997E+00	5.741E+00	1.012E+01	0.000E+00	0.494
CE-141	-9.192E+00	5.569E+00	8.619E+00	0.000E+00	-1.066
CE-144	-2.681E+01	2.012E+01	3.160E+01	0.000E+00	-0.849
EU-152	-5.574E+00	9.466E+00	1.288E+01	0.000E+00	-0.433
EU-154	-9.050E-01	5.205E+00	8.464E+00	0.000E+00	-0.107
RA-226	-3.224E+01	6.366E+01	1.037E+02	0.000E+00	-0.311
TH-232	3.507E+01 -	- 1.025E+01	1.606E+01	0.000E+00	2.183
U-235	-1.984E+01	1.916E+01	3.021E+01	0.000E+00	-0.657
U-238	2.516E+02	2.883E+02	4.958E+02	0.000E+00	0.508
AM-241	-4.279E+01	2.559E+01	3.572E+01	0.000E+00	-1.198
					_

A,07L28833-14	06/09/2006	09:53.05/26/2	006 13:40,	3.024E+00,WG	L28833-14	Ε
$P_{07L28833-14}$	,0070572000	.06/	07/2006 09:32	,073L082504		
A,07L28833-14 B,07L28833-14 C,K-40 ,YES, C,AC-228 ,YES, C,TH-228 ,YES, C,BE-7 ,NO,	5 304E+01.	3.420E+01.	3.751E+01,,	1.414		
$C AC_{228} VES$	3.523E+01	1.030E+01.	1.451E+01,,	2.428		
C TH 220 VEC	5.5250+01, 6.617E+00	4 976E+00	7.245E+00.	0.913		
C, IR-220, $IES$ ,	0.0170+00, 0.5120+01	2.465E+01	4 202E+01.	0.605		
C,BE-7,NO,	2.5425401	2.851E+01,	4.630E+01	-0.432		
C,CR-51 ,NO ,	-2.000E+01,	2.499E+00,	4.259E+00	0.323		
C,MN-54 ,NO ,	1.370E+00,	2.543E+00,	4.149E+00	-0.042		
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0 0000.00				
C,CO-58 ,NO ,	-2.5/4E+00,	2.039E+00,	4.4350+00,, 1 043E+01	0.826		
C, FE-59, NO,	8.619E+00,	3.7710+00,	1 229F+01,	0.439		
C, CO-60 , NO ,	1.8565+00,	2.437E+00,	4.2295+00,	0.435		
C, ZN-65 , NO ,	6.078E+00,	5.562E+00,	$9.0000\pm00,$	0.017		
C,SE-75 ,NO ,	4.361E-U1,	3.549E+00,	5.010E+00,	3 074		
C,SR-85 ,NO ,	2.046E+01,	3.37/E+00,	0.0000+00,,	0.040		
C,CO-58 ,NO , C,FE-59 ,NO , C,CO-60 ,NO , C,ZN-65 ,NO , C,SE-75 ,NO , C,SR-85 ,NO , C,Y-88 ,NO ,	1.855E-01,	2.804E+00,	4.6725+00,,	-0.205		
		2.423367007		0.200		
C,NB-95 ,NO ,	1.535E+00,	2.715E+00,	4.650E+00,,	-0.243		
C,ZR-95 ,NO ,	-1.902E+00,	4.926E+00,	7.813E+00,,	-0.243		
C,MO-99 ,NO , C,RU-103 ,NO ,	1.638E+02,	5.824E+02,	9.626E+02,,	0.170		
C,RU-103 ,NO ,	1.380E+00,	3.271E+00,	5.413E+00,,	0.255		
C,RU-106 ,NO ,	-3.303E+00,	2.531E+01,	4.024E+01,,	-0.082		
C,AG-110m ,NO ,	-9.994E-01,	2.480E+00,	3.975E+00,,	-0.251		
C,SN-113 ,NO ,	1.146E+00,	3.403E+00,	5.681E+00,,	0.202		
C,SB-124 ,NO ,	-1.588E+00,	6.582E+00,	4.401E+00,,	-0.361		
C,SB-124 ,NO , C,SB-125 ,NO , C,TE-129M ,NO ,	6.533E-02,	7.205E+00,	1.181E+01,,	0.006		
C,TE-129M ,NO ,	2.160E+01,	3.693E+01,	6.182E+01,,	0.349		
C,I-131 ,NO ,	-2.620E+00,	7.944E+00,	1.296E+01,,	-0.202		
C,BA-133 ,NO ,	9.456E+00,	4.157E+00, 5.911E+00,	6.514E+00,,	1.452		
C,CS-134 ,NO ,	7.772E+00,	5.911E+00,	5.130E+00,,	1.515		
C,CS-136 ,NO ,	-2.253E+00,	4.807E+00,	7.730E+00,,	-0.291		
C,CS-137 ,NO ,	1.850E+00,	2.599E+00,	4.424E+00,,	0.418		
C,CE-139 ,NO ,	-1.321E+00,	2.547E+00,	4.191E+00,,	-0.315		
C,BA-140 ,NO ,	-7.654E+00,	1.762E+01,	2.863E+01,,	-0.267		
C,LA-140 ,NO ,	4.997E+00,	5.741E+00,	1.012E+01,,	0.494		
C,CE-141 ,NO ,	-9.192E+00,	5.569E+00,	8.619E+00,,			
C,CE-144 ,NO ,	-2.681E+01,	2.012E+01,	3.160E+01,,	-0.849		
C,EU-152 ,NO ,	-5.574E+00,	9.466E+00,	1.288E+01,,	-0.433		
C,EU-154 ,NO ,	-9.050E-01,	5.205E+00,	8.464E+00,,	-0.107		
C,RA-226 ,NO ,	-3.224E+01,	6.366E+01,	1.037E+02,,	-0.311		
C,TH-232 ,NO ,	3.507E+01,	1.025E+01,	1.606E+01,,	2.183		
C,U-235 ,NO ,	-1.984E+01,	1.916E+01,	3.021E+01,,	-0.657		
C,U-238 ,NO ,	2.516E+02,	2.883E+02,	4.958E+02,,	0.508		
C,AM-241 ,NO ,	-4.279E+01,	2.559E+01,	3.572E+01,,	-1.198		

L28833 R2 / 128 of 162

Sec. Review: Analyst: LIMS: VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 9-JUN-2006 13:50:50.63 TBE15 P-10635B HpGe ******** Aquisition Date/Time: 9-JUN-2006 09:47:32.21 _____ LIMS No., Customer Name, Client ID: WG L28833-15 EXELON/ZION Smple Date: 26-MAY-2006 14:48:00. : 15L28833-15 Sample ID Geometry : 153L082604 Sample Type : WG BKGFILE : 15BG060306MT : 3.04520E+00 L Quantity Real Time : 0 04:03:13.90 Start Channel : 40 Energy Tol : 1.50000 Pk Srch Sens: 5.00000 Live time : 0 04:03:12.45 End Channel : 4090 Library Used: LIBD MDA Constant : 0.00 Cts/Sec %Err Fit %Eff Area Bkqnd FWHM Channel Pk It Energy 8.71E-01 4.59E-03 44.4 8.35E-01 120.06 331 0.88 67 1 1 66.30 2.70E+00 2.59E-03 88.4 3.00E+00 267.51 354 1.13 2 1 139.61 38 1.01E+00 3.93E-03 23.8 2.61E+00 44 1.92 1183.68 3 595.31 57 1 9.91E-01 5.68E-03 26.3 2.22E+00 83 90 2.12 1210.20 4 1 608.50 5.83E-01 3.82E-02 5.0 7.70E+01 67 14.23 2251.03 557 5 1 1126.55

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Flaq: "*" = Keyline

2 Page : Summary of Nuclide Activity Acquisition date : 9-JUN-2006 09:47:32 Sample ID : 15L28833-15 Total number of lines in spectrum 5 5 Number of unidentified lines Number of lines tentatively identified by NID 0.00% 0 **** There are no nuclides meeting summary criteria **** "M" = Manually accepted Flags: "K" = Keyline not found "A" = Nuclide specific abn. limit "E" = Manually edited

L28833 R2 / 129 of 162

L28833 R2 / 130 of 162 Page : 3 Unidentified Energy Lines Acquisition date : 9-JUN-2006 09:47:32 Sample ID : 15L28833-15 Flags Channel Left Pw Cts/Sec %Err %Eff FWHM Bkqnd Area It Energy 8.71E-01 6 4.59E-03 88.7 120.06 118 0.88 331 66.30 67 1 8 2.59E-03 **** 2.70E+00 267.51 264 1.13 38 354 139.61 1 1.01E+00 8 3.93E-03 47.6 1183.68 1180 57 44 1.92 595.31 1 1210.20 1206 13 5.68E-03 52.6 9.91E-01 90 2.12 83 1 608.50 2251.03 2229 36 3.82E-02 10.0 5.83E-01 67 14.23 557 1126.55 1 Flags: "T" = Tentatively associated Summary of Nuclide Activity 5 Total number of lines in spectrum 5 Number of unidentified lines Number of lines tentatively identified by NID 0.00% 0 **** There are no nuclides meeting summary criteria **** "M" = Manually accepted Flags: "K" = Keyline not found "A" = Nuclide specific abn. limit "E" = Manually edited Interference Report No interference correction performed Combined Activity-MDA Report ---- Non-Identified Nuclides ----Key-Line Act/MDA MDA error MDA K.L. Act error Activity (pCi/L)Ided Nuclide (pCi/L)0.531 0.000E+00 3.699E+01 2.125E+01 1.963E+01 BE-7 Half-Life too short 5.914E+00 -5.409E+00 NA-24 1.252 0.000E+00 6.511E+01 3.446E+01 8.149E+01 K-40 -0.008 0.000E+00 3.959E+01 2.395E+01 -2.984E-01 CR-51 0.189 0.000E+00 3.951E+00 2.347E+00 7.464E-01 MN-54 0.359 0.000E+00 3.218E+00 2.002E+00 1.155E+00 CO-57 -0.593 0.000E+00 4.093E+00 2.650E+00 CO-58 -2.428E+00 -0.082 0.000E+00 8.799E+00 -7.202E-01 5.381E+00 FE-59 0.274 3.856E+00 0.000E+00 2.252E+00 1.056E+00 CO-60 -0.360 0.000E+00 8.755E+00 6.673E+00 -3.149E+00 ZN-65 0.392 0.000E+00 5.119E+00 3.093E+00 2.006E+00 SE-75 1.283 0.000E+00 5.232E+00 2.892E+00 SR-85 6.715E+00 0.325 0.000E+00 5.288E+00 3.011E+00 1.717E+00 Y-88 0.571 0.000E+00 3.754E+00 2.143E+00 2.174E+00 NB-94 0.121 0.000E+00 4.357E+00 5.259E-01 2.596E+00 NB-95 -0.641 0.000E+00 7.075E+00 4.576E+00 ZR-95 -4.538E+00 -0.270 0.000E+00 8.377E+02 5.204E+02 -2.262E+02 MO-99 -0.455 0.000E+00 4.396E+00 2.754E+00 -1.999E+00 RU-103 0.223 0.000E+00 3.543E+01 2.116E+01 7.905E+00 RU-106 -0.134 0.000E+00 2.426E+00 3.902E+00 -5.229E-01 AG-110m 0.378 5.208E+00 0.000E+00 3.095E+00 1.968E+00 SN-113 -0.110 0.000E+00 4.255E+00 5.921E+00 -4.662E-01 SB-124 0.418 0.000E+00 1.080E+01 6.415E+00 4.513E+00 SB-125

TE-129M I-131 BA-133 CS-134 CS-136 CS-137 CE-139 BA-140 LA-140 CE-141 CE-144 EU-152 EU-154 RA-226 AC-228 TH-228 TH-232 U-235	$\begin{array}{c} 6.830\pm\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	3.220E+01 6.967E+00 2.993E+00 3.372E+00 4.683E+00 2.537E+00 2.017E+00 1.607E+01 5.641E+00 4.896E+00 1.658E+01 7.021E+00 4.124E+00 5.200E+01 8.776E+00 4.132E+00 8.736E+00 1.715E+01	5.274E+01 1.147E+01 4.810E+00 4.283E+00 7.775E+00 4.282E+00 3.345E+00 2.730E+01 8.729E+00 7.249E+00 2.359E+01 1.116E+01 6.660E+00 8.129E+01 1.592E+01 1.585E+01 2.511E+01	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.130 0.030 -0.318 0.705 0.058 0.339 0.064 0.296 -0.328 0.659 -0.077 -0.539 0.450 -0.542 0.863 0.025 0.863 0.477
AM-241	-3.729E+01	2.197E+01	3.374E+01	0.000E+00	-1.105

- Alera

				120055	
A,15L28833-15	,06/09/2006	13:50.05/26/2	2006 14:48,	3.045E+00,WG	L28833-15 E
B,15L28833-15	,LIBD	.06	/06/2006 10:43	,153L082604	
C, BE-7 , NO	1.963E+01	,06, 2.125E+01,	3.699E+01,,	0.531	
C,K-40 ,NO	$, 149E\pm01$	3.446E+01,	6.511E+01,,	1.252	
		2.395E+01,		-0.008	
		2.347E+00,		0.189	
C, MN-54 , NO		2.002E+00,		0.359	
C, CO-57 , NO	•	2.650E+00,		-0.593	
C, CO-58 , NO	-	5.381E+00,		-0.082	
C,FE-59 ,NO		2.252E+00,	3 856E+00	0.274	
C, CO-60 , NO	-	6.673E+00,	8 755E+00	-0.360	
C,ZN-65 ,NO	-3.149E+00,	0.0735+00,	5.119E+00,,	0.392	
C,SE-75 ,NO	), 2.006E+00, 6.715E+00,	3.093E+00,	5.222E+00,	1.283	
C,SR-85 ,NO	(1, 1, 1)	2.092E+00,	5.2325+00,,	0.325	
C,Y-88 ,NO	), 1.717E+00,	3.011E+00,	$2.200 \pm 00,$	0.571	
	), 2.143E+00,	2.1/4E+00,	3.754E+00,,	0.121	
C,NB-95,NO	), $5.259E-01$ ,	2.596E+00,	4.357 <u><u>E</u>+00,,</u>	-0.641	
C,ZR-95 ,NO	), -4.538E+00,	4.576些+00,	7.075E+00,,		
C,MO-99 ,NO	), -2.262E+02,		8.377E+02,,	-0.270	
	), -1.999E+00,		4.396E+00,,	-0.455	
C,RU-106 ,NC		2.116E+01,	3.543E+01,,	0.223	
C,AG-110m ,NC	), -5.229E-01,	2.426E+00,	3.902E+00,,	-0.134	
	), 1.968E+00,		5.208E+00,,	0.378	
C,SB-124 ,NC	), -4.662E-01,	5.921E+00,	4.255E+00,,	-0.110	
C,SB-125 ,NC	), 4.513E+00,	6.415E+00,	1.080E+01,,	0.418	
C,TE-129M ,NC	), 6.830E+00,	3.220E+01,	5.274E+01,,	0.130	
C,I-131 ,NC	), 3.420E-01,	6.967E+00,	1.147E+01,,	0.030	
C,BA-133 ,NC	), -1.531E+00,	2.993E+00,	4.810E+00,,	-0.318	
	), 3.019E+00,		4.283E+00,,	0.705	
C,CS-136 ,NC	), 4.536E-01,	4.683E+00,	7.775E+00,,	0.058	
C,CS-137 ,NC	), 1.452E+00,	2.537E+00,	4.282E+00,,	0.339	
C,CE-139 ,NC	), 2.148E-01,	2.017E+00,	3.345E+00,,	0.064	
C, BA-140 , NC	), 8.093E+00,	1.607E+01,	2.730E+01,,	0.296	
C,LA-140 ,NC	⊃ , -2.859E+00,	5.641E+00,	8.729E+00,,	-0.328	
C,CE-141 ,NC	), 4.774E+00,	4.896E+00,	7.249E+00,,	0.659	
	O, -1.826E+00,		2.359E+01,,	-0.077	
	O, -6.020E+00,		1.116E+01,,	-0.539	
•	O, 2.998E+00,	4.124E+00,	6.660E+00,,	0.450	
	O , -4.404E+01,	5.200E+01,	8.129E+01,,	-0.542	
-	O, 1.375E+01,	8.776E+00,	1.592E+01,,	0.863	
-	O, 1.633E-01,	4.132E+00,	6.491E+00,,	0.025	
•	O, 1.368E+01,		1.585E+01,,	0.863	
•	O, 1.199E+01,		2.511E+01,,	0.477	
	O, 2.614E+01,		4.179E+02,,	0.063	
-	O, -3.729E+01,		3.374E+01,,	-1.105	
	· · · · · · · · · · · · · · · · · · ·				

2-Sigma

%Error

353.72

pCi/L

LIMS: Analyst: Sec. Review: VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 9-JUN-2006 13:31:47.46 TBE23 03017322 HpGe ******* Aquisition Date/Time: 9-JUN-2006 09:49:36.24 LIMS No., Customer Name, Client ID: WG L28833-16 EXELON/ZION Smple Date: 26-MAY-2006 15:10:00. Sample ID : 23L28833-16 Geometry : 233L082404 : WG Sample Type BKGFILE : 23BG060306MT : 3.03720E+00 L Quantity Start Channel : 50 Energy Tol : 1.50000 Real Time : 0 03:41:55.75 Pk Srch Sens: 5.00000 Live time : 0 03:41:46.83 End Channel : 4090 MDA Constant : 0.00 Library Used: LIBD Fit Cts/Sec %Err %Eff FWHM Channel Bkqnd Area Pk It Energy 8.15E-02 2.28E-03 57.0 1.37E+00 1.09 67.77 30 144 33.72* 1 1.03E-01 1.51E-03163.0 70.48 99 1.76 20 2 35.08* 4 1.09E+00 1.59E-02 33.9 2.11 129.38 854 64.55* 212 3 0 1.94E+00 5.15E-03 88.8 1.50 185.79 754 92.77* 69 4 0 1.13 280.20 2.32E+00 5.33E-03 64.3 5 0 140.01* 71 526 526 1.27 371.03 2.18E+00 2.14E-03176.9 28 6 0 185.46* 377 1.54 396.13 2.11E+00 3.86E-03 73.4 7 0 198.02* 51 2.97 1021.72 1.07E+00 3.68E-03 83.0 131 49 0 510.98* 8 78 1.61 1190.98 9.56E-01 6.14E-03 24.9 82 9 0 595.65

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

186.21

Nuclide Type: natural Uncorrected Decay Corr %Abn %Eff pCi/L Area Nuclide Energy 3.28* 2.176E+00 2.664E+01 2.665E+01

28

Flaq: "*" = Keyline

RA-226

L28833 R2 / 134 of 162

Page : 2 Summary of Nuclide Activity Acquisition date : 9-JUN-2006 09:49:36 Sample ID : 23L28833-16 9 Total number of lines in spectrum 8 Number of unidentified lines Number of lines tentatively identified by NID 1 11.11% Nuclide Type : natural Uncorrected Decay Corr Decay Corr 2-Sigma 2-Sigma Error %Error Flags Decay pCi/L pCi/L Nuclide Hlife 2.665E+01 9.425E+01 353.72 1.00 2.664E+01 RA-226 1600.00Y _ _ _ _ _ _ _ _ _ _ Total Activity : 2.664E+01 2.665E+01 Grand Total Activity : 2.664E+01 2.665E+01 "M" = Manually accepted Flags: "K" = Keyline not found "A" = Nuclide specific abn. limit "E" = Manually edited

									L288	333 R2 /	135 of	162
		Energy Li 23L28833-1			Ac	quisit	cior	a date :	9-JUN	Page 2006 09		
It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	*Err	%Eff	Flags	
4 4	33.72 35.08	30 20		1.09				2.28E-03 1.51E-03				
4 0	61 55	212	854	2 11	129 38	122	18	1.59E-02	67.7	1.09E+		
0 0	92.77 140.01	71	754 526	$1.50 \\ 1.13$	185.79	180 276		5.15E-03 5.33E-03				
0	198.02	51	377	1.54	396.13	392	9	3.86E-03	****	2.11E+		
0	510.98	49	131	2.97	1021.72	1012		3.68E-03				
0	595.65		78			1183	13	6.14E-03	49.0	9.506-	0T	
2		Tentative	-	ociate	d							
Summ	ary of Nu	uclide Act	civity									
Num	ber of u	r of lines nidentific ines tents	ed line	S		NID	9 8 1	11	L.11%			
Nucl	ide Type	: natura	1.	td Mea	in Wt	d Mea	n					
	ide : 26 160	Hlife D 0.00Y	Un ecay 1.00 2	correc pCi/I .664E+	ted Dec -01 2.	cay Co pCi/L 665E+	rr 01	Decay ( 2-Sigma 9.425)	Error	2-Sigma %Error 353.72		
	Tot	al Activi			-01 2.	665E+						
C	Frand Tot	al Activi	tv : 2	.664E-	-01 2.	.665E+	01					
		Keyline	_			' = Ma	nua	lly acce	oted			
1 1 4 2		Manually						de speci		on. limit	-	
Inte	erference	Report										
No :	interfere	nce corre	ction p	erfor	ned							
Coml	bined Act	ivity-MDA	. Report	•								
	- Identif	ied Nucli	des									
Nuc	lide	Activit (pCi/I		Act	error		MD (pCi		MDA	error	Act/ME	A
RA-	226	2.665E+	-01	9.4	25E+01	1.	230	E+02	0.00	)0E+00	0.21	.7
	- Non-Ide	entified N	Juclides	5								
Nuc	lide	Key-Lir Activit (pCi/I	су К.Ц		error		MI (pCi		MDA	error	Act/MI	A
BE-		-1.429E+			32E+01			)E+01		)0E+00	-0.29	94
NA- K-4		-8.608E- 2.142E-			07E+00 05E+01			Life toc E+01		5 00E+00	0.02	25

				L28833 R2 /	136 of 162
	-6.180E+00	3.404E+01	5.771E+01	0.000E+00	-0.107
CR-51	1.119E+00	2.708E+00	4.811E+00	0.000E+00	0.233
MN-54	-1.996E+00	3.011E+00	4.991E+00	0.000E+00	-0.400
CO-57 CO-58	-2.659E+00	3.074E+00	5.020E+00	0.000E+00	-0.530
CO-58 FE-59	4.014E-02	5.856E+00	1.034E+01	0.000E+00	0.004
CO-60	-3.912E-01	2.539E+00	4.436E+00	0.000E+00	-0.088
ZN-65	1.159E+00	5.790E+00	1.033E+01	0.000E+00	0.112
SE-75	-1.722E+00	4.278E+00	7.226E+00	0.000E+00	-0.238
SR-85	1.797E+01	3.871E+00	7.036E+00	0.000E+00	2.554
Y-88	-1.567E+00	3.475E+00	5.935E+00	0.000E+00	-0.264
NB-94	-1.494E-01	2.686E+00	4.634E+00	0.000E+00	-0.032
NB-95	1.935E-01	3.089E+00	5.366E+00	0.000E+00	0.036
ZR-95	1.744E+00	5.629E+00	9.914E+00	0.000E+00	0.176
MO-99	3.483E+02	6.488E+02	1.162E+03	0.000E+00	0.300
RU-103	7.386E-01	3.655E+00	6.172E+00	0.000E+00	0.120
RU-106	-9.479E+00	2.540E+01	4.328E+01	0.000E+00	-0.219
AG-110m	6.336E-01	2.695E+00	4.749E+00	0.000E+00	0.133
SN-113	1.564E+00	4.003E+00	6.923E+00	0.000E+00	0.226
SB-124	-8.562E+00	3.518E+00	5.379E+00	0.000E+00	-1.592
SB-125	-2.678E+00	8.385E+00	1.406E+01	0.000E+00	-0.191
TE-129M	-1.557E+01	4.094E+01	6.838E+01	0.000E+00	-0.228
I-131	1.249E+00	9.580E+00	1.641E+01	0.000E+00	0.076
BA-133	1.619E+00	4.129E+00	7.128E+00	0.000E+00	0.227
CS-134	-3.592E-01	3.091E+00	5.307E+00	0.000E+00	-0.068
CS-136	-7.091E-01	5.302E+00	9.110E+00	0.000E+00	-0.078
CS-137	-5.272E-01	2.919E+00	5.021E+00	0.000E+00	-0.105
CE-139	6.385E-01	3.265E+00	5.483E+00	0.000E+00	0.116
BA-140	4.358E+00	1.995E+01	3.433E+01	0.000E+00	0.127
LA-140	1.467E+00	6.022E+00	1.108E+01	0.000E+00	0.132
CE-141	7.456E+00	8.045E+00	1.180E+01	0.000E+00	0.632
CE-144	-8.699E+00	2.785E+01	3.928E+01	0.000E+00	-0.221
EU-152	-6.785E+00	9.090E+00	1.506E+01	0.000E+00	-0.450
EU-154	4.183E-01	6.124E+00	1.032E+01	0.000E+00	0.041
AC-228	1.119E+01	1.154E+01	1.979E+01	0.000E+00	0.566
TH-228	-4.247E-01	5.909E+00	9.503E+00	0.000E+00	-0.045
TH-232	1.114E+01	1.148E+01	1.970E+01	0.000E+00	0.566
U-235	1.789E+01	2.863E+01	4.092E+01	0.000E+00	0.437
U-238	-2.404E+02	3.152E+02	5.030E+02	0.000E+00	-0.478
AM-241	1.315E+01	1.931E+01	2.782E+01	0.000E+00	0.473

A,23L28833-16	.06/09/2006	13:31,05/26/2	2006 15:10, 3	3.037E+00,W0	J L28833-16 E
B,23L28833-16 C,RA-226 ,YES,	, LIBD	,06/	01/2006 10:14,	233L082404	
C.RA-226 .YES.	2.665E+01,	9.425E+01,	1.230E+02,,	0.217	
C, BE-7 , NO ,	-1.429E+01.	2.932E+01,	4.860E+01,,	-0.294	
C,K-40 ,NO ,	2.142E+00,	4.305E+01,		0.025	
C, CR-51 , NO ,	-6.180E+00.	3.404E+01,		-0.107	
C, MN-54 , NO ,	1.119E+00	2.708E+00,	4.811E+00,,	0.233	
C, CO-57 , NO ,	-1.996E+00.	3.011E+00,		-0.400	
C,CO-58 ,NO ,	-2.659E+00.	3.074E+00,	5.020E+00,,	-0.530	
C,FE-59 ,NO ,	4.014E-02.	5.856E+00,	1.034E+01,,	0.004	
C, CO-60 , NO ,	-3.912E-01	2.539E+00,		-0.088	
C,ZN-65 ,NO ,	1 159E+00.	5.790E+00,	1.033E+01,,	0.112	
C,SE-75 ,NO ,	-1 722E+00.	4.278E+00,		-0.238	
C,SR-85 ,NO ,	1.797E+01	3.871E+00,	7.036E+00,	2.554	
C,Y-88 ,NO ,	-1.567E+00	3.475E+00.		-0.264	
C,NB-94 ,NO ,	-1.494E-01	2.686E+00.	4.634E+00,,	-0.032	
C,NB-95 ,NO ,	1 935E-01	3.089E+00.	5.366E+00,	0.036	
C,ZR-95 ,NO ,	1.744E+00	5.629E+00.	9.914E+00.	0.176	
C, MO-99 , NO ,	3.483E+02	6.488E+02,	1.162E+03.	0.300	
C,RU-103 ,NO ,	7 386E-01	3.655E+00,	6.172E+00.	0.120	
C,RU-105 ,NO ,	-9.479E+00	2.540E+01,	4.328E+01,,	-0.219	
C,AG-110m ,NO ,	6 336E-01	2.695E+00.	4.749E+00,,	0.133	
C, SN-113 , NO ,	1.564E+00	4.003E+00,	6.923E+00,	0.226	
	-8.562E+00,	3.518E+00,	5.379E+00,	-1.592	
		8.385E+00,		-0.191	
C,TE-129M ,NO ,	•	4.094E+01,		-0.228	
C,I-131 ,NO ,	1.249E+00,	9.580E+00,	1.641E+01,,	0.076	
C, BA-133 , NO ,		4.129E+00,	7.128E+00,,	0.227	
C,CS-134 ,NO ,	-3.592E-01,	3.091E+00,	5.307E+00,,	-0.068	
		5.302E+00,	9.110E+00,,	-0.078	
C,CS-137 ,NO ,	-5.272E-01,	2.919E+00,	5.021E+00,,	-0.105	
C, CE-139 , NO ,		3.265E+00,	5.483E+00,,	0.116	
C, BA-140 , NO ,	4.358E+00,		3.433E+01,,	0.127	
C,LA-140 ,NO ,	1.467E+00,	6.022E+00,	1.108E+01,,	0.132	
C, CE-141 , NO ,	7.456E+00,		1.180E+01,,	0.632	
C, CE-144 , NO ,		2.785E+01,	3.928E+01,,	-0.221	
C,EU-152 ,NO ,	-6.785E+00,	9.090E+00,	1.506E+01,,	-0.450	
		6.124E+00,	1.032E+01,,	0.041	
C,EU-154 ,NO , C,AC-228 ,NO ,		1.154E+01,	1.979E+01,,	0.566	
C,TH-228 ,NO ,	-4.247E-01,	5.909E+00,	9.503E+00,,	-0.045	
C,TH-228 ,NO , C,TH-232 ,NO ,	1.114E+01,	1.148E+01,	1.970E+01,,	0.566	
C, U-235, NO,	1.789E+01,	2.863E+01,	4.092E+01,,	0.437	
C,U-235 ,NO , C,U-238 ,NO ,	-2.404E+02,	3.152E+02,	5.030E+02,,	-0.478	
	-2.404E+02, 1.315E+01,	1.931E+01,	2.782E+01,,	0.473	
C,AM-241 ,NO ,	T.STORANT'		2.102110111	0.1/0	

Sec. Review: Analyst: LIMS: ____ VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 9-JUN-2006 14:16:41.55 TBE14 P-10933A HpGe ******** Aquisition Date/Time: 9-JUN-2006 10:00:28.88 LIMS No., Customer Name, Client ID: WG L28833-17 EXELON/ZION Smple Date: 26-MAY-2006 08:45:00. Sample ID : 14L28833-17 Geometry : 143L082304 Sample Type : WG BKGFILE : 14BG060306MT Quantity : 3.06380E+00 L Start Channel : 90 Energy Tol : 1.00000 Real Time : 0 04:16:03.16 Pk Srch Sens: 5.00000 Live time : 0 04:16:00.74 Library Used: LIBD End Channel : 4090 MDA Constant : 0.00 Energy Area Bkqnd FWHM Channel %Eff Cts/Sec %Err Fit Pk It 65.59 132.17 4.90E-01 1.25E-02 30.1 1.91E+00 192 738 2.54 1 1 92.86* 1.37 186.86 1.28E+00 1.02E-03242.9 9.11E-01 2 1 16 394 1.39 281.43 1.90E+00 8.48E-03 26.9 2.30E+00 31 140.03 130 366 1.83E+00 1.04E-02 26.1 6.79E-01 160 2.02 398.67 4 1 198.53* 381 1 4 1.67E+00 2.77E-04805.5 8.42E-01 5 238.99* 287 1.37 479.71

2.07 1194.27 8.47E-01 5.22E-03 25.4 9.98E-01

L28833 R2 / 138 of 162

Flag: "*" = Peak area was modified by background subtraction

88

80

Nuclide Line Activity Report

596.25

Nuclide Type: natural

1

6

11001100	rype. macar				Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pCi/L	%Error
TH-228	238.63	4	44.60*	1.674E+00	3.271E-01	3.317E-01	1610.96
	240.98		3.95	1.666E+00	Liı	ne Not Found	

Flag: "*" = Keyline

L28833 R2 / 139 of 162

2 Page : Summary of Nuclide Activity Acquisition date : 9-JUN-2006 10:00:28 Sample ID : 14L28833-17 Total number of lines in spectrum 6 5 Number of unidentified lines 16.67% Number of lines tentatively identified by NID 1 Nuclide Type : natural Uncorrected Decay Corr Decay Corr 2-Sigma 2-Sigma Error %Error Flags pCi/L pCi/L Hlife Decay Nuclide 53.44E-01 1610.96 3.317E-01 3.271E-01 TH-228 1.91Y 1.01 _ _ _ _ _ _ _ _ _ _ ______ Total Activity : 3.271E-01 3.317E-01 Grand Total Activity : 3.271E-01 3.317E-01 "M" = Manually accepted Flags: "K" = Keyline not found "A" = Nuclide specific abn. limit "E" = Manually edited

				L28833 R2 /	
Unidentified H Sample ID : 14	Energy Lines 4L28833-17	Acc	quisition date :		e: 3 :00:28
It Energy	Area Bkgnd	FWHM Channel	Left Pw Cts/Sec	%Err %Eff	Flags
1 140.03	16 394 130 366 160 381	1.37186.861.39281.432.02398.67	126 13 1.25E-02 183 8 1.02E-03 278 8 8.48E-03 394 11 1.04E-02 1189 11 5.22E-03	**** 1.28E+ 53.7 1.90E+ 52.2 1.83E+	00 00 00
Flags: "T" =	Tentatively asso	ciated			
Summary of Nu	clide Activity				
Number of un	of lines in spe identified lines nes tentatively		6 5 NID 1 16	5.67%	
Nuclide Type	Wt		ay Corr Decay ( pCi/L 2-Siqma	Corr 2-Sigma Error %Error	- Flags
TH-228 1	91Y 1.01 3.	271E-01 3.	317E-01 53.44E	E-01 1610.96	
Tota	al Activity : 3.	271E-01 3.	317E-01		
Grand Tota	al Activity : 3	.271E-01 3.	317E-01		
Flags: "K" = "E" =	Keyline not four Manually edited	rd "M" "A"	= Manually accep = Nuclide speci:	oted fic abn. limit	:
Interference	Report				
No interferen	nce correction p	erformed			
Combined Act:	ivity-MDA Report				
Identif:	ied Nuclides	_			
Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
TH-228	3.317E-01	5.344E+00	8.738E+00	0.000E+00	0.038
Non-Ide	ntified Nuclides				
Nuclide	Key-Line Activity K.L. (pCi/L) Ided		MDA (pCi/L)	MDA error	Act/MDA
BE-7	-2.339E+00	3.137E+01	5.152E+01	0.000E+00	-0.045
NA-24 K-40	-3.724E+00 -2.118E+01	1.031E+01 4.371E+01	Half-Life toc 7.827E+01	0.000E+00	-0.271
CR-51	-5.432E+01	3.747E+01 3.168E+00	5.844E+01 5.223E+00	0.000E+00 0.000E+00	-0.929 0.113
MN - 54 CO - 57	5.905E-01 -1.626E-01	3.109E+00	5.153E+00	0.000E+00	-0.032

				L28833 R2 /	141 of 162
CO-58	2.601E+00	3.338E+00	5.706E+00	0.000E+00	0.456
CO-58 FE-59	9.816E-01	7.059E+00	1.166E+01	0.000E+00	0.084
CO-60	-1.487E+00	2.932E+00	4.618E+00	0.000E+00	-0.322
ZN-65	-9.873E-01	6.623E+00	1.071E+01	0.000E+00	-0.092
SE-75	8.831E-01	4.246E+00	7.069E+00	0.000E+00	0.125
SR-85	1.719E+01	4.028E+00	7.543E+00	0.000E+00	2.280
SK-05 Y-88	3.853E-01	3.654E+00	6.045E+00	0.000E+00	0.064
NB-94	7.757E-01	3.015E+00	5.035E+00	0.000E+00	0.154
NB-94 NB-95	3.258E+00	3.369E+00	5.823E+00	0.000E+00	0.560
NB-95 ZR-95	-2.292E+00	6.141E+00	9.865E+00	0.000E+00	-0.232
ZR-95 MO-99	-3.469E+02	8.072E+02	1.295E+03	0.000E+00	-0.268
RU-103	1.145E+00	3.883E+00	6.464E+00	0.000E+00	0.177
RU-106	1.353E+01	2.926E+01	4.967E+01	0.000E+00	0.272
AG-110m	-4.904E-02	3.095E+00	5.120E+00	0.000E+00	-0.010
SN-113	4.904E 02 6.719E-01	4.250E+00	6.938E+00	0.000E+00	0.097
SB-124	-6.773E+00	4.732E+00	5.815E+00	0.000E+00	-1.165
SB-124 SB-125	2.884E+00	8.684E+00	1.458E+01	0.000E+00	0.198
TE-129M	-3.092E+01	4.531E+01	7.265E+01	0.000E+00	-0.426
I-131	3.115E-01	1.078E+01	1.757E+01	0.000E+00	0.018
BA-133	4.531E+00	4.356E+00	7.362E+00	0.000E+00	0.615
CS-134	-4.888E-01	3.396E+00	5.483E+00	0.000E+00	-0.089
CS-134 CS-136	-6.228E-01	6.327E+00	1.027E+01	0.000E+00	-0.061
CS-137	-1.394E+00	3.276E+00	5.302E+00	0.000E+00	-0.263
CE-139	-3.553E-01	3.109E+00	5.084E+00	0.000E+00	-0.070
BA-140	-1.347E+01	2.315E+01	3.682E+01	0.000E+00	-0.366
LA-140	4.811E-01	7.013E+00	1.168E+01	0.000E+00	0.041
CE-141	3.984E+00	7.704E+00	1.100E+01	0.000E+00	0.362
CE-144	3.271E+00	2.710E+01	3.827E+01	0.000E+00	0.085
EU-152	-1.657E+01	9.783E+00	1.500E+01	0.000E+00	-1.105
EU-154	2.530E+00	6.242E+00	1.046E+01	0.000E+00	0.242
RA-226	2.997E+00	7.737E+01	1.228E+02	0.000E+00	0.024
AC-228	1.853E+00	1.135E+01	1.869E+01	0.000E+00	0.099
TH-232	1.844E+00	1.130E+01	1.860E+01	0.000E+00	0.099
U-235	2.282E+01	2.696E+01	3.895E+01	0.000E+00	0.586
U-235 U-238	2.841E+02	3.177E+02	5.539E+02	0.000E+00	0.513
AM-241	-6.292E+01	4.761E+01	6.340E+01	0.000E+00	-0.992
THI CIT	0.2722.01				

L28833 R2 / 142 of 162

L28833-17 E

A,14L28833			14:16,05/26/2	006 08:45, 3 02/2006 08:23,	.064E+00,WG
B,14L28833	-17	,LIBD			
C,TH-228	,YES,	3.317E-01,	5.344E+00,	8.738E+00,,	0.038
C,BE-7	,NO,	-2.339E+00,	3.137E+01,	5.152E+01,,	-0.045
C,K-40	,NO,	-2.118E+01,	4.371E+01,	7.827E+01,,	-0.271
C, CR-51	,NO ,	-5.432E+01,	3.747E+01,	5.844E+01,,	-0.929
C, MN-54	,NO,	5.905E-01,	3.168E+00,	5.223E+00,,	0.113
C, CO-57	,NO ,	-1.626E-01,	3.109E+00,	5.153E+00,,	-0.032
C, CO-58	,NO ,	2.601E+00,	3.338E+00,	5.706E+00,,	0.456
C,FE-59	, NO ,	9.816E-01,	7.059E+00,	1.166E+01,,	0.084
C, CO-60	,NO ,	-1.487E+00,	2.932E+00,	4.618E+00,,	-0.322
C, ZN-65	,NO ,	-9.873E-01,	6.623E+00,	1.071E+01,,	-0.092
•	•	8.831E-01,	4.246E+00,	7.069E+00,,	0.125
C,SE-75	,NO ,	1.719E+01,	4.028E+00,	7.543E+00,,	2.280
C,SR-85	,NO,	3.853E-01,	3.654E+00,	6.045E+00,,	0.064
C,Y-88	,NO,		3.015E+00,	5.035E+00,,	0.154
C,NB-94	,NO,	7.757E-01,	3.369E+00,	5.823E+00,,	0.560
C,NB-95	,NO,	3.258E+00,		9.865E+00,,	-0.232
C,ZR-95	,NO,	-2.292E+00,	6.141E+00,	1.295E+03,,	-0.268
C,MO-99	,NO,	-3.469E+02,	8.072E+02,	6.464E+00,,	0.177
C,RU-103	,NO,	1.145E+00,	3.883E+00,		0.272
C,RU-106	,NO,	1.353E+01,	2.926E+01,	4.967E+01,,	-0.010
C,AG-110m	,NO,	-4.904E-02,	3.095E+00,	5.120E+00,,	0.097
C,SN-113	,NO,	6.719E-01,	4.250E+00,	6.938E+00,,	-1.165
C,SB-124	,NO,	-6.773E+00,	4.732E+00,	5.815E+00,,	
C,SB-125	,NO ,	2.884E+00,	8.684E+00,	1.458E+01,,	0.198
C,TE-129M	,NO,	-3.092E+01,	4.531E+01,	7.265E+01,,	-0.426
C,I-131	,NO ,	3.115E-01,	1.078E+01,	1.757E+01,,	0.018
C,BA-133	,NO,	4.531E+00,	4.356E+00,	7.362E+00,,	0.615
C,CS-134	,NO,	-4.888E-01,	3.396E+00,	5.483E+00,,	-0.089
C,CS-136	,NO,	-6.228E-01,	6.327E+00,	1.027E+01,,	-0.061
C,CS-137	,NO,	-1.394E+00,	3.276E+00,	5.302E+00,,	-0.263
C,CE-139	,NO,	-3.553E-01,	3.109E+00,	5.084E+00,,	-0.070
C,BA-140	,NO,	-1.347E+01,	2.315E+01,	3.682E+01,,	-0.366
C,LA-140	,NO,	4.811E-01,	7.013E+00,	1.168E+01,,	0.041
C,CE-141	,NO,	3.984E+00,	7.704E+00,	1.100E+01,,	0.362
C,CE-144	,NO ,	3.271E+00,	2.710E+01,	3.827E+01,,	0.085
C,EU-152	,NO,	-1.657E+01,	9.783E+00,	1.500E+01,,	-1.105
C,EU-154	, NO ,	2.530E+00,	6.242E+00,	1.046E+01,,	0.242
C,RA-226	,NO ,	2.997E+00,	7.737E+01,	1.228E+02,,	0.024
C,AC-228	NTO	1.853E+00,	1.135E+01,	1.869E+01,,	0.099
		1.844E+00,	1.130E+01,	1.860E+01,,	0.099
C,TH-232	,NO,	2.282E+01,	2.696E+01,	3.895E+01,,	0.586
C,U-235	, NO ,	2.841E+02,	3.177E+02,	5.539E+02,,	0.513
C,U-238	,NO,	-6.292E+01,	4.761E+01,	6.340E+01,,	-0.992
C,AM-241	,NO,	-0.2721101,	1./010/01/		

L28833 R2 / 143 of 162

Sec. Review: Analyst: LIMS: ____

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 9-JUN-2006 16:01:34.40 TBE10 12892256 HpGe ******** Aquisition Date/Time: 9-JUN-2006 11:15:18.13 _____ _____

LIMS No., Customer Name, Client ID: WG L28833-18 EXELON/ZION

Ouantity	::	4090 Pk Srch Sens: 5.00000	<pre>Smple Date: 26-MAY-2006 13:15:00. Geometry : 103L083004 BKGFILE : 10BG060306MT Real Time : 0 04:46:11.19 Live time : 0 04:46:08.23</pre>

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1 2 3 4 5 6 7 8 9 10	1 1 1 1	66.49* 92.82* 140.06 185.69* 198.66* 352.21* 596.03 609.66* 1461.12* 1756.33	55 37 134 7 66 10 60 60 61	482 447 526 321 476 178 115 99 53 24	1.31 1.48 1.75 1.11 1.64 1.97 2.51 1.89 2.08 1.05		1.52E+00 1.91E+00 1.77E+00 1.71E+00 1.17E+00 7.85E-01 7.72E-01 3.89E-01 3.40E-01	3.19E-03 2.15E-03 7.82E-03 4.19E-04 3.82E-03 5.66E-04 3.52E-03 3.51E-03 3.49E-04 3.53E-03	115.2 32.0 478.7 70.5 297.7 37.7 40.4 354.0 16.5	1.14E+00 1.29E+00 5.81E-01 1.44E+00 1.67E+00 1.90E+00 5.94E-01 1.40E+00 3.79E+01
11	1	1765.19*	6	17	1.84	3532.22	3.39E-01	3.25E-04	208.4	6.90E-01

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

Nuclide	Type: natura	d L			Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pCi/L	%Error
K-40	1460.81	6	10.67*	3.885E-01	7.532E+00	7.532E+00	708.00
RA-226	186.21	7	3.28*	1.771E+00		6.465E+00	957.50
U-235	143.76		10.50*	1.905E+00	Li	ne Not Found	
0 200	163.35		4.70	1.860E+00	Li	ne Not Found	
	185.71	7	54.00	1.771E+00		3.927E-01	957.50
	205.31		4.70	1.684E+00	Li:	ne Not Found	

Flag: "*" = Keyline

L28833 R2 / 144 of 162

2 Page : Summary of Nuclide Activity Acquisition date : 9-JUN-2006 11:15:18 Sample ID : 10L28833-18 Total number of lines in spectrum 11 Number of unidentified lines 9 Number of lines tentatively identified by NID 2 18.18% Nuclide Type : natural Uncorrected Decay Corr Decay Corr 2-Sigma 2-Sigma Error %Error Flags pCi/L pĊi/L Nuclide Hlife Decay 708.00 53.32E+00 7.532E+00 7.532E+00 1.28E+09Y 1.00 K-40 957.50 6.465E+00 61.91E+00 1.00 6.465E+00 1600.00Y RA-226 957.50 K 37.60E-01 3.927E-01 1.00 3.927E-01 U-235 7.04E+08Y ------_ _ _ _ _ _ _ _ _ _ _ _ _ Total Activity : 1.439E+01 1.439E+01 1.439E+01 Grand Total Activity : 1.439E+01 "M" = Manually accepted Flags: "K" = Keyline not found "A" = Nuclide specific abn. limit "E" = Manually edited

L28833 R2 / 145 of 162 Unidentified Energy Lines Page : 3								162			
Sample ID : 10L28833-18 Acquisition date : 9-JUN-2006 11:15:18											
It Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	61	115 99 24	1.64 1.97 2.51 1.89 1.05	184.78 279.30 396.55 703.81 1191.74 1219.02 3514.48	181 275 391 699 1187 1213 3508	8 9 11 10 12 12 11	3.19E-03 2.15E-03 7.82E-03 3.82E-03 5.66E-04 3.52E-03 3.51E-03 3.53E-03 3.25E-04	**** 64.0 **** *** 75.4 80.9 33.0	1.52E+( 1.91E+( 1.71E+( 1.17E+( 7.85E-( 7.72E-( 3.40E-(	)0 )0 )0 )0 )1 )1 )1	
Flags: "T" =	Tentative	ely asso	ociate	ed							
Summary of N	uclide Ac [.]	tivity									
Total numbe Number of u Number of l	nidentifi	ed lines	3		NID	11 9 2	18	.18%			
Nuclide Type Nuclide K-40 1.28 RA-226 160	Hlife D E+09Y	Wt Und ecay 1.00 7 1.00 6	.532E+ .465E+	ted Dec 		rr 00	2-Sigma 1	Error +00	2-Sigma %Error 708.00 957.50		
Tot	al Activi		.400E+	-01 1.	400E+	01					
Grand Tot	al Activi	ty : 1	.400E+	-01 1.	400E+	01					
Flags: "K" = "E" =	Keyline Manually						lly accep de specif		. limit		
Interference	Report										
No interfere	nce corre	ction p	erform	ned							
Combined Act	ivity-MDA	Report									
Identified Nuclides											
Nuclide	Activit (pCi/L	-	Act	error	(	MD. pCi		MDA e	rror	Act/MD.	A
K-40 RA-226	7.532E+ 6.465E+			32E+01 91E+01			E+01 E+02	0.000 0.000		0.17 0.05	
Non-Ide	entified N	uclides									
Nuclide	Key-Lin Activit (pCi/L	y K.L.		error	(	MD. pCi		MDA e	error	Act/MD	A

## L28833 R2 / 146 of 162

				•	
BE-7	2.328E+01	2.846E+01	4.887E+01	0.000E+00	0.476
NA-24	-2.581E+00	8.309E+00	Half-Life too		0 0 0 0
CR-51	-4.573E+01	3.618E+01	5.698E+01	0.000E+00	-0.803
MN-54	6.623E-01	2.984E+00	4.988E+00	0.000E+00	0.133
CO-57	-1.671E+00	2.983E+00	4.872E+00	0.000E+00	-0.343
CO-58	1.443E-01	3.118E+00	5.169E+00	0.000E+00	0.028
FE-59	2.312E+00	6.878E+00	1.166E+01	0.000E+00	0.198
CO-60	2.030E+00	2.842E+00	4.949E+00	0.000E+00	0.410
ZN-65	4.035E+00	6.155E+00	1.066E+01	0.000E+00	0.378
SE-75	-2.232E+00	4.292E+00	7.006E+00	0.000E+00	-0.319
SR-85	2.254E+01	4.014E+00	7.796E+00	0.000E+00	2.891
Y-88	-6.658E-01	3.564E+00	5.728E+00	0.000E+00	-0.116
NB-94	-2.853E+00	2.871E+00	4.409E+00	0.000E+00	-0.647
NB-95	1.594E+00	3.140E+00	5.357E+00	0.000E+00	0.298
ZR-95	2.815E+00	5.564E+00	9.500E+00	0.000E+00	0.296
MO-99	5.787E+01	7.249E+02	1.210E+03	0.000E+00	0.048
RU-103	8.651E-01	3.823E+00	6.391E+00	0.000E+00	0.135
RU-106	2.201E+01	2.861E+01	4.754E+01	0.000E+00	0.463
AG-110m	1.021E+00	2.806E+00	4.676E+00	0.000E+00	0.218
SN-113	-2.715E+00	4.142E+00	6.573E+00	0.000E+00	-0.413
SB-124	-5.155E-01	7.978E+00	5.494E+00	0.000E+00	-0.094
SB-124 SB-125	5.952E+00	8.581E+00	1.435E+01	0.000E+00	0.415
SB-125 TE-129M	1.905E+01	4.132E+01	7.004E+01	0.000E+00	0.272
I-131	-1.517E+00	1.013E+01	1.648E+01	0.000E+00	-0.092
BA-133	3.472E+00	5.025E+00	7.206E+00	0.000E+00	0.482
CS-134	2.831E+00	6.984E+00	5.256E+00	0.000E+00	0.539
CS-134 CS-136	-1.784E+00	5.788E+00	9.382E+00	0.000E+00	-0.190
CS-136 CS-137	8.393E-01	3.053E+00	5.060E+00	0.000E+00	0.166
CE-139	1.363E+00	3.186E+00	5.272E+00	0.000E+00	0.258
	3.707E+00	2.168E+01	3.605E+01	0.000E+00	0.103
BA-140	1.014E+00	7.291E+00	1.220E+01	0.000E+00	0.083
LA-140	1.734E+00	7.890E+00	1.110E+01	0.000E+00	0.156
CE-141	5.491E+00	2.747E+01	3.875E+01	0.000E+00	0.142
CE-144	-1.022E+01	1.151E+01	1.519E+01	0.000E+00	-0.673
EU-152	-2.930E+01	6.078E+00	9.941E+00	0.000E+00	-0.295
EU-154	2.270E-01	1.200E+01	1.905E+01	0.000E+00	0.012
AC-228	2.589E+00	6.151E+00	1.006E+01	0.000E+00	0.257
TH-228		1.194E+01	1.897E+01	0.000E+00	0.012
TH-232	2.260E-01	2.749E+01	3.924E+01	0.000E+00	0.463
U-235	1.818E+01	3.347E+02	6.019E+02	0.000E+00	0.891
U-238	5.363E+02	2.834E+01	4.080E+01	0.000E+00	-0.697
AM-241	-2.845E+01	2.0345+01	4.00001.01		

L28833 R2 / 147 of 162

0.012

0.463

0.891

-0.697

1.897E+01,,

3.924E+01,,

6.019E+02,,

4.080E+01,,

A,10L28833-18	,06/09/2006	16:01,05/26/2	006 13:15,	3.017E+00,WG	L28833-18 E
B,10L28833-18	,LIBD	,06/	07/2006 09:32	2,103L083004	
C,K-40 ,YES,	7.532E+00,	5.332E+01,	4.374E+01,,	0.172	
C,RA-226 ,YES,	6.465E+00,	6.191E+01,	1.183E+02,,	0.055	
C, BE-7 , NO ,	2.328E+01,	2.846E+01,	4.887E+01,,	0.476	
C,CR-51 ,NO ,	-4.573E+01,	3.618E+01,	5.698E+01,,	-0.803	
C, MN-54 , NO ,	6.623E-01,	2.984E+00,	4.988E+00,,	0.133	
C, CO-57 , NO ,	-1.671E+00,	2.983E+00,	4.872E+00,,	-0.343	
C, CO-58 , NO ,	1.443E-01,	3.118E+00,	5.169E+00,,	0.028	
C,FE-59 ,NO ,	2.312E+00,	6.878E+00,	1.166E+01,,	0.198	
C, CO-60 , NO ,	2.030E+00,	2.842E+00,	4.949E+00,,	0.410	
C, ZN-65 , NO ,	4.035E+00,	6.155E+00,	1.066E+01,,	0.378	
C,SE-75 ,NO ,	-2.232E+00,	4.292E+00,	7.006E+00,,	-0.319	
C,SR-85 ,NO ,	2.254E+01,	4.014E+00,	7.796E+00,,	2.891	
	-6.658E-01,	3.564E+00,	5.728E+00,,	-0.116	
C,Y-88 ,NO , C,NB-94 ,NO ,	-2.853E+00,	2.871E+00,	4.409E+00,,	-0.647	
C,NB-95 ,NO ,	1.594E+00,	3.140E+00,	5.357E+00,,	0.298	
•	2.815E+00,	5.564E+00,	9.500E+00,,	0.296	
•	5.787E+01,	7.249E+02,	1.210E+03,,	0.048	
C,MO-99 ,NO ,	8.651E-01,	3.823E+00,	6.391E+00,,		
C,RU-103 ,NO ,	2.201E+01,	2.861E+01,	4.754E+01,,	0.463	
C,RU-106 ,NO ,	1.021E+00,	2.806E+00,	4.676E+00,,	0.218	
C,AG-110m ,NO , C,SN-113 ,NO ,	-2.715E+00,	4.142E+00,	6.573E+00,,		
	-5.155E-01,	7.978E+00,	5.494E+00,,		
C,SB-124 ,NO ,	5.952E+00,	8.581E+00,	1.435E+01,,		
C,SB-125 ,NO ,	1.905E+01,	4.132E+01,	7.004E+01,,		
C,TE-129M ,NO ,	-1.517E+00,	1.013E+01,	1.648E+01,,		
C,I-131 ,NO ,	3.472E+00,	5.025E+00,	7.206E+00,,		
C, BA-133 , NO ,	2.831E+00,	6.984E+00,	5.256E+00,,		
C,CS-134 ,NO ,	-1.784E+00,	5.788E+00,	9.382E+00,,		
C,CS-136 ,NO ,	8.393E-01,	3.053E+00,	5.060E+00,,		
C,CS-137 ,NO ,	1.363E+00,	3.186E+00,	5.272E+00,,		
C,CE-139 ,NO ,	3.707E+00,	2.168E+01,	3.605E+01,,		
C,BA-140 ,NO ,		7.291E+00,	1.220E+01,,		
C,LA-140 ,NO ,	1.014E+00,	7.890E+00,	1.110E+01,,		
C,CE-141 ,NO ,	1.734E+00,	2.747E+01,	3.875E+01,		
C,CE-144 ,NO ,	5.491E+00,	1.151E+01,	1.519E+01,		
C,EU-152 ,NO ,		1.131E+01, 6.078E+00,	9.941E+00,		
C,EU-154 ,NO ,		1.200E+01,	1.905E+01,		
C,AC-228 ,NO ,			1.006E+01,		
C,TH-228 ,NO ,	2.589E+00,	6.151E+00,	1 007001		

1.194E+01,

2.749E+01,

3.347E+02,

2.834E+01,

2.260E-01,

1.818E+01,

5.363E+02,

-2.845E+01,

C,TH-232

C,U-235

C,U-238

C,AM-241

,NO,

,NO,

,NO,

,NO,

L28833 R2 / 148 of 162

Sec. Review: Analyst: LIMS: ____

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 9-JUN-2006 16:51:42.84 TBE04 P-40312B HpGe ******** Aquisition Date/Time: 9-JUN-2006 12:57:07.37 LIMS No., Customer Name, Client ID: WG L28833-19 EXELON/ZION

Sample ID :	04L28833-19		26-MAY-2006 11:	:00:00.
Sample Type :	WG	Geometry :		
Quantity :	3.02650E+00 L		04BG060306MT	
Start Channel :	90 Energy Tol : 1.00000	Real Time :	0 03:54:32.42	
End Channel :		Live time :	0 03:54:30.05	
MDA Constant :	0.00 Library Used: LIBD			
Pk It Energy	Area Bkgnd FWHM Channel	%Eff	Cts/Sec %Err	Fit

1	1	53.26	76	288	1.61	106.99			42.3 1.44H	
2	1	66.01*	92	383	1.26	132.48	6.52E-01	6.53E-03	40.1 6.38H	3+00
3	1	139.38	212	380	2.54	279.21			19.7 3.04H	
4	1	198.50*	37	301	2.00	397.42	1.86E+00	2.62E-03	98.6 2.271	Ξ+00
5	1	295.39	47	185	2.07	591.18	1.45E+00	3.31E-03	57.1 1.82H	Z+00
6	1	584.42	96	74	1.02	1169.07	8.76E-01	6.79E-03	19.8 3.48H	Ξ+01
7	1	597.14	109	89	1.16	1194.52			18.1 6.791	
8	1	609.35*	31	88	2.20	1218.93			75.4 8.221	
9	1	1461.69	77	40	2.94	2922.74			22.7 1.41	
10	1	1504.07	36	18	1.37	3007.44	4.20E-01	2.56E-03	25.8 1.97	E+01

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide	Type: natural	-			_	_	
					Uncorrected	Decay Corr	2-Sigma
Nuclide K-40	Energy 1460.81	Area 77	%Abn 10.67*	%Eff 4.294E-01	pCi/L 1.068E+02	pĊi/L 1.068E+02	%Error 45.33

Flag: "*" = Keyline

L28833 R2 / 149 of 162

2 Page : Summary of Nuclide Activity Acquisition date : 9-JUN-2006 12:57:07 Sample ID : 04L28833-19 10 Total number of lines in spectrum 8 Number of unidentified lines Number of lines tentatively identified by NID 2 20.00% Nuclide Type : natural Uncorrected Decay Corr Decay Corr 2-Sigma pCi/L pCi/L 2-Sigma Error %Error 2-Sigma Error %Error Flags Decay pCi/L Hlife Nuclide 1.068E+02 0.484E+02 45.33 1.00 1.068E+02 K-40 1.28E+09Y _____ -------1.068E+02 Total Activity : 1.068E+02 Grand Total Activity : 1.068E+02 1.068E+02 "M" = Manually accepted Flags: "K" = Keyline not found "A" = Nuclide specific abn. limit "E" = Manually edited

									L28833	3 R2 /	150 of	162
	lentified ble ID :				AC	- niait	- i or	n date : 9	9 – .TTTN – 2	Pag 006 12		- 1.
Damp	летр.	041120055	-17			-						:
It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags	
1	53.26	76		1.61				5.37E-03		2.38E-		
1	66.01	92						6.53E-03		6.52E-		
1	139.38	212						1.51E-02		2.04E+		
1	198.50	37			397.42			2.62E-03		1.86E+		
1	295.39	47						3.31E-03		1.45E+		
1	584.42	96		1.02				6.79E-03		8.76E-		
		109						7.73E-03		8.62E-		
		31			1218.93			2.24E-03 2.56E-03		8.48E- 4.20E-		
	1504.07	36				3000	ΤZ	2.56E-03	51.0	4.206-	UT I	
Flag	js: "T" =	Tentati	vely ass	ociate	d							
Sumn	nary of N	uclide Ad	ctivity									
	al numbe:				ı		10					
	mber of u						8					
Nur	mber of l	ines ten	tatively	ident	ified by	NID	2	20	.00%			
Nuc	lide Type	· natur	~1									
Nuc.	lide type	: nacuro		+d Mea	ın Wt	d Mea	n					1
								Decay C	orr 2	-Sigma	1	
Nuc	lide	ulife .	Decav	nCi/I		nCi/L		2-Sigma	Error -	%Error	· Flags	
	1.28	E+09Y	1.00 1	068E+	-02 1.	068E+	02	0.484E	+02	45.33		America
անեւ առա		L.021						<b>*</b> • <b>-</b>	1 w m.			
	Tot	al Activ	ity : 1	.068E+	-02 1.	068E+	02					
												-
(	Grand Tot	al Activ	ity : 1	.068E+	-02 1.	068E+	02					:
ចាន	qs: "K" =	. Vevline	not fou	nd	иМи	- Ma	ກາງລ	lly accep	+ed			
Γ⊥α		: Keyline : Manuall			11 Z II	- Nu	nua ~li	de specif	ic abn.	limit	-	
	·· Eu	Manuarr	y eurceu	L	Л	- 114		de specir	IC abii.		•	
Tnt	erference	Report										
	~ + + ~ + ~ ~ ~ ~	. KCPOLC										
No	interfere	ence corr	ection p	erfor	ned							
	· <u> </u>											
Com	bined Act	ivity-MD	A Report									
	- Identif	ied Nucl	ides									
	- IUCIICII	TCA MACT	TUCB	-								
		Activi	tv	Act	error		MD	A	MDA er	ror	Act/MD	A
Nuc	lide	(pCi/			<b>No. 100</b>	(	pCi					
		`т <i>г</i>	—,				L					
K-4	0	1.068E	+02	4.84	41E+01	4.	700	E+01	0.000E	2+00	2.27	2
	- Non-Ide	entified	Nuclides	5								
		Kor I	20									
		Key-Li	ty K.L.	Nat	error		MD	n N	MDA er	ror	Act/MD	בו
Nua	lide	ACCIVI (pCi/			error	(	pCi		indra et		ACC/ PL	
muc	TTUE	(bcr)	I, IUEU	a a		(	PCT	/ /				
BE-	7	1.160E	2+01	2.5	75E+01	4.	360	E+01	0.000H	E+00	0.26	6
NA-		-9.450E			74E+00			Life too				

				L28833 R2 /	/ 151 of 162
		3.250E+01	5.092E+01	0.000E+00	-0.731
CR-51	-3.720E+01	3.250E+01 2.709E+00	3.926E+00	0.000E+00	-0.974
MN-54	-3.822E+00	2.482E+00	4.146E+00	0.000E+00	-0.048
CO-57	-1.996E-01		5.042E+00	0.000E+00	-0.063
CO-58	-3.183E-01	3.106E+00	1.037E+01	0.000E+00	-0.093
FE-59	-9.613E-01	6.421E+00	5.958E+00	0.000E+00	0.547
CO-60	3.259E+00	3.444E+00	1.031E+01	0.000E+00	0.227
ZN-65	2.344E+00	6.120E+00	6.199E+00	0.000E+00	0.109
SE-75	6.755E-01	3.700E+00	7.245E+00	0.000E+00	2.363
SR-85	1.712E+01	3.759E+00		0.000E+00	0.229
Y-88	1.362E+00	3.481E+00	5.935E+00	0.000E+00	-0.026
NB-94	-1.142E-01	2.663E+00	4.388E+00	0.000E+00	0.313
NB-95	1.677E+00	3.156E+00	5.363E+00	0.000E+00 0.000E+00	-0.300
ZR-95	-2.554E+00	5.355E+00	8.504E+00		0.428
MO-99	5.371E+02	7.273E+02	1.254E+03	0.000E+00	0.353
RU-103	2.155E+00	3.592E+00	6.100E+00	0.000E+00	-0.114
RU-106	-4.685E+00	2.602E+01	4.110E+01	0.000E+00	
AG-110m	4.746E-01	2.852E+00	4.782E+00	0.000E+00	0.099
SN-113	2.394E+00	3.864E+00	6.469E+00	0.000E+00	0.370
SB-124	4.083E+00	6.218E+00	5.221E+00	0.000E+00	0.782
SB-125	-2.216E+00	7.559E+00	1.240E+01	0.000E+00	-0.179
TE-129M	-9.875E+00	4.168E+01	6.827E+01	0.000E+00	-0.145
I-131	-5.399E+00	9.042E+00	1.433E+01	0.000E+00	-0.377
BA-133	5.229E+00	3.995E+00	6.889E+00	0.000E+00	0.759
CS-134	5.371E+00	5.437E+00	4.846E+00	0.000E+00	1.108
CS-136	-3.768E+00	5.746E+00	8.943E+00	0.000E+00	-0.421
CS-137	-1.940E+00	3.145E+00	5.030E+00	0.000E+00	-0.386
CE-139	1.472E-01	2.730E+00	4.512E+00	0.000E+00	0.033
BA-140	6.186E+00	2.005E+01	3.348E+01	0.000E+00	0.185
LA-140	-1.485E+00	7.365E+00	1.195E+01	0.000E+00	-0.124
CE-141	1.822E+00	6.593E+00	9.479E+00	0.000E+00	0.192
CE-144	2.244E-01	2.218E+01	3.168E+01	0.000E+00	0.007
EU-152	-1.439E+01	8.897E+00	1.355E+01	0.000E+00	-1.062
EU-154	-1.645E+00	5.086E+00	8.432E+00	0.000E+00	-0.195
RA-226	-3.532E+00	6.749E+01	1.075E+02	0.000E+00	-0.033
AC-228	-6.101E+00	1.135E+01	1.786E+01	0.000E+00	-0.342
TH-228	9.238E+00	5.550E+00	9.464E+00	0.000E+00	0.976
TH-232	-6.073E+00	1.130E+01	1.778E+01	0.000E+00	-0.342
U-235	-1.272E+00	2.296E+01	3.255E+01	0.000E+00	-0.039
U-238	2.169E+02	3.261E+02	5.627E+02	0.000E+00	0.385
0-238 AM-241	-3.622E+01	3.102E+01	4.190E+01	0.000E+00	-0.864
AM-241	-3.0226401	0.1020101			

L28833 R2 / 152 of 162

A,04L28833-19	,06/09/2006	16:51,05/26/2	2006 11:00,	3.026E+00,WG	П78833-19 Е
B,04L28833-19 C,K-40 ,YES,	,LIBD	,06/	02/2006 09:0	4,043L082004	
C,K-40 ,YES,	1.068E+02,	4.841E+01,	4.700E+01,,	2.272	
, , ,		2.575E+01,			
C,CR-51 ,NO ,		3.250E+01,			
C,MN-54 ,NO ,	-3.822E+00,		3.926E+00,,		
C,CO-57 ,NO ,	-1.996E-01,	2.482E+00,	4.146E+00,,		
C,CO-58 ,NO ,	-3.183E-01,	3.106E+00,	5.042E+00,,		
C,FE-59 ,NO ,		6.421E+00,	1.037E+01,,		
C,CO-60 ,NO ,	3.259E+00,	3.444E+00,	5.958E+00,,		
C,ZN-65 ,NO ,	2.344E+00,	6.120E+00,	1.031E+01,,		
C,SE-75 ,NO ,	6.755E-01,	3.700E+00,	6.199E+00,,		
C, SR-85 , NO ,	1.712E+01,	3.759E+00,	7.245E+00,,	2.363	
C,Y-88 ,NO ,	1.362E+00,	3.481E+00,	5.935E+00,,	0.229	
C,NB-94 ,NO ,	-1.142E-01,	2.663E+00,	4.388E+00,,	-0.026	
C,NB-95 ,NO ,	1.677E+00,	3.156E+00,	5.363E+00,,		
C,ZR-95 ,NO ,	-2.554E+00,	5.355E+00,	8.504E+00,,	-0.300	
C,MO-99 ,NO ,	5.371E+02,	7.273E+02,	1.254E+03,,		
	2.155E+00,			0.353	
	-4.685E+00,	2.602E+01,	4.110E+01,,	-0.114	
C,AG-110m ,NO ,	4.746E-01,	2.852E+00,	4.782E+00,,	0.099	
C,SN-113 ,NO ,	2.394E+00,	3.864E+00,	6.469E+00,,	0.370	
		6.218E+00,	5.221E+00,,		
	-2.216E+00,	7.559E+00,	1.240E+01,,		
C,TE-129M ,NO ,	-9.875E+00,	4.168E+01,	6.827E+01,,		
	-5.399E+00,	9.042E+00,			
C,BA-133 ,NO ,	5.229E+00,	3.995E+00,	6.889E+00,,		
C,CS-134 ,NO ,	5.371E+00,	5.437E+00,	4.846E+00,,		
C,CS-136 ,NO ,	-3.768E+00,	5.746E+00,	8.943E+00,,		
C,CS-137 ,NO ,		3.145E+00,	5.030E+00,,		
C,CE-139 ,NO ,	1.472E-01,	2.730E+00,	4.512E+00,,		
C,BA-140 ,NO ,	6.186E+00,	2.005E+01,	3.348E+01,,		
C,LA-140 ,NO ,		7.365E+00,			
C,CE-141 ,NO ,	1.822E+00,	6.593E+00,	9.479E+00,,		
C,CE-144 ,NO ,	2.244E-01,	2.218E+01,	3.168E+01,,		
C,EU-152 ,NO ,	-1.439E+01,	8.897E+00,	1.355E+01,,		
C,EU-154 ,NO ,	-1.645E+00,	5.086E+00,	8.432E+00,,	-0.195	
C,RA-226 ,NO ,	-3.532E+00,	6.749E+01,	1.075E+02,,	-0.033	
C,AC-228 ,NO ,	-6.101E+00,	1.135E+01,	1.786E+01,,	-0.342	
C,TH-228 ,NO ,	9.238E+00,	5.550E+00,	9.464E+00,,		
C,TH-232 ,NO ,	-6.073E+00,	1.130E+01,	1.778E+01,,	-0.342	
C,U-235 ,NO ,	-1.272E+00,	2.296E+01,	3.255E+01,,		
C,U-238 ,NO ,	2.169E+02,	3.261E+02,	5.627E+02,		
C,AM-241 ,NO ,	-3.622E+01,	3.102E+01,	4.190E+01,	, -0.864	

L28833 R2 / 153 of 162

Sec. Review: Analyst: LIMS:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 9-JUN-2006 16:51:56.96 TBE07 P-10768B HpGe ******* Aquisition Date/Time: 9-JUN-2006 12:51:13.46 LIMS No., Customer Name, Client ID: WGL28833-20 EXELON/ZION

Sample ID Sample Type Quantity Start Channe End Channel MDA Constant	: WG : 3.00410E+0 1 : 40 Er : 4090 Ph		5.00000	Geometry BKGFILE Real Time	: 073L082 : 07BG060 : 0 04:00	)306MT ):35.31
Pk It Ene	rgy Area	Bkgnd FWHM	(Channel	%Eff	Cts/Sec	%Err Fit
1566	.48* 135	341 1.28	133.53	8.12E-01	9.36E-03	26.5 1.57E+00
2 1 139	.67* 125	386 1.28	280.02	2.36E+00	8.68E-03	31.4 1.96E+00
3 1 198	.48* 105	356 1.57	397.73	2.24E+00	7.29E-03	38.8 4.77E-01
4 1 499	.83 46	66 1.47	1000.76	1.25E+00	3.16E-03	32.8 1.79E+00
5 1 596	.12 84	108 1.67	1193.40	1.10E+00	5.85E-03	27.8 8.09E-01

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Flag: "*" = Keyline

L28833 R2 / 154 of 162 Page : 2 Summary of Nuclide Activity Acquisition date : 9-JUN-2006 12:51:13 Sample ID : 07L28833-20 5 Total number of lines in spectrum Number of unidentified lines 5 Number of lines tentatively identified by NID 0.00% 0 **** There are no nuclides meeting summary criteria **** "M" = Manually accepted "A" = Nuclide specific abn. limit Flags: "K" = Keyline not found "E" = Manually edited

Page : 3 Unidentified Energy Lines Acquisition date : 9-JUN-2006 12:51:13 Sample ID : 07L28833-20 Bkgnd FWHM Channel Left Pw Cts/Sec %Err %Eff Flags Area It Energy 122 16 9.36E-03 52.9 8.12E-01 5 66.48 135 341 1.28 133.53 2.36E+00 139.67 125 386 1.28 280.02 276 9 8.68E-03 62.7 1 397.73 356 1.57 393 11 7.29E-03 77.6 2.24E+00 198.48 105 1 1000.76 998 7 3.16E-03 65.5 1.25E+00 66 1.47 46 1 499.83 108 1.67 1193.40 1187 13 5.85E-03 55.5 1.10E+00 84 1 596.12 Flags: "T" = Tentatively associated Summary of Nuclide Activity Total number of lines in spectrum 5 5 Number of unidentified lines Number of lines tentatively identified by NID 0 0.00% **** There are no nuclides meeting summary criteria **** "M" = Manually accepted Flags: "K" = Keyline not found "A" = Nuclide specific abn. limit "E" = Manually edited

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Non-Identified Nuclides ----

Nuclide	Key-Line Activity (pCi/L)	K.L. Ided	Act error	MDA (pCi/L)	MDA error	Act/MDA
BE-7	1.504E+00		2.491E+01	4.067E+01	0.000E+00	0.037
NA-24	9.916E+00		6.542E+00	Half-Life t		
K-40	4.822E+00		3.458E+01	6.116E+01	0.000E+00	0.079
CR-51	-3.936E+01		2.845E+01	4.502E+01	0.000E+00	-0.874
MN-54	1.784E+00		2.518E+00	4.328E+00	0.000E+00	0.412
CO-57	-8.443E-01		2.393E+00	3.872E+00	0.000E+00	-0.218
CO-58	-7.301E-04		2.614E+00	4.327E+00	0.000E+00	0.000
FE-59	1.200E+00		5.533E+00	9.299E+00	0.000E+00	0.129
CO-60	-5.849E-01		2.522E+00	4.039E+00	0.000E+00	-0.145
ZN-65	-1.335E+00		5.277E+00	8.583E+00	0.000E+00	-0.156
SE-75	-3.694E+00		3.545E+00	5.580E+00	0.000E+00	-0.662
SR-85	1.910E+01		3.320E+00	6.518E+00	0.000E+00	2.930
Y-88	-1.462E+00		2.865E+00	4.512E+00	0.000E+00	-0.324
NB-94	-6.452E-01		2.488E+00	4.005E+00	0.000E+00	-0.161
NB-95	1.303E+00		2.770E+00	4.720E+00	0.000E+00	0.276
ZR-95	-4.256E+00		4.807E+00	7.368E+00	0.000E+00	-0.578
MO-99	-5.494E+02		6.306E+02	9.730E+02	0.000E+00	-0.565
RU-103	2.063E+00		3.200E+00	5.352E+00	0.000E+00	0.386
RU-106	-9.765E+00		2.394E+01	3.856E+01	0.000E+00	-0.253
AG-110m	6.319E-01		2.478E+00	4.117E+00	0.000E+00	0.153
SN-113	-6.138E-01		3.367E+00	5.503E+00	0.000E+00	-0.112
SB-124	-8.298E+00		3.905E+00	4.644E+00	0.000E+00	-1.787
SB-125	-5.714E+00		7.191E+00	1.137E+01	0.000E+00	-0.502

TE-129M	-1.506E+01	3.546E+01	5.670E+01	0.000E+00	-0.266
I-131	-3.223E+00	7.792E+00	1.267E+01	0.000E+00	-0.254
BA-133	2.105E+00	3.446E+00	5.832E+00	0.000E+00	0.361
CS-134	-1.154E+00	2.821E+00	4.569E+00	0.000E+00	-0.253
CS-136	-1.290E+00	4.701E+00	7.645E+00	0.000E+00	-0.169
CS-137	-8.162E-01	2.656E+00	4.278E+00	0.000E+00	-0.191
CE-139	5.681E-01	2.413E+00	4.052E+00	0.000E+00	0.140
BA-140	1.177E+01	1.754E+01	3.006E+01	0.000E+00	0.392
LA-140	-3.672E+00	6.173E+00	9.634E+00	0.000E+00	-0.381
CE-141	1.073E-01	6.174E+00	8.521E+00	0.000E+00	0.013
	••••	010.00			
U-238	3.803E+02	2.717E+02	4.834E+02	0.000E+00	0.787
AM-241	5.418E+00	2.542E+01	3.532E+01	0.000E+00	0.153

		, , ,				 
			16:51,05/26/2			ΕX
B,07L28833-	20	,LIBD	,06/ 2.491E+01,	07/2006 09:3	2,073L082504	
C,BE-7 ,	NO,	1.504E+00,	2.491E+01,	4.067E+01,,	0.037	
			3.458E+01,			
			2.845E+01,			
			2.518E+00,			
			2.393E+00,			
			2.614E+00,			
			5.533E+00,			
C,CO-60 ,	NO,	-5.849E-01,	2.522E+00,	4.039E+00,,	-0.145	
C,ZN-65 ,	NO,	-1.335E+00,	5.277E+00,	8.583E+00,,	-0.156	
C,SE-75 ,	NO,	-3.694E+00,	3.545E+00,	5.580E+00,,	-0.662	
C,SR-85 ,	NO,	1.910E+01,	3.320E+00,	6.518E+00,,	2.930	
С,Ү-88 ,	NO ,	-1.462E+00,	2.865E+00,	4.512E+00,,	-0.324	
C,NB-94 ,	NO ,	-6.452E-01,	2.488E+00,	4.005E+00,,	-0.161	
	NO ,	1.303E+00,	2.770E+00,	4.720E+00,,	0.276	
			4.807E+00,			
			6.306E+02,			
			3.200E+00,			
			2.394E+01,			
			2.478E+00,			
			3.367E+00,			
			3.905E+00,			
			7.191E+00,			
		-1.506E+01,				
			7.792E+00,			
		2.105E+00,		5.832E+00,,		
		-1.154E+00,		4.569E+00,,		
		-1.290E+00,				
		-8.162E-01,		4.278E+00,,		
		5.681E-01,				
		1.177E+01,				
		-3.672E+00,				
		1.073E-01,				
		3.818E+00,				
		-1.107E+01,	8.139E+00,	1.285E+01,,		
	,NO,					
	,NO ,	-7.153E+00,	6.253E+01,	1.029E+02,,		
	,NO ,	1.742E+00,	9.904E+00,	1.604E+01,,		
	,NO ,	1.512E+00,	4.975E+00,	8.206E+00,,		
	,NO ,	1.734E+00,	9.859E+00,	1.597E+01,,		
	,NO,	7.527E+00,	2.193E+01,	3.070E+01,,		
	,NO ,	3.803E+02,	2.717E+02,	4.834E+02,,		
C,AM-241	,NO,	5.418E+00,	2.542E+01,	3.532E+01,,	0.153	

L28833 R2 / 158 of 162

Sec. Review: Analyst: LIMS:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 9-JUN-2006 16:58:12.75 TBE23 03017322 HpGe ******** Aquisition Date/Time: 9-JUN-2006 13:33:50.55 LIMS No., Customer Name, Client ID: WG4096-3 WG EXELON/ZION

Sample ID	: 23WG4096-3	Smple Date: 26-MAY-2006 11:02:00.	
Sample Type	: WG	Geometry : 233L082404	
Quantity	: 3.00250E+00 L	BKGFILE : 23BG060306MT	
Start Channel	: 50 Energy Tol : 1.50000	Real Time : 0 03:24:06.25	
End Channel		Live time : 0 03:23:57.84	
MDA Constant	: 0.00 Dibiary osea. Hibb		
Pk It Energ	gy Area Bkgnd FWHM Channel	l %Eff Cts/Sec %Err Fit	

PK	ТС	Ellergy	Area	Drgiia	T	011011101		
1	6	33.81*	67	10	1.24	67.94	8.28E-02 5.45E-03 24.4 2.59E+00	
2	-	35.72*	44	96	2.13	71.75	1.14E-01 3.59E-03 76.0	
3	6	38.36*	48	174	1.93	77.03	1.67E-01 3.94E-03 66.7	
4	6	40.90*	7	192	1.78	82.11	2.29E-01 5.32E-04409.9	
5	2	63.10*	79	385	1.51	126.48		
6	2	66.17	94	402	1.51	132.61	1.15E+00 7.70E-03 39.9	
7	0	92.57*	32	539	1.08	185.38	1.94E+00 2.59E-03150.7	
8	0	185.72*	76	354	1.21	371.55		
9	0	198.06*	70	303	1.02	396.22	2.11E+00 5.71E-03 47.7	
10	0	595.32	43	108			9.57E-01 3.52E-03 53.5	
11	0	608.94*	22	71	1.68	1217.55	9.41E-01 1.82E-03 88.6	

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

NUCLICE	Type: nacura	1			Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	рСі/L	pCi/L	%Error
RA-226	186.21	76	3.28*	2.174E+00	7.839E+01	7.839E+01	106.58

Flag: "*" = Keyline

L28833 R2 / 159 of 162

2 Page : Summary of Nuclide Activity Acquisition date : 9-JUN-2006 13:33:50 Sample ID : 23WG4096-3 Total number of lines in spectrum 11 Number of unidentified lines 10 Number of lines tentatively identified by NID 1 9.09% Nuclide Type : natural Uncorrected Decay Corr Decay Corr 2-Sigma pCi/L 2-Sigma Error %Error Flags pCi/L Nuclide Hlife Decay 8.355E+01 106.58 7.839E+01 7.839E+01 RA-226 1.00 1600.00Y _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 7.839E+01 7.839E+01 Total Activity : Grand Total Activity : 7.839E+01 7.839E+01 "M" = Manually accepted Flags: "K" = Keyline not found "A" = Nuclide specific abn. limit "E" = Manually edited

								L2883	33 R2 /	160 of	162
Unidentified				Act	mieit	i on	date : 9	9 – ,TTTN – (	Page 2006 13		
Sample ID :											:
It Energy	Area	Bkgnd	FWHM	Channe⊥	Left 1	Pw	Cts/Sec	%Err		Flags	
6 33.81	67	10	1.24	67.94			5.45E-03 3.59E-03		8.28E- 1.14E-		
6 35.72 6 38.36	$\begin{array}{c} 44\\ 48\end{array}$	уь 174	2.13 1.93 1.78	77.03	65	2.2	3.94E-03	* * * *	1.14E- 1.67E-		
6 40.90	7	192	1.78	82.11	65 3	22	5.32E-04	* * * *	2.29E-	01	5 2 2
2 63.10	70	205	1.51	126.48	121	17	6.49E-03	* * * *	1.03E+		
2 66.17		402		132.61			7.70E-03		1.15E+ 1.94E+		
0 92.57	32	539	1.08	185.38 396.22			2.59E-03 5.71E-03				
0 198.06 0 595.32	70 43	303 108	1.02 1.79	370.22			3.52E-03				
0 608.94	22	71	1.68	1217.55	1213	10	1.82E-03	* * * *	9.41E-		
Flags: "T" :	= Tentativ	vely ass	ociated	£							
Summary of 1	Nuclide Ad	ctivity									
Total numb	er of lin(	es in sp	ectrum			11					
Number of	unidentif:	ied line	S			10		_			
Number of	lines tent	tatively	ident	ified by	NID	1	9	.09%			
Nuclide Typ	- natur	~ 1									
MUCTICE IND.	e : nacuro	aı W	td Mean	n Wt	d Mean						
		Un	correc	ted Dec	ay Cor	r	Decay C		2-Sigma		
Nuclide		Decay			pĈi/L		2-Sigma			Flags	1
RA-226 16	00.00Y		.839E+		839E+0		8.355E	+01	106.58		
То	tal Activ				839E+0						
Grand To	tal Activ	·i+v · 7	' 839E+	∩1 7.	839E+0	1					
		-						+ - A			
Flags: "K" "E"	= Keyline = Manuall						lly accep de specif		ı. limit	:	
Interferenc	e Report										
No interfer	rence corr	ection p	erform	ed							
		_									
Combined Ac	tivity-MD	A Report									
Identi	fied Nucl	ides									
	Activi		Act	error		MD		MDA e	error	Act/MI	AC
Nuclide	(pCi/		^ <b>२</b> -	^4	-		/L)	2 200	)E+00	0.60	n n
RA-226	7.839E	2+01	8.35	5E+01	ت . ل	30⊿	E+02	0.000	)臣+00	0.0	
Non-Id	lentified	Nuclides	3								
	Key-Li										~ 7
	Activi			error	1-	MD		MDA e	error	Act/M	DA
Nuclide	(pCi/	/L) Ideo	f		(1	рСт	/L)				
BE-7	-2.621E	2+00	2.97	'0E+01	5.0	032	E+01	0.00	DE+00	-0.0	52

L28833 R2 / 161 of 162	L28833	R2	1	161	of	162
------------------------	--------	----	---	-----	----	-----

				,	
NA-24	-9.422E+00	8.958E+00	Half-Life to		
K-40	-3.420E+01	4.132E+01	8.278E+01	0.000E+00	-0.413
CR-51	2.026E+01	3.719E+01	6.467E+01	0.000E+00	0.313
MN-54	1.489E+00	2.677E+00	4.842E+00	0.000E+00	0.308
CO-57	-3.032E-01	3.231E+00	5.428E+00	0.000E+00	-0.056
CO-58	-2.066E+00	3.083E+00	5.108E+00	0.000E+00	-0.404
FE-59	9.146E-01	6.093E+00	1.092E+01	0.000E+00	0.084
CO-60	2.721E+00	2.806E+00	5.387E+00	0.000E+00	0.505
ZN-65	5.210E+00	6.495E+00	1.203E+01	0.000E+00	0.433
SE-75	-1.018E+00	4.437E+00	7.542E+00	0.000E+00	-0.135
SR-85	1.819E+01	4.069E+00	7.970E+00	0.000E+00	2.282
Y-88	-7.127E-01	2.910E+00	5.159E+00	0.000E+00	-0.138
NB-94	2.822E-01	2.787E+00	4.866E+00	0.000E+00	0.058
NB-95	5.656E-01	3.294E+00	5.772E+00	0.000E+00	0.098
ZR-95	-2.584E+00	5.852E+00	9.872E+00	0.000E+00	-0.262
MO-99	6.849E+01	7.346E+02	1.286E+03	0.000E+00	0.053
RU-103	1.902E+00	3.786E+00	6.598E+00	0.000E+00	0.288
RU-106	-6.521E+00	2.800E+01	4.809E+01	0.000E+00	-0.136
AG-110m	4.102E+00	2.843E+00	5.358E+00	0.000E+00	0.766
SN-113	-3.025E+00	4.087E+00	6.747E+00	0.000E+00	-0.448
SB-124	2.713E+00	6.847E+00	5.631E+00	0.000E+00	0.482
SB-125	1.545E+00	8.279E+00	1.426E+01	0.000E+00	0.108
TE-129M	-1.379E+01	4.527E+01	7.591E+01	0.000E+00	-0.182
I-131	-2.246E+00	1.028E+01	1.740E+01	0.000E+00	-0.129
BA-133	1.092E+00	4.222E+00	7.275E+00	0.000E+00	0.150
CS-134	4.401E+00	5.170E+00	5.815E+00	0.000E+00	0.757
CS-136	8.412E-01	5.486E+00	9.655E+00	0.000E+00	0.087
CS-137	5.283E-02	3.158E+00	5.497E+00	0.000E+00	0.010
CE-139	-1.571E-01	3.402E+00	5.687E+00	0.000E+00	-0.028
BA-140	-1.966E+00	2.281E+01	3.857E+01	0.000E+00	-0.051
LA-140	1.605E+00	6.168E+00	1.147E+01	0.000E+00	0.140
CE-141	8.202E-01	7.312E+00	1.230E+01	0.000E+00	0.067
CE-144	2.407E+00	2.534E+01	4.267E+01	0.000E+00	0.056
EU-152	-1.958E-01	1.002E+01	1.706E+01	0.000E+00	-0.011
EU-154	-2.373E+00	6.586E+00	1.099E+01	0.000E+00	-0.216
AC-228	9.368E+00	1.149E+01	1.973E+01	0.000E+00	0.475
TH-228	4.261E+00	6.372E+00	1.054E+01	0.000E+00	0.404
TH-232	9.325E+00	1.144E+01	1.964E+01	0.000E+00	0.475
U-235	-4.890E+00	2.598E+01	4.221E+01	0.000E+00	-0.116
U-238	1.114E+02	3.340E+02	5.813E+02	0.000E+00	0.192
AM-241	2.852E+01	2.072E+01	3.067E+01	0.000E+00	0.930

L28833 R2 / 162 of 162

				H20055	
A,23WG4096-3	,06/09/2006	16:58,05/26/2			G4096-3 WG EX
B,23WG4096-3	,LIBD	,06/	/01/2006 10:14	,233L082404	
C,RA-226 ,YES,	7.839E+01,	8.355E+01,	1.302E+02,,	0.602	
C, BE-7 , NO ,		2.970E+01,	5.032E+01,,	-0.052	
C,K-40 ,NO ,		4.132E+01,		-0.413	
C, CR-51 , NO ,	2.026E+01,	3.719E+01,	6.467E+01,,	0.313	
C, MN-54 , NO ,		2.677E+00,		0.308	
C, CO-57 , NO ,	-3.032E-01,	3.231E+00,	5.428E+00,,	-0.056	
C, CO-58 , NO ,		3.083E+00,		-0.404	
C,FE-59 ,NO ,	9.146E-01,			0.084	
C, CO-60 , NO ,	2.721E+00,			0.505	
C,ZN-65 ,NO ,	5.210E+00,			0.433	
C,SE-75 ,NO ,	-1.018E+00	4.437E+00,		-0.135	
	1.819E+01,			2.282	
C,Y-88 ,NO ,	-7.127E-01,			-0.138	
	2.822E-01,			0.058	
C,NB-95 ,NO ,	5.656E-01,	3.294E+00	5.772E+00,,	0.098	
	-2.584E+00,	5.852E+00	9.872E+00,,	-0.262	
•	6.849E+01,	7.346E+02,		0.053	
C,MO-99 ,NO , C,RU-103 ,NO ,	1.902E+00,		6.598E+00,,	0.288	
			4.809E+01,,		
C,RU-106 ,NO , C,AG-110m ,NO ,	4.102E+00,		5.358E+00,,	0.766	
			6.747E+00,,		
•		6.847E+00,		0.482	
C,SB-124 ,NO ,		8.279E+00,		0.108	
C,SB-125 ,NO ,		4.527E+01,			
C,TE-129M ,NO ,	-2.246E+00,	1.028E+01,		-0.129	
C,I-131 ,NO ,	1.092E+00,	4.222E+00,	7.275E+00,,	0.150	
C, BA-133 , NO ,	4.401E+00,	5.170E+00,	5.815E+00,,	0.757	
C,CS-134 ,NO ,		5.486E+00,	9.655E+00,,	0.087	
C,CS-136 ,NO ,	8.412E-01,	3.158E+00,	5.497E+00,,	0.010	
C,CS-137 ,NO ,	5.283E-02,	3.402E+00,	5.687E+00,,	-0.028	
C,CE-139 ,NO ,		2.281E+01,		-0.051	
C,BA-140 ,NO ,		6.168E+00,	1.147E+01,,	0.140	
C,LA-140 ,NO ,		•	1.230E+01,,	0.067	
C,CE-141 ,NO ,		7.312E+00,	4.267E+01,,	0.056	
C,CE-144 ,NO ,	2.407E+00,	2.534E+01,			
C,EU-152 ,NO ,	-1.958E-01,	1.002E+01,	1.706E+01,,	-0.216	
C,EU-154 ,NO ,	-2.373E+00,	6.586E+00,	1.099E+01,,	0.475	
C,AC-228 ,NO ,	9.368E+00,	1.149E+01,	1.973E+01,,	0.404	
C,TH-228 ,NO ,	4.261E+00,	6.372E+00,	1.054E+01,,	0.404	
C,TH-232 ,NO ,	9.325E+00,	1.144E+01,	1.964E+01,,	-0.116	
C,U-235 ,NO ,	-4.890E+00,	2.598E+01,	4.221E+01,, 5.813E+02,,	0.192	
C,U-238 ,NO ,	1.114E+02,	3.340E+02,	3.067E+01,,	0.930	
C,AM-241 ,NO ,	2.852E+01,	2.072E+01,	5.00/ETUI;;	0.000	

L29109 1 of 17



A Teledyne Technologies Company

2508 Quality Lane Knoxville, TN 37931 865-690-6819 (Phone)

### Work Order #: L29109 Exelon

July 6, 2006



Kathy Shaw Conestoga-Rovers & Associates 45 Farmington Valley Road Plainville CT 06062

### Case Narrative - L29109 EX001-3ESPZION-06

07/06/2006 15:27

### Sample Receipt

The following samples were received on June 30, 2006 in good condition, unless otherwise noted.

	Cross Reference Tabl	le
Client ID	Laboratory ID	Station ID(if applicable)
GW-062806-PG-01	L29109-1	
GW-062806-PG-02	L29109-2	

	Analytical Method Cross Reference Tab	le
Radiological Parameter	TBE Knoxville Method	Reference Method
H-3 (DIST)	TBE-2010	



### Case Narrative - L29109 EX001-3ESPZION-06

07/06/2006 15:27

### <u>H-3</u>

### **Quality Control**

Quality control samples were analyzed as WG4198.

<u>Method Blank</u> All blanks were within acceptance limits, unless otherwise noted.

#### Laboratory Control Sample

All laboratory control samples were within acceptance limits, unless otherwise noted.

### <u>H-3 (DIST)</u>

#### **Quality Control**

Quality control samples were analyzed as WG4198.

#### **Duplicate Sample**

Duplicates were analyzed for the following samples. All duplicate results were within acceptance limits, unless otherwise noted.

Client ID	Laboratory ID	QC Sample #
GW-062806-PG-01	L29109-1	WG4198-3

### **Certification**

This is to certify that Teledyne Brown Engineering - Environmental Services, located at 2508 Quality Lane, Knoxville, Tennessee, 37931, has analyzed, tested and documented samples as specified in the applicable purchase order.

This also certifies that requirements of applicable codes, standards and specifications have been fully met and that any quality assurance documentation which verified conformance to the purchase order is on file and may be examined upon request.

I hereby certify that the above statements are true and correct.

Keith Jeter

Operations Manager

L29109 4 of 17

## Sample Receipt Summary

L29109 5 of 17

06/30/06 11:35 SR #: SR09163		ledyne Brown Engine pt Verification/Va	
Client: Exelon	Project #:	EX001-3ESPZION-06	LIMS #:L29109
Initiated By: PMARSHALL Init Date: 06/30/06	Receive Date: 06/30/	[′] 06	
	Notificati	on of Variance	
Person Notified: Notify Date: Notify Method: Notify Comment:		Contacted By:	
	Client Resp	0750	
Person Responding: Response Date: Response Method: Response Comment			
Criteria		Yes No NA Comment	
1 Shipping container and intact.	custody seals present	NA	
2 Sample container c and intact.	ustody seals present	NA	
3 Sample containers condition	received in good	Y	
4 Chain of custody r	eceived with samples	Y	
5 All samples listed received	on chain of custody	Y	
6 Sample container l legible.	abels present and	Y	
7 Information on con correspond with ch		Y	
8 Sample(s) properly appropriate contai	preserved and in ner(s)	NA	
9 Other (Describe)		NA	

							29109
ESTOGA-ROVERS & ASSOCIATES 8615 W. Bryn Mawr Avenue	SHIPPED TO (Laboratory Name):	2		1			5-36
ohone	Moi Z	100	Generation 3	Starlow	NKL	HTCHING	NKC HTCHIVE Juipius)
	REFERENCE NUMBER:		A	<u>ш</u> ,			
CHAIN-OF-CUSTODY RECORD	045136-30		Zien (	Generating	ł	5 19,400	
SAMPLERS John M. Merry NAME: PATRO	RICK GREENE		PARAMETERS				
SEQ. DATE TIME SAMPLE IDENTIFICAT	ATION No. SAMPLE	No. ONTAI	MAN IN IN				REMARKS
6/28/66 1050 GW- 062806- P6 - 01	auter	-					
1240	il	1-304	>				
					•		
TOTAL NUMBER OF CONTAINERS	NERS	ģ					
RELINOUISHED BY: A MOUNT	DATE: 4/25/06 RI TIME: /3:48	RECEIVED BY:	BY: gene Bo	yee	-		DATE: 6 -28-6 2
RELINQUISHED BY:	DATE: RIME: ()	RECEIVED BY:	BY:				DATE: /
RELINQUISHED BY:		RECEIVED BY:	BY:				DATE: TIME:
METHOD OF SHIPMENT: Hand. delivered		AIR B	AIR BILL No.				
White -Fully Executed Copy Yellow -Receiving Laboratory Copy	SAMPLE TEAM: P.Greev E		RECEIVED	RECEIVED FOR LABORATORY BY	ORATORY		12424
-Shipper Copy rod -Sampler Copy			DATE: <u>(</u> , / 3	30 /06 TIME:	: 1100		
1001-00(SOURCE)GN-CO004							

L29109 6 of 17

L29109 7 of 17

# Internal Chain of Custody

07/06/06 15:28	Teledyne Brown Internal Chain	2 2		_{Page:} L29109 8 of 17
*****	****	****	*****	* * * * *
Sample	Containernum	1		
Prod	Analyst			
H-3 (DIST)	EJ			
Relinquish Date Relinquish	Ву		Received By	
06/30/2006 00:00			099999	Sample Custodian
******	*****	*****	*****	* * * * * *
Sample	Containernum	1		
Prod	Analyst			
H-3 (DIST)	EJ			
Relinquish Date Relinquish	Ву		Received By	
06/30/2006 00:00			099999	Sample Custodian

### Teledyne Brown Engineering Internal Chain of Custody Supplemental Sheet

### L29109

*****	*****	****	*****	****
L29109-1	WG	GW-062806-PG-01		
Process step	Prod		Analyst	Date
Login			RCHARLES	06/30/06
Aliquot	H-3 (I	DIST)	EJ	07/05/06
Count Room	H-3 (I	DIST)	KOJ	07/05/06
*******	******	*****	*****	*****
L29109-2	WG	GW-062806-PG-02		
Process step	Prod		Analyst	Date
Login			RCHARLES	06/30/06
Aliquot	Н-З (І	DIST)	EJ	07/05/06
Count Room	H-3 (1	DIST)	KOJ	07/05/06

L29109 10 of 17

# Analytical Results Summary

athy Shaw Sample ID: GW-062806-PG-01 Station:				20	07/06/06 15:53	07/06/06 15:53				*	A Teledyne	A BRUVVIN EINGINEEKING, INC. A Teledyne Technologies Company
athy Shaw Sample ID: GW-062806-Pt Station:					L29109	6(						
athy Shaw Sample ID: GW-062806-Pt Station: Description:				Conestog	a-Rover	Conestoga-Rovers & Associates	ites					
Sample ID: GW-062806-P0 Station: Description:				EX0	01-3ES	EX001-3ESPZION-06						
Station:	3-01			Collect	Start: 06	Collect Start: 06/28/2006 10:50	50		Matrix: Ground Water	ound Wate	ar	(DM)
Description				Collect Stop:	Stop:				Volume:			
I TMC Number: 1 20100-1				Receive	Date: 0(	Receive Date: 06/30/2006		∾	% Moisture:			
Radionuclide SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Values
-3 (DIST) 2010	2.20E+02	1.23E+02	1.81E+02	pCi/L	-	10	m		07/05/06	60	M	+
Sample ID: GW-062806-PG-02	3-02			Collect	Start: 06	Collect Start: 06/28/2006 12:40	40		Matrix: Ground Water	round Wate	er	(MG)
Station:				Collect Stop:	Stop:				Volume:			
Description:				Receive	Date: 06	Receive Date: 06/30/2006		N %	% Moisture:			
LIMS Number: L29109-2												
	Ā	Uncertainty			Run	Aliquot	Aliquot	Reference	Count	Count Tri	Count	Flog Voluos
Xadionucide SOF#	Conc	2 Sigma	MUC	CINIC	#	Volume	Units	Date	Date	1 ime	Onits	riag values
-3 (DIST) 2010	1.44E+02	1.22E+02	1.86E+02	pCi/L		10	m		07/05/06	60	M	U

lag Values

11 11

Compound/Analyte not detected or less than 3 sigma Activity concentration exceeds MDC and 3 sigma, peak identified(gamma only) Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value MDC exceeds customer technical specification R

11

11 11 11 * igh pec

High recovery Low recovery

-----Page 1 of

MDC - Minimum Detectable Concentration

Yes = Peak identified in gamma spectrum **** Results are reported on an as received basis unless otherwise noted

No = Peak not identified in gamma spectrum

L29109 11 of 17

L29109 12 of 17

## QC Results Summary

QC Summary Report 7/6/2006 3:31:1	ary Report 3:31:19PM		for L29109			<b>TELEDYNE</b> BROWN ENGINEERING A Teledyne Technologies Company	NE SINEERING gies Company
				H-3 Method Blank Summary	nary		
BE Sample ID (G4198-1	Radionuclide H-3	<u>Matrix</u> WO	Count Date/Time 07/05/2006 12:32	7 16	<u>Blank Result</u> < 1.730E+00	<u>Units</u> pCi/Total	<u>Qualifier</u> <u>P/F</u> U P
BE Sample ID /G4198-2 F	ionuclide	<u>Matrix</u> WO	Count Date/Time 07/05/2006 13:36	LCS Sample Summary         e       Spike Value         6       5.05E+002	ary LCS Result 5.000E+02	<u>Units</u> Spike Recovery pCi/Total 99.1	Range Qualifier P/F 70-130 + P
oike ID: 3H-041706-1 bike conc: 5.05E+002 bike Vol: 1.00E+000	06-1 002 00						
L29109	Н-3						
Associated Samp <u>SAMPLENUM</u> L29109-1 L29109-2	les for <u>M</u>	WG4198 CLIENTID GW-062806 GW-062806	'G4198 CLIENTID GW-062806-PG-01 GW-062806-PG-02				
Positive Result	tesult						÷
Compoun < 5 times * Nuclide n ** Saiteing le	Compound/analyte was analyzed, pea < 5 times the MDC are not evaluated Nuclide not detected Soliting level < 5 times activity	d, peak n uated	ot identified and/or	Compound/analyte was analyzed, peak not identified and/or not detected above MDC < 5 times the MDC are not evaluated Nuclide not detected			- 29109 -
							13
E Not evaluated	uated						of :

QC	Summar 7/6/2006	QC Summary Report 7/6/2006 3:31:19PM		for L	L29109	H-3 (DIST)			\$	TELEDVNE BROWN ENGINEERING A Teledyne Technologies Company	SINEERI Syles Compan	9 N ≽	
						Duplica	<b>Duplicate Summary</b>	y					
<u>BE Sampl</u> /G4198-3 29109-1	e ID	<u>Radionuclide</u> H-3 (DIST)	<u>Matrix</u> WG	Count Date/Time 07/05/2006 17:04	<u>te/Time</u> 6 17:04	<u>Ori</u> 2.2	Original Result 2.200E+02	DUP Result < 1.890E+02	<u>Units</u> pCi/L	RPD	<u>Rang</u> <30	Range Qualifier <u>P/F</u> <30 * NE	er <u>P/F</u> NE
s.	Positive Result Compound/ana < 5 times the M Nuclide not det	Positive Result Compound/analyte was analyzed, peak not identified and/or not detected above MDC < 5 times the MDC are not evaluated Nuclide not detected	ed, peak n Iluated	ot identified	and/or not d	etected above MI	DC				<b>H</b>	Page: 2	L29109
<del>X</del> ¥	Spiking I Pass Fail	Spiking level < 5 times activity Pass	~										14
ы	Not evaluated	luated											of

L29109 15 of 17

### Raw Data

Raw Data Sheet (rawdata) Jul 06 2006, 03:41 pm

ork Order: <b>L29109</b>		Customer: <u>Exelon</u>								Page: 1	T.				
uclide: <u>H-3 (DIST)</u>		Project : EX001-3ESPZION-06	3ESPZION-06	1									Ē	necav R	
ample ID Run Analysis	sis Reference	e Volume/	Scavenge Milking	Milking	Mount	ů	Count Counter Total	ounter	Total	Sample Bkg	Bkg		Eff. In	Eff. Ingrowth Analyst	nalyst
lient ID #	Date/time	e Aliquot	Date/time	Date/time Date/time	Weight	Weight Recovery Date/time ID counts dt(min) counts dt(min)	e/time	8	counts	dt (min) o	counts	dt (min)	Ъ.	Factor	
L29109-1 H-	H-3 DIST				0	05-	05-ju1-06	LS7	181	60	60 1.99	60	.211		БJ
		10 ml				14	14:58								
3W-062806-PG-01															
<pre>ctivity: 2.2E+02 * Error: 1.23E+02</pre>	rror: 1.23E+02	MDC: 1.81E+02													
п29109-2 н-	H-3 DIST				0	05-	05-ju1-06	LS7	159	60	1.99	60	.206		БJ
		10 ml				16	16:01								
3W-062806-PG-02															
ctivity: 1.44E+02 Error: 1.22E+02	ror: 1.22E+02	MDC: 1.86E+02 *	*												

L29109 16 of 17

Raw Data Sheet (rawdata) Jul 06 2006, 03:41 pm

Decay & Eff. Ingrowth Analyst Factor БJ .162 Sample Bkg Bkg dt(min) counts dt(min) 26.66 4.07 135 counts 1598 Counter Total ID counts 5 LS5 1598 Mount Count ( Weight Recovery Date/time 0 02-jul-06 04:52 Customer: Environmental Monitoring and T Scavenge Milking Date/time Date/time Project : EN003-3EREG-02 Volume/ Aliquot 10 mI Reference Date/time Analysis н-3 ork Order: 129053 Run # uclide: <u>H-3</u> ample ID lient ID L29053-1

MDC: 5.09E+02 06050861-01A ctivity: 1.56E+04 * Error: 9.44E+02

Page: 1

BROWN ENGINEERING

A Teledyne Technologies Company

2508 Quality Lane Knoxville, TN 37931 865-690-6819 (Phone)

## Work Order #: L29321 R1 Exelon

July 28, 2006



Kathy Shaw Conestoga-Rovers & Associates 45 Farmington Valley Road Plainville CT 06062

### Case Narrative - L29321 EX001-3ESPZION-06

07/28/2006 14:16

### Sample Receipt

The following samples were received on July 21, 2006 in good condition, unless otherwise noted.

Revision 1:

Zinc-65 was detected in sample GW-071706-JL-TW-ZN-101 (L29321-2) at slightly above the detection level. The sample was recounted and the Zn-65 did not confirm. The original results should be considered a false positive.

		Cross Reference Tab	le
	Client ID	Laboratory ID	Station ID(if applicable)
1	GW-071706-JL-TW-ZN-102	L29321-1	
	GW-071706-JL-TW-ZN-101	L29321-2	
	GW-071706-JL-TW-ZN-103	L29321-3	
	GW-071706-JLTW-ZN-100	L29321-4	

### Analytical Method Cross Reference Table

Radiological Parameter	TBE Knoxville Method	Reference Method
Gamma Spectrometry	TBE-2007	EPA 901.1
H-3 (DIST)	TBE-2010	
TOTAL SR	TBE-2018	EPA 905.0



### Case Narrative - L29321 EX001-3ESPZION-06

07/28/2006 14:16

### Gamma Spectroscopy

Client requested confirmation analysis. **Quality Control** 

Quality control samples were analyzed as WG4249.

Duplicate Sample

Duplicates were analyzed for the following samples. All duplicate results were within acceptance limits, unless otherwise noted.

Client ID GW-071706-JL-TW-ZN-102 Laboratory IDQC Sample #L29321-1WG4249-1

### <u>H-3 (DIST)</u>

#### **Quality Control**

Quality control samples were analyzed as WG4251.

Method Blank All blanks were within acceptance limits, unless otherwise noted.

#### Laboratory Control Sample

All laboratory control samples were within acceptance limits, unless otherwise noted.

#### **Duplicate Sample**

Duplicates were analyzed for the following samples. All duplicate results were within acceptance limits, unless otherwise noted.

Client ID	Laboratory ID	QC Sample #
GW-071706-JL-TW-ZN-102	L29321-1	WG4251-3



### Case Narrative - L29321 EX001-3ESPZION-06

07/28/2006 14:16

#### TOTAL SR

#### **Quality Control**

Quality control samples were analyzed as WG4253.

Method Blank

All blanks were within acceptance limits, unless otherwise noted.

Laboratory Control Sample

All laboratory control samples were within acceptance limits, unless otherwise noted.

#### **Duplicate Sample**

Duplicates were analyzed for the following samples. All duplicate results were within acceptance limits, unless otherwise noted.

Client ID GW-071706-JL-TW-ZN-102 Laboratory ID QC Sample # L29321-1 WG4253-3

#### **Certification**

This is to certify that Teledyne Brown Engineering - Environmental Services, located at 2508 Quality Lane, Knoxville, Tennessee, 37931, has analyzed, tested and documented samples as specified in the applicable purchase order.

This also certifies that requirements of applicable codes, standards and specifications have been fully met and that any quality assurance documentation which verified conformance to the purchase order is on file and may be examined upon request.

I hereby certify that the above statements are true and correct.

C Keith Jeter

Operations Manager

## Sample Receipt Summary

				L293	321
CONE	STOGA-F 8615 W. Chicago	CONESTOGA-ROVERS & ASSOCIATES 8615 W. Bryn Mawr Avenue Chicago, Illinois 60631	SHIPPED TO (Laboratory Name):	edune Brawn	
	(773)380-6421	-9933 priore -6421 fax	ENCE NUMBER:	PROJECT NAME:	
	CHAIN-OF	CHAIN-OF-CUSTODY RECORD	45136 - 30	serveroting S	alchicun
SAMPLI	SAMPLER'S	Le Suyuce PRINTED	Fullie Luzuicto BER	PARAMETERS	DEMADIKE
SEQ. No.	DATE TIME	SAMPLE IDENTIFICATION No.	SAMPLE MATRIX		KENNAN
H	17-1010 8:35	GW-071700-JL	I M COI-NE-M	×.	
	1 935		101 W 1		
			3 201		
	× 2011				
-		TOTAL NUMBER OF CONTAINERS	INERS 4		
RELINQ	RELINQUISHED BY:	Summer	DATE:	Brill Pit	DATE: アー/アー06 TIME: 154 {
RELINQ	RELINQUISHED BY:	0		BY:	DATE: TIME
RELINQ	(2) RELINQUISHED BY: (3)			) BY:	DATE: TIME:
METH	METHOD OF SHIPMENT:	MENT:	AIR	AIR BILL No.	
White		-Fully Executed Copy Beceiving Laboratory Copy	SAMPLE TEAM:	RECEIVED FOR LABORATORY BY:	07760
Pink Goldenrod	hod	-Shipper Copy	Morcia S.	DATE: <u>7-21-0 (</u> TIME: 95 / 5	1
5000					

1001-00(SOURCE)GN-CO004

SR #:	6 10:53 SR09511			own Engine ication/Va	riance Report
lient:	Exelon	Project #:	EX001-3ES	PZION-06	LIMS #:L29321
	d By: BWILKERSON Date: 07/21/06 Receiv	ve Date: 07/21/	06		
		Notificatio	on of Va	riance	
Notify	btified: fy Date: Method: Comment:		Contacte	ed By:	
		Client Respo	onse		
Resp Respon	esponding: onse Date: se Method: e Comment				
Crit	eria		Yes No NA	Comment	
	ipping container custod d intact.	dy seals present	NA		
	mple container custody d intact.	seals present	NA		
	mple containers receive ndition GW-071706-JL-TW-ZN-10		N	Cracked con	ntainer lid.
4 Ch	ain of custody received	d with samples	Y		
	l samples listed on chace	ain of custody	Y		
	mple container labels p gible.	present and	Y		
	formation on container prrespond with chain of		Y		
	mple(s) properly prese opropriate container(s)	rved and in	NA	*****	
9 Ot	her (Describe)		N	parameter.	only requested Should samples be or gamma & Sr-90?

#### ACKNOWLEDGEMENT

This is not an invoice

July 24, 2006

Kathy Shaw Conestoga-Rovers & Associates 45 Farmington Valley Road Plainville, CT 06062

The following sample(s) were received at Teledyne Brown Engineering Knoxville laboratory on July 21, 2006. The sample(s) have been scheduled for the analyses listed below and the report is scheduled for completion by July 24, 2006. Please review the following login information and pricing. Contact me if anything is incorrect or you have questions about the status of your sample(s).

Thank you for choosing Teledyne Brown Engineering for your analytical needs.

Sincerely, Rebecca Charles Project Manager (865)934-0379

Project ID: EX001-3ESPZION-06
 P.O. #: 00411203
Release #:
 Contract#: 00411203
Kathy Shaw, FAX#:860-747-1900, larry.walton@exeloncorp.com

Client ID/ Station	Laboratory ID Analysis	Vol/Units Price	Start Collect Date/Time	End Collect Date/Time
GW-071706-JL-TW-ZN-102	L29321-1		07/17/06:0835	
WG WG WG	GELI H-3 (DIST) SR-90 (FAST)	135.00 135.00 175.00		
GW-071706-JL-TW-ZN-101	L29321-2		07/17/06:0935	
WG WG WG	GELI H-3 (DIST) SR-90 (FAST)	135.00 135.00 175.00		
GW-071706-JL-TW-ZN-103	L29321-3		07/17/06:1045	
WG WG WG	GELI H-3 (DIST) SR-90 (FAST)	135.00 135.00 175.00		
GW-071706-JLTW-ZN-100	L29321-4		07/17/06:1130	
WG WG WG	GELI H-3 (DIST) SR-90 (FAST)	135.00 135.00 175.00		

Client ID/ Laboratory ID Vol/Units Start Collect End Collect Station Analysis Price Date/Time Date/Time
------------------------------------------------------------------------------------------------------------

End of document

## Internal Chain of Custody

07/28/06 14:17		eledyne Brown Engineering		Page: 1 of 2
	I	Internal Chain of Custody		
**************************************		**************************************	*****	****
Prod GELI	Analy DW	yst		
SR-90 (FAST)	LCB			
H-3 (DIST)	DW			
Relinquish Date Rel	inquish By		Received By	
07/21/2006 00:00			099999	Sample Custodian
07/21/2006 14:08	099999	Sample Custodian	029964	Erin Jenkins
07/21/2006 14:09	029964	Erin Jenkins	099999	Sample Custodian
**************************************		**************************************	******	*****
Prod GELI	Analy DW	<i>i</i> st		
SR-90 (FAST)	LCB			
H-3 (DIST)	DW			
Relinquish Date Rel 07/21/2006 00:00	inquish By		Received By 099999	Sample Custodian
07/21/2006 11:32	030854	Donna Webb	029728	Lauren Larsen
07/21/2006 11:32	099999	Sample Custodian	030854	Donna Webb
07/24/2006 11:35	029728	Lauren Larsen	030854	Donna Webb
07/24/2006 11:36	030854	Donna Webb	099999	Sample Custodian
		**************************************	******	****
Prod	Anal	yst		
GELI	DW			
SR-90 (FAST)	LCB			
H-3 (DIST)	DW			
Relinquish Date Rel	inquish By		Received By	
07/21/2006 00:00			099999	Sample Custodian
07/21/2006 14:08	099999	Sample Custodian	029964	Erin Jenkins
07/21/2006 14:09	000064			
	029964	Erin Jenkins	099999	Sample Custodian
********************************** Sample # L29321-2		Erin Jenkins ************************************		_
Sample # L29321-2 Prod	**************************************	**************************************		_
Sample # L29321-2 Prod GELI	************** Anal <u>:</u> DW	**************************************		_
Sample # L29321-2 Prod GELI SR-90 (FAST)	**************************************	**************************************		_
Sample # L29321-2 Prod GELI SR-90 (FAST) H-3 (DIST)	**************************************	**************************************		_
Sample # L29321-2 Prod GELI SR-90 (FAST) H-3 (DIST) Relinquish Date Rel 07/21/2006 00:00	**************************************	**************************************	**************************************	Sample Custodian
Sample # L29321-2 Prod GELI SR-90 (FAST) H-3 (DIST) Relinquish Date Rel 07/21/2006 00:00 07/21/2006 11:32	**************************************	**************************************	**************************************	Sample Custodian Lauren Larsen
Sample # L29321-2 Prod GELI SR-90 (FAST) H-3 (DIST) Relinquish Date Rel 07/21/2006 00:00 07/21/2006 11:32 07/21/2006 11:32	**************************************	**************************************	**************************************	Sample Custodian Lauren Larsen Donna Webb
Sample # L29321-2 Prod GELI SR-90 (FAST) H-3 (DIST) Relinquish Date Rel 07/21/2006 00:00 07/21/2006 11:32	**************************************	**************************************	**************************************	Sample Custodian Lauren Larsen Donna Webb Donna Webb
Sample # L29321-2 Prod GELI SR-90 (FAST) H-3 (DIST) Relinquish Date Rel 07/21/2006 00:00 07/21/2006 11:32 07/21/2006 11:32	**************************************	Containernum 2 yst Donna Webb Sample Custodian Lauren Larsen Donna Webb	**************************************	Sample Custodian Lauren Larsen Donna Webb Donna Webb Sample Custodian
Sample # L29321-2 Prod GELI SR-90 (FAST) H-3 (DIST) Relinquish Date Rel 07/21/2006 00:00 07/21/2006 11:32 07/21/2006 11:32 07/24/2006 09:08	**************************************	Containernum 2 yst Donna Webb Sample Custodian Lauren Larsen Donna Webb Sample Custodian	**************************************	Sample Custodian Lauren Larsen Donna Webb Sample Custodian Donna Webb
Sample # L29321-2 Prod GELI SR-90 (FAST) H-3 (DIST) Relinquish Date Rel 07/21/2006 00:00 07/21/2006 11:32 07/21/2006 09:08 07/24/2006 09:09	**************************************	Containernum 2 yst Donna Webb Sample Custodian Lauren Larsen Donna Webb	**************************************	Sample Custodian Lauren Larsen Donna Webb Donna Webb Sample Custodian

07/	28/	'06	14:	:17
-----	-----	-----	-----	-----

#### Teledyne Brown Engineering Internal Chain of Custody

**************************************	*****	Containernum 1		
Prod	Anal	yst		
GELI	DW			
SR-90 (FAST)	LCB			
H-3 (DIST)	DW			
Relinquish Date Re	linquish By		Received By	
07/21/2006 00:00			099999	Sample Custodian
07/21/2006 14:08	099999	Sample Custodian	029964	Erin Jenkins
07/21/2006 14:09	029964	Erin Jenkins	099999	Sample Custodian
**************************************	*******	**************************************	* * * * * * * * * * * * * * * * * * *	****
Prod GELI	Anal DW	yst		
SR-90 (FAST)	LCB			
H-3 (DIST)	DW			
Relinquish Date Re	linquish By		Received By	ł
07/21/2006 00:00			099999	Sample Custodian
07/21/2006 11:32	030854	Donna Webb	029728	Lauren Larsen
07/21/2006 11:32	099999	Sample Custodian	030854	Donna Webb
07/24/2006 09:08	029728	Lauren Larsen	030854	Donna Webb
07/24/2006 09:09	030854	Donna Webb	099999	Sample Custodian
		Donna Webb ***********************************		-
****		**************************************		-
**************************************	**************************************	**************************************		-
**************************************	**************************************	**************************************		-
**************************************	**************************************	**************************************		- ******* ¥
**************************************	**************************************	**************************************	*****	******** y Sample Custodian
**************************************	**************************************	**************************************	**************************************	y Sample Custodian Erin Jenkins
**************************************	**************************************	Containernum 1 Lyst Sample Custodian Erin Jenkins	************** Received B 099999 029964 099999	y Sample Custodian Erin Jenkins Sample Custodian
**************************************	**************************************	Containernum 1 Lyst Sample Custodian	************** Received B 099999 029964 099999	y Sample Custodian Erin Jenkins Sample Custodian
**************************************	**************************************	Sample Custodian Erin Jenkins	************** Received B 099999 029964 099999	y Sample Custodian Erin Jenkins Sample Custodian
**************************************	**************************************	Sample Custodian Erin Jenkins Containernum 2 Lyst	************** Received B 099999 029964 099999	y Sample Custodian Erin Jenkins Sample Custodian
**************************************	**************************************	Sample Custodian Erin Jenkins Containernum 2 Lyst	************** Received B 099999 029964 099999	y Sample Custodian Erin Jenkins Sample Custodian
**************************************	**************************************	Sample Custodian Erin Jenkins Containernum 2 Lyst	************** Received B 099999 029964 099999	y Sample Custodian Erin Jenkins Sample Custodian *******
**************************************	**************************************	Sample Custodian Erin Jenkins Containernum 2 Lyst	**************************************	y Sample Custodian Erin Jenkins Sample Custodian ****
**************************************	**************************************	Sample Custodian Erin Jenkins Containernum 2 Lyst	**************************************	y Sample Custodian Erin Jenkins Sample Custodian *******
**************************************	**************************************	Sample Custodian Erin Jenkins Containernum 2 lyst	**************************************	Y Sample Custodian Erin Jenkins Sample Custodian ********
**************************************	**************************************	Containernum 1 Lyst Sample Custodian Erin Jenkins Containernum 2 Lyst Donna Webb	**************************************	Y Sample Custodian Erin Jenkins Sample Custodian ******** Y Sample Custodian Lauren Larsen

#### Teledyne Brown Engineering Internal Chain of Custody Supplemental Sheet

#### L29321

L29321-1 WG GW-071706-JL-TW-ZN-102	Ł
Process step Prod Analyst Date	
Login KTHURMAN 07/21/06	
Aliquot GELI DW 07/21/06	
Aliquot H-3 (DIST) DW 07/21/06	
Aliquot SR-90 (FAST) LCB 07/21/06	
Count Room GELI ILL 07/21/06	
Count Room H-3 (DIST) KOJ 07/21/06	
Count Room SR-90 (FAST) KOJ 07/24/06	
***************************************	k
L29321-2 WG GW-071706-JL-TW-ZN-101	
Process step Prod Analyst Date	
Login RCHARLES 07/21/06	
Aliquot GELI DW 07/21/06	
Aliquot H-3 (DIST) DW 07/21/06	
Aliquot SR-90 (FAST) LCB 07/21/06	
Count Room GELI ILL 07/21/06	
Count Room H-3 (DIST) KOJ 07/21/06	
Count Room SR-90 (FAST) KOJ 07/24/06	
***************************************	*
L29321-2R1 WG GW-071706-JL-TW-ZN-101	
Process step Prod Analyst Date	
Login RCHARLES 07/21/06	
Aliquot GELI DW 07/25/06	
Count Room GELI ILL 07/27/06	
* * * * * * * * * * * * * * * * * * * *	*
L29321-3 WG GW-071706-JL-TW-ZN-103	
Process step Prod Analyst Date	
Login KTHURMAN 07/21/06	
Aliquot GELI DW 07/21/06	
Aliquot H-3 (DIST) DW 07/21/06	
Aliquot SR-90 (FAST) LCB 07/21/06	
Count Room GELI ILL 07/21/06	
Count Room H-3 (DIST) KOJ 07/22/06	
Count Room SR-90 (FAST) KOJ 07/24/06	
* * * * * * * * * * * * * * * * * * * *	*
L29321-4 WG GW-071706-JLTW-ZN-100	
Process step Prod Analyst Date	
Login KTHURMAN 07/21/06	
Aliquot GELI DW 07/21/06	
Aliquot H-3 (DIST) DW 07/21/06	
Aliquot SR-90 (FAST) LCB 07/21/06	
Count Room GELI ILL 07/21/06	
Count Room         GELI         ILL         07/21/06           Count Room         H-3 (DIST)         KOJ         07/22/06           Count Room         SR-90 (FAST)         KOJ         07/24/06	

## Analytical Results Summary

പ	1					-isotenaria trac											rpaevise
RING, INI ^{mpany}		(MG)		alues			No	No	No	No	No	No	No	No	No	No	VIV
BROWN ENGINEERING, INC. A Teledyne Technologies Company				Flag Values	U	U	n	U	n	D	n	U	U	n	n	D	11
TELEDY BROWN A Teledyne Ti				Count Units	Σ	M	Sec	Sec	Sec	Sec	Sec	Sec	Sec	Sec	Sec	Sec	Con
K		Ground Water		Count Time	60	100	7866	7866	7866	7866	7866	7866	7866	7866	7866	7866	7966
·		Matrix: Grou Volume:	sture:	Count Date	07/21/06	07/24/06	07/21/06	07/21/06	07/21/06	07/21/06	07/21/06	07/21/06	07/21/06	07/21/06	07/21/06	07/21/06	07/21/06
		M Vo	% Moisture:	Reference Date		07/17/06 08:35	07/17/06 08:35			07/17/06 08:35	07/17/06 08:35	07/17/06 08:35	07/17/06 08:35	07/17/06 08:35	07/17/06 08:35	07/17/06 08:35	07/17/06 00:25
	50			Aliquot Units	ml	ml 0.	ml 07	ml 0	ml 0	ml 0	ml	ml 0	, U				
alysis 1	Conestoga-Rovers & Associates EX001-3ESPZION-06	Collect Start: 07/17/2006 08:35 Collect Stop:	1/2006	Aliquot A Volume	10	450	3182.86	3182.86	3182.86	3182.86	3182.86	3182.86	3182.86	3182.86	3182.86	3182.86	70000
Report of Analysis 07/28/06 12:31 L29321	stoga-Rovers & Assoc EX001-3ESPZION-06	Start: 07/1' Stop:	Receive Date: 07/21/2006	Run #		-			en l		m		<b>m</b>	-	-	-	ſ
Repor	Conestog EXC	Collect Start: Collect Stop:	Receive	Units	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	1.0
				MDC	1.82E+02	1.12E+00	5.92E+00	4.67E+00	1.18E+01	5.45E+00	1.33E+01	5.73E+00	9.03E+00	6.88E+00	5.28E+00	2.31E+01	
				Uncertainty 2 Sigma	1.07E+02	5.34E-01	3.41E+00	3.10E+00	7.21E+00	3.52E+00	7.71E+00	3.51E+00	5.84E+00	4.60E+00	3.25E+00	1.34E+01	1 121 1
		W-ZN-102		Activity U Conc	-5.53E+01	-2.87E-02	2.87E+00	-2.83E+00	-1.01E-01	-1.83E+00	5.56E+00	-4.06E-01	-4.75E+00	4.95E+00	-1.63E-01	8.53E+00	VV · HV ·
		1706-JL-TV	-	SOP#	2010	2018	2007	2007	2007	2007	2007	2007	2007	2007	2007	2007	
	Kathy Shaw	Sample ID: GW-071706-JL-TW-ZN-102 Station:	Description: LIMS Number: L29321-1	Radionuclide	H-3 (DIST)	TOTAL SR	MN-54	CO-58	FE-59	CO-60	ZN-65	NB-95	ZR-95	CS-134	CS-137	BA-140	

Ν

D

Sec

7866

07/21/06

07/17/06 08:35

E

3182.86 3182.86

pCi/L

2.31E+01 7.61E+00

1.34E+01 4.45E+00

8.53E+00 1.63E+00

2007 2007

**BA-140** LA-140 Flag Values

Compound/Analyte not detected or less than 3 sigma . . . . +

Activity concentration exceeds MDC and 3 sigma, peak identified(gamma only) Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

*⊃

Activity concentration exceeds customer reporting value MDC exceeds customer technical specification Low recovery High recovery

High Spec **'** _ _

11 11 11

Bolded text indicates reportable value. Η

4 Page 1 of

MDC - Minimum Detectable Concentration

Yes = Peak identified in gamma spectrum **** Results are reported on an as received basis unless otherwise noted

No = Peak not identified in gamma spectrum

					10 10 10	<b>T 01 A</b> 7/28/06 12:: <b>L29321</b>	CEPOIL 01 ALIALYSIS 07/28/06 12:31 L29321					BROW A Teledyne	A Taledyne Technologies Company	NG, INC. ^{ny}
					Conesto	ga-Rover	Conestoga-Rovers & Associates	tes						
Kathy Shaw					EX(	01-3ESI	EX001-3ESPZION-06							
Sample ID:	GW-071706-JL-TW-ZN-101	TW-ZN-101			Collect		07/17/2006 09:35	35		Matrix: G	Ground Water	er		(MG)
Description:					Collect Stop: Receive Date:	Collect Stop: Receive Date: 07/21/2006	'/21/2006		N %	v ouune. % Moisture:				
LIMS Number:	7-17667T	Activity	Uncertainty			Run	Aliquot	Aliquot	Reference	Count	Count	Count	Flag Values	S
Kadionuclide	SOP#	Conc	2 Sigma			#	Volume		Date	Date	allille Y	M	9 J1	3
H-3 (DIST) TOTAL SP	2010	9.13E+U1	1.10E+02 5 84F-01	1.82E+02	pci/L		450	im im	07/17/06 09:35	07/24/06	100	ΞX	n n	
MN-54	2007	4.88E+00	3.26E+00	6.07E+00	pCi/L		3438.68	Ē	07/17/06 09:35	07/21/06	8341	Sec	U	No
MN-54	2007	9.92E-01	1.19E+00	2.01E+00	pCi/L	R1	3074.94	Ш	07/17/06 09:35	07/27/06	62041	Sec	Ŋ	No
CO-58	2007	5.51E-01	3.15E+00	5.25E+00	pCi/L		3438.68	m	07/17/06 09:35		8341	Sec	N	No
CO-58	2007	-6.02E-01	1.23E+00	2.01E+00	pCi/L	R1	3074.94	m	07/17/06 09:35		62041	Sec	D	No
FE-59	2007	5.96E+00	6.49E+00	1.17E+01	pCi/L		3438.68	Ш	07/17/06 09:35	07/21/06	8341	Sec	D	No
FE-59	2007	2.85E+00	2.57E+00	4.41E+00	pCi/L	R1	3074.94	ml	07/17/06 09:35	07/27/06	62041	Sec	U	No
CO-60	2007	1.80E+00	3.66E+00	6.55E+00	pCi/L		3438.68	m	07/17/06 09:35	07/21/06	8341	Sec	n	No
CO-60	2007	5.60E-01	1.20E+00	1.99E+00	pCi/L	RI	3074.94	Ē	07/17/06 09:35	07/27/06	62041	Sec	D	No
ZN-65	2007	1.60E+01	5.63E+00	1.04E+01	pCi/L		3438.68	Ē	07/17/06 09:35		8341	Sec	+	Yes
ZN-65	2007	4.48E+00	2.53E+00	4.42E+00	pCi/L	R1	3074.94	'n	07/17/06 09:35		62041	Sec	n*	No
NB-95	2007	-7.53E-01	3.32E+00	5.35E+00	pCi/L		3438.68	ш Ш	07/17/06 09:35		8341	Sec	n	No
NB-95	2007	1.00E+00	1.27E+00	2.10E+00	pCi/L	R1	3074.94	Ē	07/17/06 09:35		62041	Sec	n	No
ZR-95	2007	1.77E+00	5.76E+00	9.75E+00	pCi/L		3438.68	'n	07/17/06 09:35		8341	Sec	D	No
ZR-95	2007	-2.30E+00	2.22E+00	3.49E+00	pCi/L	RI	3074.94	m	07/17/06 09:35		62041	Sec	D	No
CS-134	2007	2.29E+00	7.39E+00	6.09E+00	pCi/L		3438.68	m	07/17/06 09:35		8341	Sec	D	No
CS-134	2007	5.96E+00	2.51E+00	2.17E+00	pCi/L	RI	3074.94	m	07/17/06 09:35		62041	Sec	U*	No
CS-137	2007	1.80E+00	3.65E+00	6.31E+00	pCi/L		3438.68	m	07/17/06 09:35	07/21/06	8341	Sec	n	No
CS-137	2007	-3.88E-01	1.29E+00	2.10E+00	pCi/L	R1	3074.94	m	07/17/06 09:35	07/27/06	62041	Sec	U	No
BA-140	2007	3.07E+00	1.45E+01	2.42E+01	pCi/L		3438.68	Ш	07/17/06 09:35	07/21/06	8341	Sec	D	No
BA-140	2007	6.17E+00	7.00E+00	1.19E+01	pCi/L	RI	3074.94	Ш	07/17/06 09:35		62041	Sec	D	No
LA-140	2007	2.62E+00	4.98E+00	8.69E+00	pCi/L		3438.68	Ē	07/17/06 09:35		8341	Sec	N	No
LA-140	2007	-1.91E+00	2.34E+00	3.71E+00	pCi/L	R1	3074.94	ш	07/17/06 09:35	07/27/06	62041	Sec	n	No

Flag Values U =

- Compound/Analyte not detected or less than 3 sigma Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only) Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value MDC exceeds customer technical specification Low recovery Page 2 of 4 100 100 101 11 11 11 +

  - U* High Spec
    - د.
      - Bolded text indicates reportable value. High recovery Η

MDC - Minimum Detectable Concentration

Yes = Peak identified in gamma spectrum **** Results are reported on an as received basis unless otherwise noted

No = Peak not identified in gamma spectrum

ort of Analysis	07/28/06 12:31
Report	120

TELEDYNE BROWN ENGINEERING, INC. A Teledyne Technologies Company

# L29321

Conestoga-Rovers & Associates

EX001-3ESPZION-06

## Kathy Shaw

Sample ID: GW-071706-JL-TW-ZN-103	-071706-JL-	TW-ZN-103			Collec	t Start: (	Collect Start: 07/17/2006 10:45	:45		Matrix: Ground Water	ound Wat	er		(MG)
Station:					Collec	Collect Stop:				Volume:				
Description:					Receive	Date: (	Receive Date: 07/21/2006		V %	% Moisture:				
LIMS Number: L29321-3	321-3													
Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag	Flag Values
H-3 (DIST)	2010	6.61E+01	1.15E+02	1.83E+02	pCi/L		10	m		07/22/06	60	X	n	
TOTAL SR	2018	4.01E-01	5.66E-01	1.09E+00	pCi/L		450	Ш	07/17/06 10:45	07/24/06	100	M	N	
MN-54	2007	4.58E-01	3.42E+00	5.72E+00	pCi/L		3547.51	ш	07/17/06 10:45	07/21/06	7876	Sec	Ŋ	No
CO-58	2007	2.22E+00	3.53E+00	6.13E+00	pCi/L		3547.51	m	07/17/06 10:45	07/21/06	7876	Sec	U	No
FE-59	2007	8.34E-01	6.62E+00	1.11E+01	pCi/L		3547.51	m	07/17/06 10:45	07/21/06	7876	Sec	n	No
CO-60	2007	1.09E+00	3.54E+00	5.99E+00	pCi/L		3547.51	m	07/17/06 10:45	07/21/06	7876	Sec	Ŋ	No
ZN-65	2007	7.32E+00	9.36E+00	1.43E+01	pCi/L		3547.51	m	07/17/06 10:45	07/21/06	7876	Sec	n	No
NB-95	2007	-4.22E-01	3.55E+00	5.71E+00	pCi/L		3547.51	ml	07/17/06 10:45	07/21/06	7876	Sec	n	No
ZR-95	2007	1.71E+00	5.80E+00	9.67E+00	pCi/L		3547.51	ml	07/17/06 10:45	07/21/06	7876	Sec	n	No
CS-134	2007	5.48E+00	7.28E+00	6.40E+00	pCi/L		3547.51	m	07/17/06 10:45	07/21/06	7876	Sec	n	No
CS-137	2007	3.50E-01	3.67E+00	6.04E+00	pCi/L		3547.51	m	07/17/06 10:45	07/21/06	7876	Sec	n	No
BA-140	2007	-1.67E+00	1.53E+01	2.53E+01	pCi/L		3547.51	ш	07/17/06 10:45	07/21/06	7876	Sec	D	No
I.A-140	2007	-1.12E+00	4.86E+00	7.80E+00	pCi/L		3547.51	ГШ	07/17/06 10:45	07/21/06	7876	Sec	D	No

Flag Values U =

Compound/Analyte not detected or less than 3 sigma Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only) Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value MDC exceeds customer technical specification Low recovery High recovery 12 12 12 12 12 12 +

U* High Spec

Bolded text indicates reportable value. ЪН

MDC - Minimum Detectable Concentration

Yes = Peak identified in gamma spectrum **** Results are reported on an as received basis unless otherwise noted

No = Peak not identified in gamma spectrum

port of Analysis	07/28/06 12:31	
Repo		



Conestoga-Rovers & Associates

Kathy Shaw					EX	001-3ES	EX001-3ESPZION-06						
Sample ID: GW-071706-JLTW-ZN-100 Station:	-071706-JLT	W-ZN-100		-	Collec Collec	Collect Start: 0 Collect Ston:	Collect Start: 07/17/2006 11:30 Collect Stop:	30		Matrix: Ground Water Volume:	round Wat	er	(MG)
Description:					Receive	e Date: 0	Receive Date: 07/21/2006		<b>N</b> %	% Moisture:			
LIMS Number: L29321-4	321-4												
Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Values
H-3 (DIST)	2010	8.66E+01	1.18E+02	1.85E+02	pCi/L		10	ш		07/22/06	60	Μ	n
TOTAL SR	2018	1.13E+00	6.58E-01	1.15E+00	pCi/L		450	ml	07/17/06 11:30	07/24/06	100	M	n
MN-54	2007	4.14E+00	3.62E+00	6.83E+00	pCi/L		3562.61	m	07/17/06 11:30 07/21/06	07/21/06	7921	Sec	UNO
CO-58	2007	2.49E-01		6.22E+00	pCi/L		3562.61	ш	07/17/06 11:30 07/21/06	07/21/06	7921	Sec	U No
FE-59	2007	-4.75E-01	6.61E+00	1.17E+01	pCi/L		3562.61	lm	07/17/06 11:30 07/21/06	07/21/06	7921	Sec	U No
CO-60	2007	6.82E-01	3.50E+00	6.36E+00	pCi/L		3562.61	ml	07/17/06 11:30 07/21/06	07/21/06	7921	Sec	U No
ZN-65	2007	-4.36E-01	7.28E+00	1.29E+01	pCi/L		3562.61	m	07/17/06 11:30 07/21/06	07/21/06	7921	Sec	U No
NB-95	2007	2.80E+00	3.60E+00	6.65E+00	pCi/L		3562.61	E	07/17/06 11:30 07/21/06	07/21/06	7921	Sec	U No
ZR-95	2007	-4.07E+00	5.94E+00	9.89E+00	pCi/L		3562.61	m	07/17/06 11:30	07/21/06	7921	Sec	U No
CS-134	2007	3.73E+00	5.12E+00	7.74E+00	pCi/L		3562.61	m	07/17/06 11:30 07/21/06	07/21/06	7921	Sec	U No
CS-137	2007	1.10E+00	3.69E+00	6.64E+00	pCi/L		3562.61	ml	07/17/06 11:30 07/21/06	07/21/06	7921	Sec	U No
BA-140	2007	-2.45E+00	1.48E+01	2.53E+01	pCi/L		3562.61	ml	07/17/06 11:30	07/21/06	7921	Sec	U No
LA-140	2007	4.56E+00	5.01E+00	9.85E+00	pCi/L		3562.61	m	07/17/06 11:30 07/21/06	07/21/06	7921	Sec	U No

Flag Values U =

- Compound/Analyte not detected or less than 3 sigma Activity concentration exceeds MDC and 3 sigma, peak identified(gamma only) Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value MDC exceeds customer technical specification Low recovery Page 4 of 4 NU 11 11 11 11 11 11 +
  - *

    - High Spec
      - - L
          - Н

MDC - Minimum Detectable Concentration

No = Peak not identified in gamma spectrum
 Yes = Peak identified in gamma spectrum
 **** Results are reported on an as received basis unless otherwise noted

Bolded text indicates reportable value.

High recovery I

Page 4

BROWN ENGINEERING, INC. A Teledyne Technologies Company

## QC Results Summary

SINEERING gies Company			Qualifier <u>P</u> U P		RangeQualifierP/F70-130+P			Range Qualifier P/F <30 ** NE	
BROWN ENGINEERING A Teledyne Technologies Company			<u>Units</u> pCi/Total		<u>Units</u> <u>Spike Recovery</u> pCi/Total 99.3			<u>Units</u> <u>RPD</u> pCi/L	
	(TSIG) (DIST)	Method Blank Summary	Blank Result < 1.870E+00	LCS Sample Summary	Spike ValueLCS Result5.05E+0025.010E+02		Duplicate Summary	Original ResultDUP Result< 1.820E+02	
for L29321			Count Date/Time 07/21/2006 19:56		<u>Count Date/Time</u> 07/21/2006 21:00			<u>Count Date/Time</u> 07/21/2006 21:18	
8PM			<u>lide Matrix</u> ) WO		<u>ide</u> <u>Matrix</u> WO			iide <u>Matrix</u> ) WG	
QC Summary Report			TBE Sample IDRadionuclideWG4251-1H-3 (DIST)		TBE Sample IDRadionuclideWG4251-2H-3 (DIST)	Spike ID: 3H-041706-1 Spike conc: 5.05E+002 Spike Vol: 1.00E+000		TBE Sample IDRadionuclideWG4251-3H-3 (DIST)L29321-1	

Positive Result Compound/analyte was analyzed, peak not identified and/or not detected above MDC < 5 times the MDC are not evaluated Nuclide not detected Spiking level < 5 times activity Pass Fail Not evaluated

----

Page:

+D* * * a HZ

NE INEERING ties Company			Qualifier <u>P/F</u> U P		RangeQualifierP/F70-130+P			Range Qualifier <u>P/F</u> <30 ** NE	
ANTELEDYNE BROWN ENGINEERING A Teledyne Technologies Compony			<u>Units</u> pCi/Total		Units Spike Recovery pCi/Total 71.4			<u>Units</u> <u>RPD</u> pCi/L	
		mary	Blank Result U < 5.150E-01 pt	nary	LCS Result U 4.170E+01 p0			DUP Result < 1.170E+00	
	TOTAL SR	Method Blank Summary		LCS Sample Summary	Spike Value 5.84E+001		Duplicate Summary	Original Result < 1.120E+00	
for L29321			Count Date/Time 07/24/2006 14:14		Count Date/Time 07/24/2006 14:14			<u>Count Date/Time</u> 07/24/2006 14:14	
			<u>Matrix</u> WO		<u>Matrix</u> WO			<u>Matrix</u> WG	
QC Summary Report			<u>ID</u> <u>Radionuclide</u> TOTAL SR		<u>ID</u> <u>Radionuclide</u> TOTAL SR	SR-011905 .34E+002 50E-001	- Andre	ID Radionuclide TOTAL SR	
QC Sur			<u>TBE Sample ID</u> WG4253-1		<u>TBE Sample ID</u> WG4253-2	Spike ID: 90SR-011905 Spike conc: 2.34E+002 Spike Vol: 2.50E-001		<b>TBE Sample ID</b> <b>WG4253-3</b> L29321-1	

Positive Result Compound/analyte was analyzed, peak not identified and/or not detected above MDC < 5 times the MDC are not evaluated Nuclide not detected Spiking level < 5 times activity Pass Fail Not evaluated

2 Page:

### Raw Data

Raw Data Sheet (rawdata) Jul 28 2006, 12:46 pm

Decay & Eff. Ingrowth Analyst Factor МС МС M MQ .208 .212 .212 .212 60 60 60 dt (min) 60 Bkg 2.03 2.03 2.03 2.03 Bkg counts Page: l Sample dt (min) 60 60 60 60 counts 106 Counter Total ID counts LS7 106 148 146 140 LS7 LS7 LS7 22-jul-06 01:33 22-ju1-06 00:30 21-jul-06 23:26 WeightRecoveryDate/time021-jul-0622:22 Count Mount 0 0 0 Scavenge Milking Date/time Date/time Project : EX001-3ESPZION-06 MDC: 1.82E+02 * MDC: 1.82E+02 * * MDC: 1.85E+02 * Customer: Exelon MDC: 1.83E+02 Volume/ Aliquot 10 ml 10 ml 10 ml 10 ml Reference Date/time GW-071706-JL-TW-ZN-102 Activity: -5.53E+01 Error: 1.07E+02 L29321-2 H-3 DIST GW-071706-JL-TW-ZN-101 Activity: 9.158+01 Error: 1.168+02 L29321-3 H-3 DIST GW-071706-JLTW-ZN-100 Activity: 8.66E+01 Error: 1.18E+02 Activity: 6.618+01 Error: 1.158+02 L29321-4 H-3 DIST H-3 DIST Analysis GW-071706-JL-TW-ZN-103 Nuclide: H-3 (DIST) Work Order: L29321 Run # Sample ID Client ID L29321-1

Raw Data Sheet (rawdata) Jul 28 2006, 12:46 pm

Work Order: <u>L29321</u>	Customer: <b>Exelon</b>	υu					Page: 2				
Nuclide: <i>SR-90 (FAST)</i>	Project : <u><u><b>ax001-3</b></u>ESPZION-06</u>	1 - 3ESPZION - 06								Десау &	
Run Analysis "	Reference Volume/	Scavenge Milking Date/time Date/time	Mount Weight Rec	Mount Count Weight Recovery Date/time	Counter Total ID counts	Total counts	Sample Bkg Bkg dt(min) counts dt(min)	Bkg Bl ounts dt (r		Eff. Ingrowth Analyst Factor	Analyst
CLIERT LD # TOTAL SR	TOTAL SR 17-jul-06 08:35 450 ml	24-jul-06 08:45	0 80.22	22 14:14	1	69	100	280	400	.349 l	LCB
GW-071706-JL-TW-ZN-102	348-01 MDC 1 128+00 *	*									
129321-2 TOTAL STULL	1-06	24-jul-06 08:45	0 49.73	24-jul-06 73 14:14	Y2B	88	100	315	400	.356 1	гсв
GW-071706-JL-TW-ZN-101 X	848-01 WDC 1 168+00 *	*									
L29321-3 TOTAL SR	1-06	24-jul-06 08:45	0 81.04	24-jul-06 04 14:14	Y2C	81	100	268	400	.35 1	гсв
GW-071706-JL-TW-ZN-103 & Artivity, 4 018-01 Rrror: 5.668-01 MDC: 1.098+00 *	66E-01 MDC: 1.09E+0	* 0									
L29321-4 TOTAL SR	TOTAL SR 17-jul-06 11:30 450 ml	24-jul-06 08:45	0 75.27	24-jul-06 27 14:14	YJA	112	100	291	400	.347 1	LCB
GW-071706-JLTW-ZN-100 Activity: 1.138+00 Error: 6.58E-01	58E-01 MDC: 1.15E+00 *	* 0									

Sec. Review: Anadyst/ LIMS: VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 21-JUL-2006 16:03:39.47 TBE07 P-10768B HpGe ******** Aquisition Date/Time: 21-JUL-2006 13:40:12.01 LIMS No., Customer Name, Client ID: L29321-1 WG ZION : 07L29321-1 Smple Date: 17-JUL-2006 08:35:00. Sample ID : WG Sample Type Geometry : 073L082504 : 3.18290E+00 L BKGFILE : 07BG070106MT Ouantity Energy Tol : 1.50000 Start Channel : 40 Real Time : 0 02:11:07.16 End Channel : 4090 Pk Srch Sens: 5.00000 Live time : 0 02:11:05.55 MDA Constant : 0.00 Library Used: LIBD Cts/Sec %Err %Eff Fit Pk It Area Bkqnd FWHM Channel Energy 1 1 66.15* 1.37 133.14 7.98E-01 7.76E-03 47.1 6.77E-01 61 241 2 280.31 2.36E+00 7.37E-03 40.9 1.33E+00 1 139.64* 58 167 1.34 3 1 1.97 705.66 1.61E+00 9.06E-03 34.0 4.29E+00 352.10* 71 102 4 609.10* 1 68 74 1.59 1220.06 1.09E+00 8.62E-03 31.3 2.17E+00 8.13E-01 8.23E-03 23.4 4.76E+01 5 1 912.73* 65 30 1.13 1827.68 6 1 1461.20* 20 2.99 2924.81 5.83E-01 2.53E-03 55.7 7.39E-01 3

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide I	Type: natura	1			Uncorrected	Decay Corr	2-Siqma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pCi/L	%Error
K-40	1460.81	20	10.67*	5.826E-01	3.459E+01	3.459E+01	111.38
Flag: "*"	' = Keyline						

Page : 2 Summary of Nuclide Activity Acquisition date : 21-JUL-2006 13:40:12 Sample ID : 07L29321-1 Total number of lines in spectrum 6 Number of unidentified lines 5 Number of lines tentatively identified by NID 1 16.67% Nuclide Type : natural Uncorrected Decay Corr Decay Corr 2-Sigma 2-Sigma Error %Error Flags pCi/L pCi/L Nuclide Hlife Decay K-40 1.28E+09Y 1.00 3.459E+01 3.459E+01 3.853E+01 111.38 _____ ______ Total Activity : 3.459E+01 3.459E+01 Grand Total Activity : 3.459E+01 3.459E+01 "M" = Manually accepted Flags: "K" = Keyline not found "A" = Nuclide specific abn. limit "E" = Manually edited

Unidentifie Sample ID :				Aco	quisit:	ion date	: 21-JUI		e: 3 3:40:12
It Energy	Area	Bkgnd	FWHM	Channel	Left 1	Pw Cts/Se	ec %Err	%Eff	Flags
1 66.15 1 139.64 1 352.10 1 609.10 1 912.73	58 71 68	167 102 74	1.97 1.59	280.31 705.66 1220.06	277 700 1 1215 1	8 7.76E-( 7 7.37E-( 12 9.06E-( 13 8.62E-( 18 8.23E-(	0381.70368.00362.5	2.36E+ 1.61E+ 1.09E+	00 00 00
Flags: "T"	= Tentativ	vely asso	ociated	£					
Summary of	Nuclide Ad	ctivity							
Total numb Number of Number of	unidentif:	ied line	s		NID	6 5 1 :	16.67%		
Nuclide Typ	e : natura			n Wt					
Nuclide K-40 1.2	Hlife I 8E+09Y	Un Decay 1.00 3	correct pCi/L .459E+(	ted Dec	ay Cor: pCi/L 459E+0:	r Decay 2-Sigma 1 3.853	a Error		
Tc	tal Activ								
Grand To	tal Activ	ity : 3	.459E+(	01 3.	459E+0	1			
Flags: "K" "E"	= Keyline = Manually					ually acco lide spec		n. limit	
Interferenc	e Report								
No interfer	ence corre	ection p	erforme	ed					
Combined Ac	tivity-MD	A Report							
Identi	fied Nucl:	ides	-						
Nuclide	Activi (pCi/:		Act e	error		MDA Ci/L)	MDA e	error	Act/MDA
K-40	3.459E	+01	3.853	3E+01	6.6	80E+01	0.000	DE+00	0.518
Non-Id	lentified I	Nuclides							
	Key-Li:		7) and a				N (17) N		
Nuclide	(pCi/	ty K.L. L) Ided		error		MDA Ci/L)	MDA 6	error	Act/MDA
BE-7 NA-24 CR-51 MN-54 CO-57 CO-58	3.532E -2.351E -9.525E 2.869E -1.348E -2.832E	+02 +00 +00 +00	3.64 2.89 3.40 2.93	1E+01 5E+02 1E+01 7E+00 1E+00 5E+00	5.5 4.6 5.9 4.6	28E+01 04E+02 28E+01 17E+00 33E+00 72E+00	0.000 0.000 0.000 0.000	DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00	0.076 -0.427 -0.206 0.485 -0.291 -0.606

FE-59	-1.009E-01	7.211E+00	1.176E+01	0.000E+00	-0.009
CO-60	-1.831E+00	3.522E+00	5.454E+00	0.000E+00	-0.336
ZN-65	5.563E+00	7.707E+00	1.328E+01	0.000E+00	0.419
SE-75	-6.344E-01	4.154E+00	6.810E+00	0.000E+00	-0.093
SR-85	1.922E+01	3.898E+00	7.799E+00	0.000E+00	2.465
Y-88	-1.555E+00	3.864E+00	6.058E+00	0.000E+00	-0.257
NB-94	-2.822E+00	3.003E+00	4.642E+00	0.000E+00	-0.608
NB-95	-4.063E-01	3.508E+00	5.734E+00	0.000E+00	-0.071
ZR-95	-4.750E+00	5.840E+00	9.033E+00	0.000E+00	-0.526
MO-99	-2.790E+01	7.023E+01	1.127E+02	0.000E+00	-0.248
RU-103	-1.263E+00	3.464E+00	5.492E+00	0.000E+00	-0.230
RU-106	1.343E+01	3.101E+01	5.031E+01	0.000E+00	0.267
AG-110m	3.899E-01	2.931E+00	4.826E+00	0.000E+00	0.081
SN-113	-3.971E+00	3.993E+00	6.221E+00	0.000E+00	-0.638
SB-124	-3.503E+00	4.301E+00	5.490E+00	0.000E+00	-0.638
SB-125	-6.151E+00	8.935E+00	1.406E+01	0.000E+00	-0.438
TE-129M	-1.242E+01	3.800E+01	6.078E+01	0.000E+00	-0.204
I-131	2.386E+00	4.375E+00	7.479E+00	0.000E+00	0.319
BA-133	9.312E+00	5.146E+00	8.194E+00	0.000E+00	1.136
CS-134	4.945E+00	4.597E+00	6.883E+00	0.000E+00	0.718
CS-136	3.154E+00	3.495E+00	6.172E+00	0.000E+00	0.511
CS-137	-1.634E-01	3.253E+00	5.277E+00	0.000E+00	-0.031
CE-139	1.113E+00	2.947E+00	4.921E+00	0.000E+00	0.226
BA-140	8.530E+00	1.338E+01	2.308E+01	0.000E+00	0.370
LA-140	1.625E+00	4.451E+00	7.605E+00	0.000E+00	0.214
CE-141	2.256E+00	6.300E+00	9.137E+00	0.000E+00	0.247
CE-144	1.974E+00	2.602E+01	3.728E+01	0.000E+00	0.053
EU-152	5.447E+00	1.182E+01	1.677E+01	0.000E+00	0.325
EU-154	-5.263E+00	6.237E+00	9.693E+00	0.000E+00	-0.543
RA-226	-9.488E+00	7.784E+01	1.283E+02	0.000E+00	-0.074
AC-228	3.408E+00	1.464E+01	2.181E+01	0.000E+00	0.156
TH-228	4.661E+00	5.924E+00	1.046E+01	0.000E+00	0.445
TH-232	3.403E+00	1.462E+01	2.178E+01	0.000E+00	0.156
U-235	1.445E+01	2.614E+01	3.835E+01	0.000E+00	0.377
U-238	-2.740E+02	3.449E+02	5.260E+02	0.000E+00	-0.521
AM-241	-2.229E+01	2.916E+01	4.359E+01	0.000E+00	-0.511

A,07L29321-1	,07/21/2006	16:03,07/17/	2006 08:35,	3.183E+00,L2932	1-1 WG ZI
B,07L29321-1	,LIBD	,07	/21/2006 09:34	1,073L082504	
C,K-40 ,YES,	3.459E+01,	3.853E+01,	6.680E+01,,	0.518	
C,BE-7 ,NO ,			4.628E+01,,		
C,NA-24 ,NO ,			5.504E+02,,	-0.427	
C,CR-51 ,NO ,	-9.525E+00,		4.628E+01,		
C,MN-54 ,NO ,	2.869E+00,		5.917E+00,,	0.485	
C,CO-57 ,NO ,	-	•		-0.291	
C,CO-58 ,NO ,		3.095E+00,		-0.606	
C,FE-59 ,NO ,		7.211E+00,	1.176E+01,,	-0.009	
C,CO-60 ,NO ,	-1.831E+00,	3.522E+00,	5.454E+00,,	-0.336	
C,ZN-65 ,NO ,	5.563E+00,	7.707E+00,	1.328E+01,,	0.419	
C,SE-75 ,NO ,	-6.344E-01,	4.154E+00,	6.810E+00,,	-0.093	
C,SR-85 ,NO ,	1.922E+01,	3.898E+00,	7.799E+00,,	2.465	
C,Y-88 ,NO ,	-1.555E+00,	3.864E+00,	6.058E+00,,	-0.257	
C,NB-94 ,NO ,	-2.822E+00,	3.003E+00,	4.642E+00,,	-0.608	
C,NB-95 ,NO ,	-4.063E-01,	3.508E+00,	5.734E+00,,	-0.071	
C,ZR-95 ,NO ,	-4.750E+00,	5.840E+00,	9.033E+00,,	-0.526	
C,MO-99 ,NO ,	-2.790E+01,	7.023E+01,	1.127E+02,,	-0.248	
C,RU-103 ,NO ,	-1.263E+00,	3.464E+00,	5.492E+00,,	-0.230	
C,RU-106 ,NO ,	1.343E+01,	3.101E+01,	5.031E+01,,	0.267	
C,AG-110m ,NO ,	3.899E-01,	2.931E+00,	4.826E+00,,	0.081	
C,SN-113 ,NO ,	-3.971E+00,	3.993E+00,	6.221E+00,,	-0.638	
C,SB-124 ,NO ,	-3.503E+00,	4.301E+00,	5.490E+00,,	-0.638	
C,SB-125 ,NO ,	-6.151E+00,	8.935E+00,	1.406E+01,,	-0.438	
C,TE-129M ,NO ,	-	3.800E+01,	6.078E+01,,	-0.204	
C,I-131 ,NO ,	2.386E+00,	4.375E+00,	7.479E+00,,	0.319	
	9.312E+00,	5.146E+00,	8.194E+00,,	1.136	
C,CS-134 ,NO ,		4.597E+00,	6.883E+00,,	0.718	
C,CS-136 ,NO ,			6.172E+00,,	0.511	
C,CS-137 ,NO ,		•	5.277E+00,,		
C,CE-139 ,NO ,			4.921E+00,,	0.226	
C,BA-140 ,NO ,		•	2.308E+01,,	0.370	
C,LA-140 ,NO ,			7.605E+00,,		
C,CE-141 ,NO ,		· · · ·	9.137E+00,,		
C,CE-144 ,NO ,		•	3.728E+01,,	0.053	
C,EU-152 ,NO ,					
C,EU-154 ,NO ,		6.237E+00,	9.693E+00,,	-0.543	
C,RA-226 ,NO ,		7.784E+01,	1.283E+02,,	-0.074	
C,AC-228 ,NO ,		1.464E+01,	2.181E+01,,	0.156	
C,TH-228 ,NO ,		5.924E+00,	1.046E+01,,	0.445	
C,TH-232 ,NO ,		1.462E+01,	2.178E+01,,	0.156	
C,U-235 ,NO ,		2.614E+01,	3.835E+01,,	0.377	
C,U-238 ,NO ,		3.449E+02,	5.260E+02,,	-0.521	
C,AM-241 ,NO ,	-2.229E+01,	2.916E+01,	4.359E+01,,	-0.511	

Sec. Rev	/iew: Ana	lyst: I	JIMS:	<u>/</u>					-
VAX/VMS TBE07 P-	Teledyne B -10768B HpG	rown Eng. e *******	Labor *** Aq	atory uisit:	Gamma Re Lon Date,	eport: 28-0 /Time: 27-0	JUL-2006 ( JUL-2006 1	09:15 16:00	:00.44 :40.08
LIMS No.	., Customer	Name, Cl	ient I	D: L29	9321-2R1	WG ZION			
Sample 7 Quantity Start Ch	ID : 07 Fype : WG / : 3. nannel : 40 nnel : 40 stant : 0.	07490E+00 Ene	) L ergy To Srch S	ens: 5	5.00000	Smple Date Geometry BKGFILE Real Time Live time	: 073L082 : 07BG070 : 0 17:14	2504 0106M 4:13.1	14
Pk It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
	66.31* 69.47 139.80* 174.88 198.40* 253.23 499.46 596.15 609.27*	706 206 575 237 438 157 126 291 107	1600 1244 1739 1353 1237 928 364 562 505	1.47 1.76 2.09	139.72 280.56 350.81 397.90 507.68 1000.61 1194.14	2.36E+00 2.34E+00 2.25E+00 1.99E+00 1.25E+00 1.10E+00	1.14E-02 3.32E-03 9.26E-03 3.82E-03 7.05E-03 2.53E-03 2.03E-03 4.70E-03 1.72E-03	27.8 15.6 27.3 17.2 34.4 27.9 17.8	1.05E+00 2.99E+00 3.81E+00 1.20E+00 7.82E-01 3.45E+00 3.62E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Flag: "*" = Keyline

Summary of Nuclide Activity Page : 2 Sample ID : 07L29321-2R1 Acquisition date : 27-JUL-2006 16:00:40 Total number of lines in spectrum 9 Number of unidentified lines 9 Number of lines tentatively identified by NID 0 0.00% **** There are no nuclides meeting summary criteria **** Flags: "K" = Keyline not found "M" = Manually accepted "E" = Manually edited "A" = Nuclide specific abn. limit Unidentified Energy Lines Sample ID : 07L29321-2R1

NB-95

ZR-95

MO-99

RU-103

RU-106

1.002E+00

-2.300E+00

-1.987E+01

-1.122E+00

1.634E+00

Acquisition date : 27-JUL-2006 16:00:40

Page : 3

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Ρw	Cts/Sec	%Err	%Eff	Flags
5	66.31	706	1600	1.37	133.39	104	1/1	L.14E-02	<u></u>	0 0ET (	17
5	69.47	206	1244	1.37 1.34	133.39 139.72			3.32E-03		8.05E-0	
										9.31E-(	
1	139.80	575	1739	1.63	280.56			9.26E-03		2.36E+0	
1	174.88	237	1353	1.60	350.81			8.82E-03		2.34E+0	
1	198.40	438	1237	1.05				7.05E-03		2.25E+0	
1	253.23	157	928	1.47	507.68					1.99E+(	
1	499.46	126	364	1.76				2.03E-03		1.25E+(	
1	596.15	291	562		1194.14					1.10E+(	
1	609.27	107	505	1.50	1220.39	1215	12 1	L.72E-03	****	1.09E+(	00
Flag	gs: "T" =	Tentative	ly ass	ociate	d						
Sumn	nary of N	uclide Act	ivity								
	-	c	-				_				
		r of lines					9				
		nidentifie					9	_	•		
		ines tenta					0		.00%		
* * * *	There a	re no nucl	ides m	eeting	summary	crite	eria	* * * *			
Flac		Keyline n	ot fou	nd	II M II	– Mar	- [בוור	ly accep	tod		
TTU		Manually			11 Z 11	- Nuc	-lide	e specif	ic ahn	limit	
	L)	Handarry	curccu		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- Nut		a phecir	ic abli	• <b>IIIII</b>	
Inte	erference	Report									
		-									
No j	Interfere	nce correc	tion p	erform	.ed						
<b>G</b> 1			<b>D</b>								
Com	Dined Act	ivity-MDA	Report								
	- Non-Ide	ntified Nu	clides								
			.0110.00								
		Key-Line	2								
		Activity		Act	error		MDA		MDA e	rror	Act/MDA
Nuc	lide	(pCi/L)				(1	pCi/l				
						`1	,-	_,			
BE-'	7	1.327E+C	0	1.10	8E+01	1.8	815E-	+01	0.000	E+00	0.073
NA-2	24	-1.351E-0	)1	7.78	5E-02	Ha	lf-L:	ife too	short		
K-4(	)	1.318E+C	)1	1.93	4E+01	3.3	104E-	+01	0.000	E+00	0.425
CR-5	51	-1.153E+0	)1	1.28	0E+01	2.0	044E-	+01	0.000		-0.564
MN - 5		9.921E-C		1.18	7E+00		008E-		0.000		0.494
CO-5		-7.565E-0			5E+00		835E-		0.000		-0.412
CO-5		-6.020E-0			1E+00		012E·		0.000		-0.299
FE-9		2.845E+0			'3E+00		409E·		0.000		0.645
CO-6		5.603E-0			96E+00		988E·		0.000		0.282
ZN-6		4.478E+0			4E+00		420E		0.000		1.013
SE-		3.000E-0			1E+00		£20E. 628E.		0.000		0.011
SR-8		2.055E+0			/5E+00		085E		0.000		6.663
Y-88		-1.062E+0			5E+00		122E		0.000		-0.500
NB-9		3.461E-0			5E+00		951E		0.000		0.177
IND	ノエ 	2.40TD-(	/ <b>L</b>	т.тс	JE+00	т.	20TE.	+00	0.000	B+00	0.1//

1.265E+00

2.216E+00

1.223E+02

1.408E+00

1.091E+01

2.101E+00

3.493E+00

1.984E+02

2.352E+00

1.794E+01

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.477

-0.658

-0.100

-0.063

0.695

AG-110m	-5.479E-01	1.179E+00	1.912E+00	0.000E+00	-0.287
SN-113	1.259E+00	1.528E+00	2.566E+00	0.000E+00	0.491
SB-124	2.291E+00	2.745E+00	2.107E+00	0.000E+00	1.087
SB-125	2.061E+00	3.318E+00	5.525E+00	0.000E+00	0.373
TE-129M	1.686E+00	1.596E+01	2.618E+01	0.000E+00	0.064
I-131	-9.018E-01	2.784E+00	4.592E+00	0.000E+00	-0.196
BA-133	2.888E+00	1.633E+00	2.796E+00	0.000E+00	1.033
CS-134	5.962E+00	2.510E+00	2.172E+00	0.000E+00	2.745
CS-136	1.444E+00	1.912E+00	3.235E+00	0.000E+00	0.446
CS-137	-3.877E-01	1.287E+00	2.096E+00	0.000E+00	-0.185
CE-139	7.532E-01	1.187E+00	1.909E+00	0.000E+00	0.395
BA-140	6.169E+00	6.999E+00	1.188E+01	0.000E+00	0.519
LA-140	-1.908E+00	2.340E+00	3.712E+00	0.000E+00	-0.514
CE-141	-9.986E-01	2.963E+00	3.807E+00	0.000E+00	-0.262
CE-144	-9.689E+00	1.024E+01	1.404E+01	0.000E+00	-0.690
EU-152	-1.827E+01	3.767E+00	5.746E+00	0.000E+00	-3.180
EU-154	-8.917E-01	2.314E+00	3.787E+00	0.000E+00	-0.235
RA-226	1.697E+00	3.227E+01	4.761E+01	0.000E+00	0.036
AC-228	1.095E+00	5.789E+00	7.728E+00	0.000E+00	0.142
TH-228	3.003E+00	2.378E+00	3.813E+00	0.000E+00	0.788
TH-232	1.091E+00	5.769E+00	7.701E+00	0.000E+00	0.142
U-235	2.930E+00	1.095E+01	1.427E+01	0.000E+00	0.205
U-238	1.172E+02	1.277E+02	2.147E+02	0.000E+00	0.546
AM-241	4.402E+00	1.187E+01	1.665E+01	0.000E+00	0.264

A,07L29321-2R1	,07/28/2006	09:15,07/17/2	2006 09:35,	3.075E+00,L29321-2	R1 WG
B,07L29321-2R1	,LIBD		/24/2006 09:00		
C,BE-7 ,NO ,	1.327E+00,	1.108E+01,			
C,K-40 ,NO ,	1.318E+01,		3.104E+01,,	0.425	
C,CR-51 ,NO ,	-1.153E+01,		2.044E+01,,	-0.564	
	9.921E-01,	•	2.008E+00,,	0.494	
	-7.565E-01,	1.125E+00,	1.835E+00,,	-0.412	
	-6.020E-01,	1.231E+00,	2.012E+00,	-0.299	
	2.845E+00,	2.573E+00,	4.409E+00,,	0.645	
	5.603E-01,	1.196E+00,	1.988E+00,,	0.282	
	4.478E+00,	2.534E+00,	4.420E+00,,	1.013	
	3.000E-02,	1.601E+00,	2.628E+00,,	0.011	
	2.055E+01,	1.575E+00,	3.085E+00,,	6.663	
· · ·	-1.062E+00,	1.332E+00,	2.122E+00,,	-0.500	
	3.461E-01,	1.185E+00,	1.951E+00,,	0.177	
C,NB-95 ,NO ,	1.002E+00,	1.265E+00,	2.101E+00,,	0.477	
	-2.300E+00,	2.216E+00,	3.493E+00,,	-0.658	
	-1.987E+01,	1.223E+02,	1.984E+02,	-0.100	
	1.634E+00,	1.408E+00,	2.352E+00,,	0.695	
	-1.122E+00,	1.091E+01,	1.794E+01,,	-0.063	
	-5.479E-01,	1.179E+00,	1.912E+00,,	-0.287	
	1.259E+00,	1.528E+00,	2.566E+00,,	0.491	
C,SB-124 ,NO ,	2.291E+00,	2.745E+00,	2.107E+00,,	1.087	
	2.061E+00,	3.318E+00,	5.525E+00,,	0.373	
	1.686E+00,	1.596E+01,	2.618E+01,,	0.064	
	-9.018E-01,	2.784E+00,	4.592E+00,,	-0.196	
	2.888E+00,	1.633E+00,	2.796E+00,,	1.033	
	5.962E+00,	2.510E+00,	2.172E+00,,	2.745	
C,CS-136 ,NO ,	1.444E+00,	1.912E+00,	3.235E+00,,	0.446	
	-3.877E-01,	1.287E+00,	2.096E+00,,	-0.185	
	7.532E-01,	1.187E+00,	1.909E+00,,	0.395	
	6.169E+00,	6.999E+00,	1.188E+01,,	0.519	
	-1.908E+00,	2.340E+00,	3.712E+00,,	-0.514	
C,CE-141 ,NO ,	-9.986E-01,	2.963E+00,	3.807E+00,,	-0.262	
C,CE-144 ,NO ,	-9.689E+00,	1.024E+01,	1.404E+01,,	-0.690	
C,EU-152 ,NO ,	-1.827E+01,	3.767E+00,	5.746E+00,,	-3.180	
C,EU-154 ,NO ,	-8.917E-01,	2.314E+00,	3.787E+00,,		
C,RA-226 ,NO ,	1.697E+00,	3.227E+01,	4.761E+01,,	0.036	
C,AC-228 ,NO ,	1.095E+00,	5.789E+00,	7.728E+00,,	0.142	
C,TH-228 ,NO ,	3.003E+00,	2.378E+00,	3.813E+00,,	0.788	
C,TH-232 ,NO ,	1.091E+00,	5.769E+00,	7.701E+00,,	0.142	
C,U-235 ,NO ,	2.930E+00,	1.095E+01,	1.427E+01,,	0.205	
C,U-238 ,NO ,	1.172E+02,	1.277E+02,	2.147E+02,,	0.546	
C,AM-241 ,NO ,	4.402E+00,	1.187E+01,	1.665E+01,		
-,	······································	т.то/штот,	1.000ETU1,,	0.264	

Sec. Review: Analyst:/ LIMS:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 21-JUL-2006 15:54:52.08 TBE13 P-10727B HpGe ******** Aquisition Date/Time: 21-JUL-2006 13:43:20.85 LIMS No., Customer Name, Client ID: L29321-3 WG ZION

 Sample ID
 : 13L29321-3
 Smple Date: 17-JUL-2006 10:45:00.

 Sample Type
 : WG
 Geometry : 1335L090904

 Quantity
 : 3.54750E+00 L
 BKGFILE : 13BG070106MT

 Start Channel
 : 25
 Energy Tol : 1.50000
 Real Time : 0 02:11:18.30

 End Channel
 : 4090
 Pk Srch Sens: 5.00000
 Live time : 0 02:11:16.00

 MDA Constant
 : 0.00
 Library Used: LIBD

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	1	63.73*	90	472	4.22	127.68	6.35E-01	1.15E-02	55.9	2.03E+00
2	1	198.26*	64	206	1.80	396.75	1.90E+00	8.16E-03	43.3	1.76E+00
3	1	295.24*	33	90	1.32	590.76	1.52E+00	4.23E-03	57.6	1.45E+00
4	1	352.06*	52	93	1.84	704.46	1.34E+00	6.55E-03	42.1	3.75E+00
5	1	594.98	108	67	5.25	1190.63	9.12E-01	1.38E-02	18.2	4.96E+00
6	1	609.28*	23	90	1.58	1219.26	8.96E-01	2.91E-03	94.3	7.40E-01
7	1	847.96*	23	22	5.00	1697.19	7.01E-01	2.98E-03	53.4	1.56E+00
8	1	1120.14*	18	24	1.72	2242.45	5.69E-01	2.24E-03	58.3	2.07E+00
9	1	1763.69*	11	23	5.43	3532.80	4.11E-01	1.40E-031	103.9	2.75E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Flag: "*" = Keyline

Summary of Nuclide Activity Sample ID : 13L29321-3 Total number of lines in spectrum Number of unidentified lines Number of lines tentatively identified by NID 0 **** There are no nuclides meeting summary criteria **** Flags: "K" = Keyline not found "E" = Manually edited "A" = Nuclide specific abn. limit Unidentified Energy Lines Page : 3 Sample ID : 13L29321-3 Acquisition date : 21-JUL-2006 13:43:20 Ιt FWHM Channel Left Pw Cts/Sec %Err Energy Area Bkqnd %Eff Flaqs 4.22 1 63.73 90 472 127.68 121 16 1.15E-02 **** 6.35E-01 1 198.26 64 206 1.80 396.75 393 9 8.16E-03 86.6 1.90E+00 1 295.24 33 90 1.32 590.76 587 8 4.23E-03 **** 1.52E+00 1 352.06 52 93 1.84 704.46 700 10 6.55E-03 84.2 1.34E+00 1 594.98 67 108 5.25 1190.63 1187 15 1.38E-02 36.5 9.12E-01 1 609.28 23 90 1219.26 1213 12 2.91E-03 **** 1.58 8.96E-01 847.96 22 1 23 5.00 1697.19 1692 13 2.98E-03 **** 7.01E-01 1 1120.14 18 24 1.72 2242.45 2238 8 2.24E-03 **** 5.69E-01 1 1763.69 23 3532.80 3525 15 1.40E-03 **** 11 5.43 4.11E-01 Flags: "T" = Tentatively associated Summary of Nuclide Activity 9 Total number of lines in spectrum Number of unidentified lines 9 Number of lines tentatively identified by NID 0 0.00% **** There are no nuclides meeting summary criteria **** "M" = Manually accepted Flags: "K" = Keyline not found "E" = Manually edited "A" = Nuclide specific abn. limit Interference Report No interference correction performed Combined Activity-MDA Report ---- Non-Identified Nuclides ----Key-Line Activity K.L. MDA MDA error Act/MDA Act error Nuclide (pCi/L)Ided (pCi/L) BE-7 -2.139E+01 2.907E+01 4.508E+01 0.000E+00 -0.474NA-24 -1.077E+02 3.679E+02 5.807E+02 0.000E+00 -0.185 K-40 -4.555E+01 5.008E+01 9.407E+01 0.000E+00 -0.484CR-51 -2.716E+01 3.065E+01 4.717E+01 0.000E+00 -0.576 MN-54 4.584E-01 3.417E+00 5.722E+00 0.000E+00 0.080 CO-57 1.094E+00 3.181E+00 5.273E+00 0.000E+00 0.207 CO-58 2.216E+00 3.526E+00 6.130E+00 0.000E+00 0.362

6.618E+00

3.538E+00

9.363E+00

4.526E+00

4.377E+00

3.632E+00

3.437E+00

3.549E+00

5.798E+00

6.928E+01

3.827E+00

3.244E+01

1.112E+01

5.985E+00

1.434E+01

7.265E+00

8.167E+00

5.784E+00

5.357E+00

5.711E+00

9.665E+00

1.199E+02

6.486E+00

5.187E+01

0.000E+00

0.075

0.182

0.510

1.794

-0.246

-0.095

-0.409

-0.074

0.177

0.449

0.417

-0.273

FE-59

CO-60

ZN-65

SE-75

SR-85

Y-88

NB-94

NB-95

ZR-95

MO-99

RU-103

RU-106

8.338E-01

1.087E+00

7.318E+00

1.466E+01

-1.784E+00

-5.502E-01

-2.191E+00

-4.223E-01

1.712E+00

5.390E+01

2.703E+00

-1.418E+01

AG-110m	-5.290E-01	3.228E+00	5.236E+00	0.000E+00	-0.101
SN-113	8.167E-01	4.503E+00	7.509E+00	0.000E+00	0.109
SB-124	1.061E+00	7.423E+00	5.721E+00	0.000E+00	0.185
SB-125	-2.947E+00	9.317E+00	1.500E+01	0.000E+00	-0.196
TE-129M	3.686E+01	4.326E+01	7.416E+01	0.000E+00	0.497
I-131	-2.688E+00	4.636E+00	7.445E+00	0.000E+00	-0.361
BA-133	4.521E+00	5.230E+00	7.881E+00	0.000E+00	0.574
CS-134	5.482E+00	7.282E+00	6.399E+00	0.000E+00	0.857
CS-136	-1.316E+00	4.074E+00	6.586E+00	0.000E+00	-0.200
CS-137	3.504E-01	3.668E+00	6.043E+00	0.000E+00	0.058
CE-139	1.553E+00	3.443E+00	5.646E+00	0.000E+00	0.275
BA-140	-1.674E+00	1.528E+01	2.528E+01	0.000E+00	-0.066
LA-140	-1.117E+00	4.863E+00	7.795E+00	0.000E+00	-0.143
CE-141	-7.042E-01	6.252E+00	1.011E+01	0.000E+00	-0.070
CE-144	-1.372E+01	2.546E+01	4.067E+01	0.000E+00	-0.337
EU-152	-1.069E+01	1.222E+01	1.739E+01	0.000E+00	-0.614
EU-154	-1.434E-01	6.710E+00	1.097E+01	0.000E+00	-0.013
RA-226	2.467E+01	8.582E+01	1.495E+02	0.000E+00	0.165
AC-228	-4.857E+00	1.393E+01	2.323E+01	0.000E+00	-0.209
TH-228	-5.543E-01	6.446E+00	1.093E+01	0.000E+00	-0.051
TH-232	-4.850E+00	1.391E+01	2.320E+01	0.000E+00	-0.209
U-235	-1.409E+01	2.638E+01	4.206E+01	0.000E+00	-0.335
U-238	2.697E+01	3.982E+02	6.588E+02	0.000E+00	0.041
AM-241	4.753E+01	3.126E+01	4.731E+01	0.000E+00	1.005

A,13L29321-3	,07/21/2006 ,LIBD	15:54,07/17/	2006 10:45,	3.547E+00,L29321-	-3 WG ZI
B,13L29321-3	,LIBD	,07	/19/2006 10:01	,1335L090904	
C,BE-7,NO	, -2.139E+01,	2.907E+01,	/19/2006 10:01 4.508E+01,,	-0.474	
C,NA-24 ,NO	, -1.077E+02,	3.679E+02,	5.807E+02,,	-0.185	
C,K-40 ,NO	, -4.555E+01,	5.008E+01,	9.407E+01,,	-0.484	
C,CR-51 ,NO	-2 716E+01	3 በፍ5፹⊥በ1	1 7170,01	-0.576	
C,MN-54 ,NO	, 4.584E-01,	3.417E+00,	5.722E+00,,	0.080	
C,CO-57 ,NO	, 1.094E+00,	3.181E+00,	5.273E+00,,	0.207	
C,CO-58,NO	, 2.216E+00,	3.526E+00,	6.130E+00,,	0.362	
C,FE-59 ,NO	, 8.338E-01,	6.618E+00,	1.112E+01,,	0.075	
C,CO-60 ,NO	, 1.087E+00,	3.538E+00,	5.985E+00,,	0.182	
C,ZN-65 ,NO	<pre>, 2.710E+01, , 4.584E-01, , 1.094E+00, , 2.216E+00, , 8.338E-01, , 1.087E+00, , 7.318E+00, , -1.784E+00.</pre>	9.363E+00,	1.434E+01,,	0.510	
C,SE-75 ,NO	, -1.784E+00,	4.526E+00,	7.265E+00,,	-0.246	
C,SR-85 ,NO	, 1.466E+01,	4.377E+00,	8.167E+00,,	1.794	
C,Y-88 ,NO	, -5.502E-01,	3.632E+00,	5.784E+00,,	-0.095	
C,NB-94 ,NO	, -2.191E+00,	3.437E+00,	5.357E+00,,	-0.409	
C,NB-95 ,NO	, -4.223E-01,	3.549E+00,	5.711E+00,,	-0.074	
C,ZR-95 ,NO	, 1.712E+00,	5.798E+00,	9.665E+00,,	0.177	
C,MO-99 ,NO	<pre>, -1.784E+00, , 1.466E+01, , -5.502E-01, , -2.191E+00, , -4.223E-01, , 1.712E+00, , 5.390E+01, , 2.703E+00, , -1.418E+01, , -5.290E-01, , 8.167E-01,</pre>	6.928E+01,	1.199E+02,,	0.449	
C,RU-103 ,NO	, 2.703E+00,	3.827E+00,	6.486E+00,,	0.417	
C,RU-106 ,NO	, -1.418E+01,	3.244E+01,	5.187E+01,,	-0.273	
C,AG-110m ,NO	, -5.290E-01,	3.228E+00,	5.236E+00,,	-0.101	
C,SN-113 ,NO	, 8.167E-01, , 1.061E+00,	4.503E+00,	7.509E+00,,	0.109	
C,SB-124 ,NO	, 1.061E+00,	7.423E+00,	5.721E+00,,	0.185	
	$,  \Delta \cdot J = J \Box = U U ,$	シ・コエノビキリリ,	I.JUUE+UI,,	-0.196	
C,TE-129M ,NO	, 3.686E+01,	4.326E+01,	7.416E+01,,	0.497	
C,I-131 ,NO	, -2.688E+00,	4.636E+00,	7.445E+00,,	-0.361	
C,BA-133 ,NO	, 4.521E+00,	5.230E+00,	7.881E+00,,	0.574	
C,CS-134 ,NO	, 4.521E+00, , 5.482E+00,	7.282E+00,	6.399E+00,,	0.857	
C,CS-136 ,NO	, -1.316E+00,	4.074E+00,	6.586E+00,,	-0.200	
C,CS-137 ,NO	, 3.504E-01,	3.668E+00,	6.043E+00,,	0.058	
C,CE-139 ,NO	, 3.504E-01, , 1.553E+00,	3.443E+00,	5.646E+00,,	0.275	
C, BA-140 , NO	, -1.674E+00,	1.528E+01,	2.528E+01,,	-0.066	
C,LA-140 ,NO		4.863E+00,	7.795E+00,,	-0.143	
C,CE-141 ,NO		6.252E+00,	1.011E+01,,	-0.070	
C,CE-144 ,NO		2.546E+01,	4.067E+01,,	-0.337	
C,EU-152 ,NO		1.222E+01,	1.739E+01,,	-0.614	
C,EU-154 ,NO		6.710E+00,	1.097E+01,,	-0.013	
C,RA-226 ,NO		8.582E+01,	1.495E+02,,	0.165	
C,AC-228 ,NO		1.393E+01,	2.323E+01,,	-0.209	
C, TH-228 , NO		6.446E+00,	1.093E+01,,	-0.051	
C,TH-232 ,NO		1.391E+01,	2.320E+01,,	-0.209	
C,U-235 ,NO		2.638E+01,	4.206E+01,,	-0.335	
C,U-238 ,NO C,AM-241 ,NO		3.982E+02,	6.588E+02,,	0.041	
C,AM-241 ,NO	, 4.753E+01,	3.126E+01,	4.731E+01,,	1.005	

Sec. Review: Analyst: LIMS: VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 21-JUL-2006 15:55:45.47 TBE23 03017322 HpGe ******** Aquisition Date/Time: 21-JUL-2006 13:43:22.18 LIMS No., Customer Name, Client ID: L29321-4 WG ZION Sample ID : 23L29321-4 Smple Date: 17-JUL-2006 11:30:00. : WG Sample Type Geometry : 2335L090704 Quantity : 3.56260E+00 L BKGFILE : 23BG070106MT Start Channel : 50 Energy Tol : 1.50000 Real Time : 0 02:12:06.53 End Channel : 4090 Pk Srch Sens: 5.00000 Live time : 0 02:12:01.06 MDA Constant : 0.00 Library Used: LIBD Pk It Area Bkqnd FWHM Channel %Eff Cts/Sec %Err Energy Fit 1 0 63.23* 26 215 1.38 126.67 9.39E-01 3.28E-03 98.7 0.00E+00 2 0 185.72* 19 420 1.40 371.36 1.95E+00 2.36E-03246.9 3 0 198.49 117 290 1.22 396.87 1.90E+00 1.47E-02 30.9 4 0 295.18* 1.57 590.08 59 146 1.50E+00 7.39E-03 42.5 5 0 352.39* 84 145 1.56 704.42 1.32E+00 1.06E-02 33.8 6 0 609.09* 98 1.62 1217.59 54 8.59E-01 1.24E-02 19.5 7 0 1460.91* 12 6 2.12 2922.10 4.59E-01 1.57E-03 92.9 8 27 0 1764.21* 0 2.09 3529.67 4.01E-01 3.39E-03 26.1

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

. . .

MUCTICE .	Type: natural	-			Uncorrected	Decav Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pĈi/L	%Error
K-40	1460.81	12	10.67*	4.594E-01	2.425E+01	2.425E+01	185.87
RA-226	186.21	19	3.28*	1.947E+00	2.801E+01	2.801E+01	493.89
Flag: "*	" = Keyline						

Summary of Nuclide Activity Page : 2 Acquisition date : 21-JUL-2006 13:43:22 Sample ID : 23L29321-4 Total number of lines in spectrum 8 Number of unidentified lines 6 Number of lines tentatively identified by NID 2 25.00% Nuclide Type : natural Uncorrected Decay Corr Decay Corr 2-Sigma NuclideHlifeDecaypCi/LpCi/L2-Sigma2-SigmaK-401.28E+09Y1.002.425E+012.425E+014.507E+01185.87RA-2261600.00Y1.002.801E+012.801E+0113.83E+01493.89 _____ -----Total Activity : 5.226E+01 5.226E+01 Grand Total Activity : 5.226E+01 5.226E+01 Flags: "K" = Keyline not found "E" = Manually edited "M" = Manually accepted "A" = Nuclide specific abn. limit

Unidentified Sample ID :	Energy Lines 23L29321-4	А	cquisition date :		ge: 3 13:43:22
It Energy	Area Bkgnd	FWHM Channe	l Left Pw Cts/Se	ec %Err %Eff	Flags
$\begin{array}{cccc} 0 & 63.23 \\ 0 & 198.49 \\ 0 & 295.18 \\ 0 & 352.39 \\ 0 & 609.09 \\ 0 & 1764.21 \end{array}$	59 146	1.22 396.8 1.57 590.0 1.56 704.4 1.62 1217.5	7 124 6 3.28E-0 7 391 12 1.47E-0 8 584 10 7.39E-0 2 696 14 1.06E-0 9 1211 12 1.24E-0 7 3524 13 3.39E-0	0261.81.90E0384.91.50E0267.71.32E0239.08.59E	+00 +00 +00 -01
Flags: "T" =	Tentatively ass	sociated			
Summary of N	uclide Activity				
Number of u	r of lines in sp nidentified line ines tentatively	S	8 6 Y NID 2 2	25.00%	
Nuclide Type		Ntd Mean W	'td Mean		
K-40 1.28	Ur Hlife Decay E+09Y 1.00 2	ncorrected De pCi/L 2.425E+01 2	cay Corr Decay pCi/L 2-Sigma .425E+01 4.507	a Error %Erro	r Flags
Tot	al Activity : 5	5.226E+01 5	.226E+01		
	al Activity : 5		.226E+01		
Flags: "K" = "E" =	Keyline not fou Manually edited	ınd "M l "A	" = Manually acce " = Nuclide speci	epted lfic abn. limi	t
Interference	Report				
Ma interactions					
	nce correction p				
Compined Act	ivity-MDA Report				
Identif	ied Nuclides				
Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
K-40 RA-226	2.425E+01 2.801E+01	4.507E+01 1.383E+02	5.692E+01 1.615E+02	0.000E+00 0.000E+00	0.426 0.173
Non-Identified Nuclides					
Nuclide	Key-Line Activity K.L. (pCi/L) Ideo		MDA (pCi/L)	MDA error	Act/MDA
BE-7 NA-24 CR-51	-1.218E+01 -5.503E+01 -2.468E+01	2.915E+01 3.426E+02 3.367E+01	4.927E+01 6.116E+02 5.509E+01	0.000E+00 0.000E+00 0.000E+00	-0.247 -0.090 -0.448

MN-54 CO-57 CO-58 FE-59 CO-60	4.144E+00 -1.562E+00 2.493E-01 -4.749E-01	3.620E+00 3.900E+00 3.532E+00 6.608E+00	6.834E+00 6.476E+00 6.221E+00 1.169E+01	0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.606 -0.241 0.040 -0.041
ZN-65	6.815E-01 -4.356E-01	3.501E+00 7.276E+00	6.355E+00 1.285E+01	0.000E+00 0.000E+00	0.107
SE-75	9.380E-01	5.022E+00	8.604E+00	0.000E+00 0.000E+00	-0.034 0.109
SR-85	1.385E+01	4.039E+00	7.985E+00	0.000E+00 0.000E+00	1.735
Y-88	-2.825E-01	3.934E+00	7.155E+00	0.000E+00	-0.039
NB-94	-1.787E-01	3.140E+00	5.510E+00	0.000E+00	-0.032
NB-95	2.795E+00	3.602E+00	6.649E+00	0.000E+00	0.420
ZR-95	-4.065E+00	5.939E+00	9.889E+00	0.000E+00	-0.411
MO-99	1.039E+01	6.683E+01	1.195E+02	0.000E+00	0.087
RU-103	1.151E+00	3.666E+00	6.456E+00	0.000E+00	0.178
RU-106	-4.765E+01	3.298E+01	5.060E+01	0.000E+00	-0.942
AG-110m	4.373E-01	3.407E+00	6.054E+00	0.000E+00	0.072
SN-113	1.185E+00	4.510E+00	7.946E+00	0.000E+00	0.149
SB-124	-2.950E+00	4.940E+00	6.716E+00	0.000E+00	-0.439
SB-125	-4.431E+00	9.686E+00	1.640E+01	0.000E+00	-0.270
TE-129M	-1.301E+01	4.312E+01	7.335E+01	0.000E+00	-0.177
I-131	2.659E+00	5.153E+00	8.940E+00	0.000E+00	0.297
BA-133	3.517E+00	6.080E+00	9.033E+00	0.000E+00	0.389
CS-134	3.731E+00	5.117E+00	7.735E+00	0.000E+00	0.482
CS-136	-1.415E+00	4.069E+00	6.941E+00	0.000E+00	-0.204
CS-137	1.096E+00	3.692E+00	6.641E+00	0.000E+00	0.165
CE-139	-1.868E+00	3.927E+00	6.436E+00	0.000E+00	-0.290
BA-140	-2.450E+00	1.477E+01	2.526E+01	0.000E+00	-0.097
LA-140	4.560E+00	5.009E+00	9.845E+00	0.000E+00	0.463
CE-141 CE-144	-5.713E+00	7.276E+00	1.187E+01	0.000E+00	-0.481
EU-152	-1.658E+01 -5.254E+00	3.022E+01	4.981E+01	0.000E+00	-0.333
EU-152 EU-154	-5.254E+00 1.318E+00	1.397E+01	1.942E+01	0.000E+00	-0.271
AC-228	-8.539E+00	8.072E+00 1.174E+01	1.362E+01	0.000E+00	0.097
TH-228	6.994E+00	6.973E+00	1.970E+01 1.226E+01	0.000E+00	-0.434
TH-232	-8.528E+00	1.172E+01	1.967E+01	0.000E+00	0.571
U-235	-7.902E+00	3.084E+01	1.967E+01 5.083E+01	0.000E+00 0.000E+00	-0.434
U-238	-9.627E+01	3.605E+02	6.410E+02	0.000E+00 0.000E+00	-0.155 -0.150
AM-241	-7.768E+00	2.336E+01	3.248E+01	0.000E+00	-0.239
				5.0001.00	0.200

A,23L2932	1-4	,07/21/2006	15:55,07/17/2	2006 11:30,	3.563E+00,L29321	-4 WG ZI
B,23L2932:	1-4	,LIBD	,07,	/21/2006 13:20	,2335L090704	
C,K-40	,YES,	2.425E+01,	4.507E+01,	5.692E+01,,	0.426	
C,RA-226	,YES,	,LIBD 2.425E+01, 2.801E+01, -1.218E+01,	1.383E+02,	1.615E+02,,	0.173	
C,BE-7	,NO ,	-1.218E+01,	2.915E+01,	4.927E+01,,	-0.247	
C,NA-24	,NO ,	-5.503E+01,	3.426E+02,	6.116E+02,,	-0.090	
C,CR-51	,NO ,	-2.468E+01,	3.367E+01,	5.509E+01,,	-0.448	
C,MN-54	,NO ,	-2.468E+01, 4.144E+00,	3.620E+00,	6.834E+00,,	0.606	
C,CO-57	, 10,	-I.JUZB+UU.	<u>, , , , , , , , , , , , , , , , , , , </u>	6 4 / 6 H I U U	-0 2/1	
C,CO-58	,NO,	2.493E-01, -4.749E-01, 6.815E-01	3.532E+00,	6.221E+00,,	0.040	
C,FE-59	,NO,	-4.749E-01,	6.608E+00,	1.169E+01,	-0.041	
C,CO-60	,NO,	6.815E-01,	3.501E+00,	6.355E+00.	0.107	
C,ZN-65						
C,SE-75	,NO,	9.380E-01,	5.022E+00,	8.604E+00.	0.109	
C,SR-85	,NO,	9.380E-01, 1.385E+01, -2.825E-01.	4.039E+00,	7,985E+00,,	1,735	
C,Y-88	,NO,	-2.825E-01,	3.934E+00,	7.155E+00.	-0.039	
C,NB-94	,NO,	-1.787E-01,	3.140E+00,	5.510E+00.	-0.032	
C,NB-95	,NO,	2.795E+00,	3.602E+00.	6.649E+00.	0 420	
C,ZR-95	,NO,	-4.065E+00,	5.939E+00.	9.889E+00.	-0 411	
С,МО-99	,NO,	1.039E+01,	6.683E+01.	1.195E+02.	0 087	
C,RU-103	,NO,	1.151E+00,	3.666E+00,	6,456E+00,	0.178	
C,RU-106	,NO,	-4.765E+01,	3.298E+01.	5.060E+01.	-0.942	
C,AG-110m	,NO,	4.373E-01,	3.407E+00.	6.054E+00.	0 072	
C,SN-113	,NO,	1.185E+00,	4.510E+00.	7.946E+00	0 149	
C,SB-124	,NO,	1.385E+01, -2.825E-01, -1.787E-01, 2.795E+00, -4.065E+00, 1.039E+01, 1.151E+00, -4.765E+01, 4.373E-01, 1.185E+00, -2.950E+00, 4.21E+00	4.940E+00.	6.716E+00.	-0.439	
C,SB-125	,NO,			1.640E+01,,		
C,TE-129M	.NO .	-1.3018+01	4 312F±01	7 2250,01	-0.177	
C,I-131	,NO,	2.659E+00,	5.153E+00.	8.940E+00	0.297	
C,BA-133	,NO ,	2.659E+00, 3.517E+00, 3.731E+00,	6.080E+00	9.033E+00	0.389	
C,CS-134	,NO ,	3.731E+00,	5.117E+00	7.735E+00	0.482	
C,CS-136	,NO,	-1.415E+00.	4.069E+00,	6.941E+00,,		
C,CS-137		1.096E+00,	3.692E+00	6.641E+00,,	0.165	
C,CE-139	,NO,	-1.868E+00,	3.927E+00	6.436E+00,,		
C,BA-140	,NO,	-2.450E+00,	1.477E+01	2.526E+01	-0.097	
C,LA-140		4.560E+00,	5.009E+00	9 $845E+00$	0.463	
C,CE-141	, NO	-5.713E+00,	7.276E+00	$1 187F \pm 01$	-0.481	
C,CE-144	,NO,	-1.658E+01,	3.022E+01,	4.981E+01,,		
C,EU-152	,NO,	-5.254E+00,	1.397E+01,	1.942E+01,,	-0.271	
C,EU-154	,NO ,	1.318E+00,	8.072E+00,	1.362E+01,,	0.097	
C,AC-228	,NO ,	-8.539E+00,	1.174E+01,	1.970E+01,,		
C, TH-228	,NO ,	6.994E+00,	6.973E+00,	1.226E+01,,	-0.434	
C,TH-232	,NO ,	-8.528E+00,	1.172E+01,	1.967E+01,,	0.571	
C,U-235	,NO ,	-7.902E+00,	3.084E+01,	5.083E+01,,	-0.434	
C,U-238	,NO ,	-9.627E+01,	3.605E+02,	6.410E+02,,	-0.155 -0.150	
C,AM-241	,NO ,	-7.768E+00,	2.336E+01,	3.248E+01,,	-0.239	
-	. ,			J.ZTUHTUL//	0.239	

L29402 1 of 61

A Teledyne Technologies Company

2508 Quality Lane Knoxville, TN 37931 865-690-6819 (Phone)

#### Work Order #: L29402 R1

#### Exelon

August 1, 2006



Kathy Shaw Conestoga-Rovers & Associates 45 Farmington Valley Road Plainville CT 06062

#### Case Narrative - L29402 EX001-3ESPZION-06

08/01/2006 16:32

#### Sample Receipt

The following samples were received on July 28, 2006 in good condition, unless otherwise noted.

CRA submitted a revised chain of custody on July 31, 2006 with corrected client IDs.

Revision 1:

CRA submitted a second revised chain of custody on August 1, 2006 with corrected sample IDs. Report is revised to contain corrected sample IDs.

	Cross Reference Tabl	le
Client ID	Laboratory ID	Station ID(if applicable)
WG-ZN-MW-ZN-10U-072806-MS-003	L29402-1	
 WG-ZN-MW-ZN-10U-072806-MS-004	L29402-2	
WG-ZN-MW-ZN-10L-072806-MS-005	L29402-3	
WG-ZN-MW-ZN-11U-072806-TL-001	L29402-4	
WG-ZN-MW-ZN-11L-072806-TL-002	L29402-5	

## Analytical Method Cross Reference TableRadiological ParameterTBE Knoxville MethodReference MethodGamma SpectrometryTBE-2007EPA 901.1H-3 (DIST)TBE-2010TOTAL SRTBE-2018EPA 905.0



#### Case Narrative - L29402 EX001-3ESPZION-06

08/01/2006 16:32

#### **Gamma Spectroscopy**

#### **Quality Control**

Quality control samples were analyzed as WG4276.

Duplicate Sample

Duplicates were analyzed for the following samples. All duplicate results were within acceptance limits, unless otherwise noted.

Client ID WG-ZION-MW-ZN-10U-072806-MS-003 Laboratory IDQC Sample #L29402-1WG4276-1

#### H-3 (DIST)

#### **Quality Control**

Quality control samples were analyzed as WG4273.

<u>Method Blank</u> All blanks were within acceptance limits, unless otherwise noted.

#### Laboratory Control Sample

All laboratory control samples were within acceptance limits, unless otherwise noted.

#### **Duplicate Sample**

Duplicates were analyzed for the following samples. All duplicate results were within acceptance limits, unless otherwise noted.

Client ID	Laboratory ID	QC Sample #
WG-ZION-MW-ZN-10U-072806-MS-003	L29402-1	WG4273-3



#### Case Narrative - L29402 EX001-3ESPZION-06

08/01/2006 16:32

#### TOTAL SR

#### **Quality Control**

Quality control samples were analyzed as WG4278.

Method Blank

All blanks were within acceptance limits, unless otherwise noted.

Laboratory Control Sample

All laboratory control samples were within acceptance limits, unless otherwise noted.

#### **Duplicate Sample**

Duplicates were analyzed for the following samples. All duplicate results were within acceptance limits, unless otherwise noted.

Client ID WG-QC-MW-QC-111I-072706-NZ-006

QC Sample # Laboratory ID L29389-6

WG4278-3

#### Certification

This is to certify that Teledyne Brown Engineering - Environmental Services, located at 2508 Quality Lane, Knoxville, Tennessee, 37931, has analyzed, tested and documented samples as specified in the applicable purchase order.

This also certifies that requirements of applicable codes, standards and specifications have been fully met and that any quality assurance documentation which verified conformance to the purchase order is on file and may be examined upon request.

I hereby certify that the above statements are true and correct.

aules for K. Juter Keith Jeter

**Operations Manager** 

L29402 5 of 61

## **Sample Receipt Summary**

Teledyne Brown Engineering L29402 6 of 61 07/31/06 08:36 Sample Receipt Verification/Variance Report SR #: SR09617 LIMS #: L29402 Project #: EX001-3ESPZION-06 Exelon Client: Initiated By: PMARSHALL Receive Date: Init Date: 07/28/06 07/28/06 Notification of Variance Person Notified: Contacted By: Notify Date: Notify Method: Notify Comment: Client Response Person Responding: Response Date: Response Method: Response Comment Yes No NA Comment Criteria Shipping container custody seals present NA 1 and intact. 2 Sample container custody seals present NA and intact. 3 Sample containers received in good Υ condition 4 Chain of custody received with samples Y 5 All samples listed on chain of custody Y received Sample container labels present and Υ 6 legible. Information on container labels Y 7 correspond with chain of custody Sample(s) properly preserved and in NA 8 appropriate container(s) Unpreserved and preserved containers 9 Other (Describe) NA provided

		چ_
REMARKS REMARKS -SK 8-1/90 NOT PREEmo	DATE: 7-28.06 TIME: 13:30 DATE: 7-28.06 DATE: 7-26 DATE: 7:30 DATE: 7:30 DATE	Z
CONESTOGA-FOVERS & ASSOCIATES CONESTOGA-FOVERS & ASSOCIATES B615 W. Bryn Mawr Avenue B615 W. Bryn Mawr Avenue Chicago. Illinois 60631 TT33300-4933 pione TT33300-4933 pione TT33300-4933 pione TT33300-4931 ax CIAIN-OF-CUANTER Sample FICA That are for a fo	TOTAL NUMBER OF CONTAINERS     Date: 7/5     A       TOTAL NUMBER OF CONTAINERS     TOTAL NUMBER OF CONTAINERS     TOTAL NUMBER OF CONTAINERS       RELINQUISHED BY:     TIME: 7/5     2.0 Man       RELINQUISHED BY:     TIME: 7/5     2.0 Man       RELINQUISHED BY:     DATE: 7/5     3.0 Man       RELINQUISHED BY:     TIME: 7/5     3.0 Man       Math     Fully Executed Copy     Anth       Mhite     Fully Executed Copy     Man       Vellow     Sampler Copy     Man       Vellow     Sampler Copy     TIME: 7/10       Finik     Sampler Copy     TIME: 7/10	K Junn KK

7/31/06

TELEDYNE BROWN ENGINEERING 2508 Quality Lane Knoxville, TN 37931-3133

ACKNOWLEDGEMENT This is not an invoice

July 31, 2006

Kathy Shaw Conestoga-Rovers & Associates 45 Farmington Valley Road Plainville, CT 06062

The following sample(s) were received at Teledyne Brown Engineering Knoxville laboratory on July 28, 2006. The sample(s) have been scheduled for the analyses listed below and the report is scheduled for completion by July 31, 2006. Please review the following login information and pricing. Contact me if anything is incorrect or you have questions about the status of your sample(s).

Thank you for choosing Teledyne Brown Engineering for your analytical needs.

Sincerely, Rebecca Charles Project Manager (865)934-0379

Project ID: EX001-3ESPZION-06
 P.O. #: 00411203
Release #:
 Contract#: 00411203
Kathy Shaw, FAX#:860-747-1900, larry.walton@exeloncorp.com

Client ID/ Station	Laboratory ID Analysis	Vol/UnitsStart CollectEnd CollectPriceDate/TimeDate/Time
WG-ZION-MW-ZN-10U-072	2806-MS- L29402-1	07/28/06:0915
WG WG	GELI H-3 (DIST) SR-90 (FAST)	162.00 162.00 210.00
WG-ZION-MW-ZN-10U-07	2806-MS- L29402-2	07/28/06:1000
WG WG	GELI H-3 (DIST) SR-90 (FAST)	162.00 162.00 210.00
WG-ZION-MW-ZN-10L-07	2806-MS- L29402-3	07/28/06:1125
WG WG	GELI H-3 (DIST) SR-90 (FAST)	162.00 162.00 210.00
WG-ZION-MW-11-U-0728	06-TL-00 L29402-4	07/28/06:1112
WG WG WG	GELI H-3 (DIST) SR-90 (FAST)	162.00 162.00 210.00
WG-ZION-MW-11-L-0728	06-TL-00 L29402-5	07/28/06:0945

Page 1

Client ID/ Station	Laboratory ID Analysis		Start Collect End Collect Date/Time Date/Time
WG	GELI	162.00	
WG	H-3 (DIST)	162.00	
WG	SR-90 (FAST)	210.00	
	End of documen		· · · · · · · · · · · · · · · · · · ·

#### Charles, Rebecca

From:Shaw, Kathy [kshaw@craworld.com]Sent:Monday, July 31, 2006 4:15 PMTo:Charles, RebeccaCc:Larry.Walton@exeloncorp.com; Reid, JamesSubject:RE: acknowledgements

Hi Rebecca,

I have attached a revised copy of the Zion COC with explanations on a couple of items. I made sample ID changes to samples 001 and 002, making them the same format as samples 003 - 005. Also, I added Gamma scan to the column with SR 89/90; all of these containers were preserved. Extra non-preserved containers were also collected for 2 samples as I noted on the revised COC, they are not needed. Please revise your sample acknowledgement form for these ID changes and if you can add the truncated numbers to the ends of the samples, that would help too.

I never received a sample acknowledgement form from the samples collected 7/27/06 at Braidwood, please forward.

Thanks, Kathy

From: Charles, Rebecca [mailto:Rebecca.Charles@tbe.com]
Sent: Monday, July 31, 2006 1:00 PM
To: zigmund.karpa@exeloncorp.com; Czech, Julie; Larry.Walton@exeloncorp.com; Rick.maldonado@exeloncorp.com; Scott.sklenar@exeloncorp.com; Shaw, Kathy; wayne.stotts@exeloncorp.com
Subject: acknowledgements

Rebecca Charles Teledyne Brown Engineering Project Manager (865) 934-0379 (865) 934-0396 (fax)

This email and any of its attachments may contain Teledyne Brown Engineering proprietary information, which is privileged, confidential, or subject to copyright belong to Teledyne Brown Engineering. This e-mail is intended solely for the use of the individual or entity to which it is addressed. If you are not the intended recipient of this e-mail, you are hereby notified that any dissemination, distribution, copying, or action taken in relation to the contents and attachments to this e-mail is strictly prohibited and may be unlawful. If you have received this e-mail in error, please notify the sender immediately and permanently delete the original and any copy and printout of this e-mail. Thank You

Project     Project NME       Nice NUMBER:     PROJECT NAME       Direct     BROMEIERS       Direct     BROMEIERS       Nice NUMBER:     PROJECT NAME       Direct     BROMEIERS       Direct     BROMEIERS	State     State     State     State     State     State       State     State     State     State     State <td< th=""><th></th><th></th><th>REMARKS</th><th>-SK 84 10 preserved</th><th></th><th>DATE: アーンを、こく           INNE: ノン・スパン           DATE:           DATE:           DATE:           DATE:</th></td<>			REMARKS	-SK 84 10 preserved		DATE: アーンを、こく           INNE: ノン・スパン           DATE:           DATE:           DATE:           DATE:
PTO PTO PTO PTO PTO PTO PTO PTO	SHIPPED TO (Laboratory Name): Telechyne REFERENCE NUMBER: Telechyne ATION NO. Tree Sample Carl Solo - The Contract of the Sample Carl Solo - The Contract of the Sample Contract of the Sample Set of the Sample Date The Set of the Se	Frown 10	ioject name: そう したぞ lon (チン10 h	RAMETERS SS			20 20
	Printer Andream Andrea	) TO ory Name	REFERENCE NUMBER: PR ローレート	ONTAINERS	03 W 3 24 W 3 5-665 W 3 06-72-00W 2	106 Kuk	ATE: 1/ K/A REC ME: 7, / C ATE: 7, / C ATE ME: 0 ME: 0

L29402 11 of 61

	8615 W.	venue	(Laboratory Name):	dwb	Teledyne Erown or
	(773)380	(773)380-9933 phone (773)380-6421 fax	l LL 🦾		PROJECT NAME: S
	CHAIN-OF	CHAIN-OF-CUSTODY RECORD	15156-20 1		2.246
SAMPLER'S SIGNATURE: _		1/10 and Lunch PRINTED MAYCHO	mua Sivet	AINERS	PARAMETERS
SEQ. DATE	TETIME	SAMPLE IDENTIFICATION No	ATION No. SAMPLE	ON	No the second second
	<u><u> </u></u>	CALLER AND A Avenue of the second sec	W	n	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	11 11 11 11 11 11 11 11 11 11 11 11 11	A THE CASE AND THE CASE AND THE ALTER AND TH		b	
24	2010 10 - 500	11.15 N/L-7 N/-WW-7N-10E 0728 06-WS	21 06- ms- CUS W	3	
		11-2 N-1-111-2 N-1/14-072301	Ę	-	
102	6	- 2022 N	-072306-71-00-W	N	
[					
		rus.	reu: 5:2-7131106 Kuk		
 	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				
+		<u>Vevision I</u>	正 811/06 KMY		
		71m ->	Z 1) in Sample	H	
.  .   1	.				
() () () () () () () () () () () () () (					
		TOTAL NUMBER OF CONTAINERS	INERS		
SELINQUI	11 7 7	1 Link	DATE: 3 / S/46	RECEIVED BY	ED BIC TO BATE: 7-27-C-C TIME: 12:220
ELINQU	U		E	RECEIVED BY	ED BY/ TIME
6			E:		
RELINQU	RELINQUISHED BY:				
METHC	METHOD OF SHIPMENT:	PMENT:		AIR	AIR BILL NO
White		-Fully Executed Copy.	SAMPLE LEAM.		
Yellow Pink		-receiving ratio and soupy -Shipper Copy	A WALK TO THE TRANSPORT		
Concelect	1			「「「ない」ないで、「ない」	

L29402 12 of 61

#### Charles, Rebecca

From:	Shaw, Kathy [kshaw@craworld.com]		
Sent:	Tuesday, August 01, 2006 4:02 PM		
To:	Charles, Rebecca		
Cc:	Larry.Walton@exeloncorp.com; Reid, James; Cameron, Mary; Soutter, Doug; Filing		
Subject: Zion COC revII			

Hi Rebecca,

I have another revision of the Zion COC revised yesterday. Our database can only accept 30 characters for sample IDs; so we had to shorten the Zion IDs to accommodate their system. I changed the Zion in the IDs to ZN, please make these changes in your LIMs system.

Thank you,

#### Kathy Shaw - Chemist

Conestoga-Rovers & Associates 45 Farmington Valley Drive Plainville, Connecticut 06062 PH 860 747-1800 Fax 860 747-1900 CRAWORLD.COM

L29402 14 of 61

## Internal Chain of Custody

```
Page: L29482315 \text{ of } 61
08/01/06 16:04
                       Teledyne Brown Engineering
                       Internal Chain of Custody
Sample # L29402-1
                       Containernum
                                 1
                    Analyst
Prod
 GELI
                    DW
                    LCB
 SR-90 (FAST)
 H-3 (DIST)
                    ЕJ
                                             Received By
Relinquish Date Relinquish By
                                             099999
                                                       Sample Custodian
07/28/2006 00:00
Containernum 2
Sample # L29402-1
                    Analyst
Prod
                    DW
 GELI
                    LCB
 SR-90 (FAST)
                    EJ
 H-3 (DIST)
                                             Received By
Relinquish Date Relinquish By
                                             099999
                                                       Sample Custodian
07/28/2006 00:00
                                             030854
                                                       Donna Webb
                         Sample Custodian
07/31/2006 10:09
               099999
                                             099999
                                                       Sample Custodian
                         Donna Webb
07/31/2006 10:10
               030854
Containernum 3
Sample # L29402-1
                    Analyst
 Prod
                    DW
 GELI
 SR-90 (FAST)
                    LCB
                    EJ
 H-3 (DIST)
                                             Received By
Relinquish Date Relinquish By
                                                       Sample Custodian
                                             099999
07/28/2006 00:00
Containernum 1
Sample # L29402-2
                    Analyst
 Prod
                    DW
 GELI
                    LCB
 SR-90 (FAST)
                    ЕJ
 H-3 (DIST)
                                             Received By
Relinquish Date Relinquish By
                                             099999
                                                       Sample Custodian
07/28/2006 00:00
 Containernum 2
Sample # L29402-2
                     Analyst
 Prod
 GELI
                     DW
                     LCB
 SR-90 (FAST)
                     EJ
 H-3 (DIST)
                                             Received By
Relinquish Date Relinquish By
                                             099999
                                                       Sample Custodian
07/28/2006 00:00
                                                       Donna Webb
                                             030854
                          Sample Custodian
07/31/2006 10:09
               099999
                                             099999
                                                       Sample Custodian
                          Donna Webb
07/31/2006 10:10
               030854
 Containernum 1
Sample # L29402-3
                     Analyst
 Prod
                     DW
  GELI
```

08/01/06 16:04		eledyne Brown Internal Chain	_		L29402 16 of 61 Page: $2 \text{ of } 3^{16}$
****	****			*****	* * * * *
Sample # L29402-3		Containernum	1		
SR-90 (FAST)	LCB				
H-3 (DIST)	EJ				
Relinquish Date Reli	inquish By			Received By	
07/28/2006 00:00				099999	Sample Custodian
**************************************	********	**************************************	************** 2	*****	* * * * *
Prod GELI	Anal DW	yst			
SR-90 (FAST)	LCB				
H-3 (DIST)	EJ				
Relinquish Date Rel:	inquish By			Received By	
07/28/2006 00:00				099999	Sample Custodian
07/31/2006 10:09	099999	Sample Cust	codian	030854	Donna Webb
07/31/2006 10:10	030854	Donna Webb		099999	Sample Custodian
**************************************		Containernum	3	*****	* * * * *
Prod GELI	Ana] DW	yst			
SR-90 (FAST)	LCB				
H-3 (DIST)	EJ				
Relinquish Date Rel	inquish By			Received By	Comple Custodian
07/28/2006 00:00				099999	Sample Custodian
**************************************		Containernum	1	*****	* * * * *
Prod GELI	Ana. DW	lyst			
SR-90 (FAST)	LCB				
H-3 (DIST)	EJ				
Relinquish Date Rel	inquish By			Received By	
07/28/2006 00:00				099999	Sample Custodian
**************************************	*********	**************************************	************* 2	******	*****
Prod GELI	Ana. DW	lyst			
SR-90 (FAST)	LCB				
H-3 (DIST)	EJ				
Relinquish Date Rel	inquish By			Received By	
07/28/2006 00:00				099999	Sample Custodian
07/31/2006 10:09	099999	Sample Cus	todian	030854	Donna Webb
07/31/2006 10:10	030854	Donna Webb		099999	Sample Custodian
**************************************	*********	Containernum	*************** 1	*******	****
Prod GELI	Ana DW	lyst			
SR-90 (FAST)	LCB				

08/01/06 16:04		ledyne Brown nternal Chair			$P_{age}: L^{29}40_{5}^{2} 17$	of	61
**************************************		**************************************	************** 1	****	*****		
H-3 (DIST)	EJ						
Relinquish Date Rel:	inquish By			Received By			
07/28/2006 00:00				099999	Sample Custodian		
**************************************		************** Containernum	2	*****	*****		
Prod	Analy	st					
GELI	DW						
SR-90 (FAST)	LCB						
H-3 (DIST)	EJ						
Relinquish Date Rel	inquish By			Received By			
07/28/2006 00:00				099999	Sample Custodian		
07/31/2006 10:09	099999	Sample Cust	todian	030854	Donna Webb		
07/31/2006 10:10	030854	Donna Webb		099999	Sample Custodian		

08/01/06

#### Teledyne Brown Engineering Internal Chain of Custody Supplemental Sheet

#### L29402

*****	*****	. * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
L29402-1	WG WG-ZN-MW-ZN-10U-07	2806-MS-003	
Process step	Prod	Analyst	Date
Login		RCHARLES	07/28/06
Aliquot	GELI	DW	07/29/06
Aliquot	SR-90 (FAST)	LCB	07/29/06
Aliquot	H-3 (DIST)	EJ	07/31/06
Count Room	GELI	KOJ	07/30/06
Count Room	H-3 (DIST)	KOJ	07/31/06
Count Room	SR-90 (FAST)	KOJ	07/31/06
*****	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * *	******
L29402-2	WG WG-ZN-MW-ZN-10U-07	2806-MS-004	
Process step	Prod	Analyst	Date
Login		RCHARLES	07/28/06
Aliquot	GELI	DW	07/29/06
Aliquot	SR-90 (FAST)	LCB	07/29/06
Aliquot	H-3 (DIST)	EJ	07/31/06
Count Room	GELI	КОЈ	07/30/06
Count Room	H-3 (DIST)	KOJ	07/31/06
Count Room	SR-90 (FAST)	KOJ	07/31/06
*****			******
L29402-3	WG WG-ZN-MW-ZN-10L-07	2806-MS-005	
Process step	Prod	Analyst	Date
Login		RCHARLES	07/28/06
Aliquot	GELI	DW	07/29/06
Aliquot	SR-90 (FAST)	LCB	07/29/06
Aliquot	H-3 (DIST)	EJ	07/31/06
Count Room	GELI	KOJ	07/30/06
Count Room	H-3 (DIST)	КОЈ	07/31/06
Count Room	SR-90 (FAST)	KOJ	07/31/06
******			******
L29402-4	WG WG-ZN-MW-ZN-11U-07		
Process step	Prod	Analyst	Date
Login		RCHARLES	07/28/06
Aliquot	GELI	DW	07/29/06
Aliquot	SR-90 (FAST)	LCB	07/29/06
Aliquot	H-3 (DIST)	EJ	07/31/06
Count Room	GELI	КОЈ	07/30/06
Count Room	H-3 (DIST)	KOJ	07/31/06
Count Room	SR-90 (FAST)	КОЈ	07/31/06
******			*****
L29402-5	WG WG-ZN-MW-ZN-11L-0		
Process step	Prod	Analyst	Date
Login		RCHARLES	07/28/06
Aliquot	GELI	DW	07/29/06
Aliquot	SR-90 (FAST)	LCB	07/29/06
Aliquot	H-3 (DIST)	EJ	07/31/06
Count Room	GELI	KOJ	07/30/06

#### Teledyne Brown Engineering Internal Chain of Custody Supplemental Sheet

#### L29402

L29402-5	WG WG-2	N-MW-ZN-11L-072806-TL-002	
Count Room	H-3 (DIST)	КОЈ	08/01/06
Count Room	SR-90 (FAS	r) Koj	07/31/06

## Analytical Results Summary

## L29402

Conestoga-Rovers & Associates

# EX001-3ESPZION-06

Kathy Shaw					EX	001-3ES	EX001-3ESPZION-06							
Sample ID: WG-ZN-MW-ZN-10U-072806-MS-003	NZ-WW-N	V-10U-072806	-MS-003		Collect Start: Collect Ston:	t Start: 0' t Ston:	Collect Start: 07/28/2006 09:15 Collect Ston:	15	-	Matrix: Ground Water Volume:	ound Wate	H		(DM)
Description:					Receive	e Date: 0	Receive Date: 07/28/2006		W %	% Moisture:				
LIMS Number: L29402-1	12-1										-	Ţ		
Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Units	Flag Values	s
	2010	0 34F+01	1 14E+02	1.78E+02	DCi/L		10	ml		07/31/06	60	M	U	
	2010	7 18F-01	7 30F-01	1.50E+00	pCi/L		450	ml	07/28/06 09:15	07/31/06	80	M	D	
I UIAL SN	2002	8 37F-101	4 73E+01	4 48F+01	pCi/L		3323.85	ml	07/28/06 09:15	07/30/06	9629	Sec	+	Yes
N-40	2002	2 45F+00	_	5.43E+00	pCi/L		3323.85	m	07/28/06 09:15	07/30/06	9629	Sec	2   	No
101N-34	2007	2 37F+00	_	5.06E+00	pCi/L		3323.85	Ш	07/28/06 09:15	07/30/06	9629	Sec	2 D	No
	1002	1 046+00		9.47E+00	pCi/L		3323.85	m	07/28/06 09:15	07/30/06	9629	Sec	- - -	No
FE-39	2007	-1.04E+00		6.77E+00	pCi/L		3323.85	m	07/28/06 09:15	07/30/06	9629	Sec	2   	No
TNI 65	2007	3.06E+00		1.19E+01	pCi/L		3323.85	ш	07/28/06 09:15	07/30/06	9629	Sec		No.
NR-95	2007	1.31E+00	-	5.60E+00	pCi/L		3323.85	ml	07/28/06 09:15	07/30/06	9629	Sec		No
72.95	2007	7.28E-01		9.63E+00	pCi/L		3323.85	m	07/28/06 09:15	07/30/06	9629	Sec		No
CC-124	2007	4.97E-01	4.68E+00	5.51E+00	pCi/L		3323.85	ш	07/28/06 09:15	07/30/06	9629	Sec		No
C127	2002	2.74E+00	3.38E+00	5.96E+00	pCi/L		3323.85	m	07/28/06 09:15	07/30/06	9629	Sec		No
BA-140	2007	1.13E+01		2.14E+01	pCi/L		3323.85	Ш	07/28/06 09:15	07/30/06	9629	Sec		No
I A-140	2007	-3.12E+00	4.01E+00	5.80E+00	pCi/L		3323.85	m	07/28/06 09:15	07/30/06	9629	Sec		No
			_											

Flag Values U =

|| || ||

Compound/Analyte not detected or less than 3 sigma Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only) Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value MDC exceeds customer technical specification Low recovery High recovery +

11 U* High Spec

MDC - Minimum Detectable Concentration

Yes = Peak identified in gamma spectrum **** Results are reported on an as received basis unless otherwise noted

No = Peak not identified in gamma spectrum

L29402 21 of 61

TELEDYNE BROWN ENGINEERING, INC. A Teledyne Technologies Company

## L29402

Conestoga-Rovers & Associates

Kathy Shaw					<b>V</b> J	CTTC-100	DO-NOIZ JEZE-1002							
Sample ID: WG- Station: Description:	NZ-MM-NZ	WG-ZN-MW-ZN-10U-072806-MS-004	-MS-004		Collec Collec Receive	Collect Start: 07 Collect Stop: Receive Date: 07	Collect Start: 07/28/2006 10:00 Collect Stop: Receive Date: 07/28/2006	00:	1 W %	Matrix: Ground Water Volume: % Moisture:	ound Wat	r	C	(WG)
LIMS Number: L29402-2	02-2													
Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Values	
u 2 (DICT)	2010	8 33E+01	1 16E+02	1.83E+02	pCi/L		10	Ш		07/31/06	60	М	U	
	2010	3.54E-01	6.77E-01	1.35E+00	pCi/L		450	m	07/28/06 10:00	07/31/06	80	Μ	U	
MALEA	2002	-6 00E-02	2.56E+00	4.20E+00	pCi/L		3385.34	m	07/28/06 10:00	07/30/06	21600	Sec	U No	0
	2007	-2 52E-01	2.60E+00	4.25E+00	pCi/L		3385.34	lm	07/28/06 10:00 07/30/06	07/30/06	21600	Sec	U   No	
EF 50	2007	2 97F+00	~	8.31E+00	pCi/L		3385.34	m	07/28/06 10:00 07/30/06	07/30/06	21600	Sec	U No	0
	2007	-7 97E-02		4.12E+00	pCi/L		3385.34	m	07/28/06 10:00	01/30/06	21600	Sec	U No	0
ZN-65	2007	1.39F+01	6.60E+00	1.08E+01	pCi/L		3385.34	m	07/28/06 10:00 07/30/06	07/30/06	21600	Sec	U* No	0
NR-95	2007	3.75E-01	2.60E+00	4.31E+00	pCi/L		3385.34	ml	07/28/06 10:00 07/30/06	02/30/06	21600	Sec		0
7R-95	2007	2.19E+00	5.04E+00	7.60E+00	pCi/L		3385.34	m	07/28/06 10:00	07/30/06	21600	Sec		0
CS-134	2007	1.23E+01	6.29E+00	5.78E+00	pCi/L		3385.34	ml	07/28/06 10:00 07/30/06	07/30/06	21600	Sec	U* No	0
CS 137	2007	6.34E-01	2.77E+00	4.64E+00	pCi/L		3385.34	ml	07/28/06 10:00 07/30/06	07/30/06	21600	Sec	U No	0
8A-140	2007	-1.73E+00	1.03E+01	1.66E+01	pCi/L		3385.34	ml	07/28/06 10:00	07/30/06	21600	Sec	No No	0
140	2007	4 14F-02	3 13E+00	5.10E+00	pCi/L		3385.34	ml	07/28/06 10:00 07/30/06	07/30/06	21600	Sec	U No	0

Flag Values

Compound/Analyte not detected or less than 3 sigma Activity concentration exceeds MDC and 3 sigma, peak identified(gamma only) Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value MDC exceeds customer technical specification

U* High Spec

Low recovery ЪН

High recovery

Bolded text indicates reportable value.

ŝ of Page 2

MDC - Minimum Detectable Concentration

Yes = Peak identified in gamma spectrum **** Results are reported on an as received basis unless otherwise noted

No = Peak not identified in gamma spectrum

L29402 22 of 61

TELEDYNE BROWN ENGINEERING, INC. A Teledyne Technologies Company

## L29402

Conestoga-Rovers & Associates

Kathy Shaw					EX001	EX001-3ESPZION-06	N-06						[
Sample ID: WG-ZN-MW-ZN-10L-072806-MS-005 Station:	NZ-WM-NZ-	V-10L-072806	-MS-005		Collect Start: Collect Stop:	Collect Start: 07/28/2006 11:25 Collect Stop:	06 11:25		Matrix: Ground Water Volume:	ound Wate	÷	(MG)	<del></del>
Description:					Receive Da	Receive Date: 07/28/2006	90(	% IV	% Moisture:				
LIMS Number: L29402-3	402-3							-					
Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run Aliq # Voli	Aliquot Aliquot Volume Units	Reference Date	Count Date	Time	Units	Flag Values	
		10.000		1 071-107		10	lm		07/31/06	60	M	U	
H-3 (DIST)	2010	1.93E+01		1.835-702	hour -	JY I		07/28/06 11:25	07/31/06	80	N		
TOTAL SR	2018	2.74E-01	7.81E-01	1.59E+00	pCi/L	1004	0	C711 00/07//0		0000		11	
MNI-SA	2007	6.57E-01	3.25E+00	5.36E+00	pCi/L	3372.05	2.05 ml	07/28/06 11:25		9000	Sec		
	2002	1 28F+00		5.34E+00	pCi/L	3372.05	2.05 ml	07/28/06 11:25	07/30/06	9600	Sec	0 NO	
CU-38	1007	1 1755100		0 77F+00	nCi/I.	3372.05	2.05 ml	07/28/06 11:25	07/30/06	9600	Sec	U No	
FE-39	1002	-1.425700	_	COLUMN S	1/1/1	3372.05	05 ml	07/28/06 11:25	07/30/06	9600	Sec	No No	
CO-60	7007	2.24E-UI		101-101		3377.05	-	07/28/06 11:25 07/30/06	07/30/06	9600	Sec	U No	
ZN-65	1.007	1.11E+00		1017171		3372.05		07/28/06 11:25	07/30/06	9600	Sec	U No	
NB-95	7.007	2.64E+00		0.177.00		3372.05	-	07/28/06 11:25	07/30/06	0096	Sec	U No	
ZR-95	2007	3.40E-01	0.08E+00	9.2/E+UU	hcite	7766	-	07/28/06 11-25		0096	Sec	U No	
CS-134	2007	-4.36E-01	3.67E+00	5.09E+00	pull	.100		0//20/00 11.45	20/06/20	0000	Cor	II NO	
CS-137	2007	6.32E-01	3.55E+00	5.88E+00	pCi/L	3372.05	2.05 ml	C7:11 00/87//0	100/00//0	0000	370		_
BA-140	2007	-2.09E+00	1.25E+01	2.04E+01	pCi/L	337.	3372.05 ml	07//28/06 11:22		0000	200		
I A-140	2007	-2.68E+00	4.09E+00	5.91E+00	pCi/L	337.	3372.05 ml	62:11 90/28/00	0.//30/00	7000	Sec		-
		-											

Flag Values 11 D

+

Compound/Analyte not detected or less than 3 sigma Activity concentration exceeds MDC and 3 sigma, peak identified(gamma only) Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value MDC exceeds customer technical specification 11 11 11 11 11

U* High Spec

ЪН

Bolded text indicates reportable value. Low recovery High recovery

ŝ of Page 3

MDC - Minimum Detectable Concentration

TELEDYNE BROWN ENGINEERING, INC. A Teledyne Technologies Company

TELEDYNE BROWN ENGINEERING, INC. A Teledyne Technologies Company



# Conestoga-Rovers & Associates

## FY001_3FSP7ION-06

Kathy Shaw					ΕX	1001-JEC	EX001-3ESF2JUN-00							
Sample ID: WG-ZN-MW-ZN-11U-072806-TL-001	NZ-WM-NZ-	4-11U-072806	-TL-001		Collec	t Start: 0	Collect Start: 07/28/2006 11:12	12	*	Matrix: Ground Water	ound Wat	er		(MG)
Station:					Collec	Collect Stop:			W %	V UIUIIIC. % Maisture:				
Description:					Receiv	e Date: (	Receive Date: 07/28/2006		TAT D/					
LIMS Number: L29402-4	402-4									-				
Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Time	Units	Flag Values	lues
	00100	1 700-001		1 87 EAN	<u>ا/ا</u> س		10	ml		07/31/06	60	M	U	
H-3 (DIST)	70107	-1./UE+UI	1.075702	1.041.04			150	-	07/28/06 11:12 07/31/06	07/31/06	80	Σ	n	
TOTAL SR	2018	-2.00E-01	5.80E-01	1.28E+00	pCI/L		1004	IIII	71.11 00/02/10	0010010	00010		11	NIC
MNI-54	2007	-1.97E-01	2.65E+00	4.39E+00	pCi/L		3365.07	ml	07/28/06 11:12		71000	Sec		
100 58	2007	1 57E-01	2.93E+00	4.77E+00	pCi/L		3365.07	Ш	07/28/06 11:12		21600	Sec	n	NO
	2002	1 93F+00	5 02E+00	8.41E+00	pCi/L		3365.07	E	07/28/06 11:12	07/30/06	21600	Sec	D	No
FE-39	1007	7 00F 01	2 87F+00	4 71 E+00	nCi/I.		3365.07	lm	07/28/06 11:12 07/30/06	07/30/06	21600	Sec	n	No
CO-60	1007	1.2071-01	7 201 100	1 JOE TUT		-	3365 07	lm	07/28/06 11:12	07/30/06	21600	Sec	U*	No
ZN-65	/007	1.09E+UI		10-707-1	110		10:2022		07/28/06 11.12	1	21600	Sec	N	No
NB-95	2007	1.68E+00	3.33E+00	4.70E+00	pur		10.0000	1111	011110000000000000000000000000000000000	20/06/20	01200	Con	11	No
Z.R-95	2007	-2.76E+00	5.20E+00	7.82E+00	pCi/L		3365.07	B	00/06//0 71:11 00/87//0	00/06//0	71000	200		-14
CS-134	2007	1.81E+01	7.45E+00	6.54E+00	pCi/L		3365.07	ml	07/28/06 11:12	07/30/06	21600	Sec		NO IX
CS-137	2007	1.21E+00		5.02E+00	pCi/L		3365.07	Ш	07/28/06 11:12	1	21600	Sec	0	No
BA-140	2007	4.11E+00	1.14E+01	1.91E+01	pCi/L		3365.07	ml	07/28/06 11:12	07/30/06		Sec		ON
I A-140	2007	8.18E-02	3.47E+00	5.72E+00	pCi/L		3365.07	m	07/28/06 11:12 07/30/06	07/30/06	21600	Sec		NO
D11-17														

Flag Values

Compound/Analyte not detected or less than 3 sigma Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only) Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value MDC exceeds customer technical specification

U* High Spec

Low recovery

High recovery JН Bolded text indicates reportable value.

Ś of Page 4

MDC - Minimum Detectable Concentration

Yes = Peak identified in gamma spectrum **** Results are reported on an as received basis unless otherwise noted

No = Peak not identified in gamma spectrum

BROWN ENGINEERING, INC.

A Teledyne Technologies Company

## L29402

Conestoga-Rovers & Associates

EX001-3ESPZION-06

(MG) No No No No å ů No ő å å ů Flag Values ň þ D  $\supset$ D  $\supset$ Þ D D D С D D Count Units Sec Σ Σ Ground Water 21600 21600 21600 21600 21600 21600 21600 21600 21600 21600 Count Time 21600 120 60 07/30/06 01/30/06 07/30/06 07/30/06 01/30/06 07/30/06 07/30/06 07/30/06 07/30/06 07/30/06 07/30/06 07/31/06 08/01/06 Count Date Matrix: Volume: % Moisture: 07/28/06 09:45 07/28/06 09:45 07/28/06 09:45 07/28/06 09:45 07/28/06 09:45 07/28/06 09:45 07/28/06 09:45 07/28/06 09:45 07/28/06 09:45 07/28/06 09:45 07/28/06 09:45 07/28/06 09:45 Reference Date Aliquot Units Ē Ē E E Ē Ē Ы Ē E Ē Ξ Ы E Collect Start: 07/28/2006 09:45 Aliquot Volume 3471.48 3471.48 3471.48 3471.48 3471.48 3471.48 3471.48 3471.48 3471.48 3471.48 3471.48 Receive Date: 07/28/2006 450 10 Collect Stop: Run # Units pCi/L 8.22E+00 6.99E+00 1.08E+00 4.71E+00 9.71E+00 1.16E+01 6.62E+00 5.17E+00 2.06E+01 1.79E+02 4.83E+00 5.32E+00 4.99E+00 MDC 2.93E+00 5.36E+00 4.10E+00 2.79E+00 5.51E+00 3.06E+00 7.39E+00 5.20E+00 3.13E+00 1.20E+01 I.09E+02 2.83E+00 Uncertainty 5.04E-01 2 Sigma WG-ZN-MW-ZN-11L-072806-TL-002 1.66E+00 -4.88E+00 1.24E+01 1.71E+00 1.85E+00 9.43E-01 5.45E+00 2.49E+00 1.05E+01 2.00E+01 7.30E-01 -2.50E-01 00E+00 Activity Conc 2007 2007 2007 2007 2018 2007 2010 2007 2007 2007 2007 2007 2007 SOP# L29402-5 Sample ID: LIMS Number: Station: Description: Radionuclide Kathy Shaw H-3 (DIST) **FOTAL SR** LA-140 CS-134 CS-137 **BA-140** CO-58 NB-95 **MN-54** CO-60 ZN-65 ZR-95 FE-59

Flag Values

+

Compound/Analyte not detected or less than 3 sigma 11

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only) Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma 11

Activity concentration exceeds customer reporting value 11 *

MDC exceeds customer technical specification 11 High Spec

High recovery Low recovery |} li

Ξ

ŝ of ŝ Page

MDC - Minimum Detectable Concentration

unless otherwise noted

Yes = Peak identified in gamma spectrum **** Results are reported on an as received basis

No = Peak not identified in gamma spectrum

L29402 25 of 61

L29402 26 of 61

## QC Results Summary

	P/F P	P	<u>P/F</u> NE	L29402 27 of
				_
Ø	<u>Qualifier</u> U	Qualifi +	<u>Range</u> Qualifier <30 **	Page:
RIN		Range . 70-130	<b>Aange</b>	2 2
		<b>N</b> 102	21 V	
TELEDVNE BROWN ENGINEERING A Teledyne Technologies Company				
		overy 3		
<b>H</b> S ²		Spike Recovery 94.3	RPD	
BROWN ENGINEI A Teledyne Technologies Co				
<b>N</b>	<u>Units</u> pCi/Total	<mark>Units</mark> pCi/Total	<u>Units</u> pCi/L	
		ыg		
	Result 0E+00	y LCS Result 4.760E+02	Result 0E+02	
	<b>ary</b> <u>Blank Result</u> < 1.810E+00	y LCS I 4.76(	DUP Result < 1.820E+02	
	Method Blank Summary Bla < 1	LCS Sample Summary Value -002	ſ	
	lk Su	e Sun	Sum al Res 0E+02	
	Blan	ampl	licate Summa <u>Original Result</u> < 1.780E+02	MDC
H-3 (DIST)	thod	CS S: 2	Dupl	above
H-3 ()	Me	ы Ц ц		stected
				not de
L29402	Count Date/Time 07/31/2006 17:40	Count Date/Time 07/31/2006 18:44	Count Date/Time 07/31/2006 19:03	and/or
L2	t Date /2006	1 Date	t Date /2006	tified
for	<b>Coun</b> 07/31	Coun 07/31	Coun 07/31	ot idem
طعط	<u>Matrix</u> WO	<u>Matrix</u> WO	<u>Matrix</u> WG	peak n
Md	Mati WO	W0 W0	<u>Mat</u> WG	lyzed, evaluat
<b>00rt</b> 4:05:22PM	الع	କା	ٵ	as anal e not e
Rep.	nuclid IST)	nuclid IST)	<mark>Radionuclide</mark> 4-3 (DIST)	lyte with the second se
ry I	Radionuclide H-3 (DIST)	Radionuclide H-3 (DIST) 002 000	<mark>Radionucl</mark> H-3 (DIST)	Result nd/ana s the N not det evel < evel <
<b>mmar</b> 8/1/2006		ble ID Rad H-3 ( 3H-041706-1 : 5.05E+002 1.00E+000		Positive Result Positive Result Compound/analyte was analyzed, peak not identified and/or not detected above MDC < 5 times the MDC are not evaluated Nuclide not detected Spitting level < 5 times activity Pass Fail Not evaluated
Sun «	mple ] 3-1	<b>mple</b> <b>3-2</b> ): 3H )nc: 5.1	<u>mple</u> 3-3	Posit Com Nucl Pass Fail Not
QC Summary Report 8/1/2006 4:05:2	<u>TBE Sample ID</u> WG4273-1	TBE Sample ID         Ra           WG4273-2         H-3           WG4273-2         H-3           Spike ID:         3H-041706-           Spike conc:         5.05E+002           Spike Vol:         1.00E+000	<u>TBE Sample ID</u> WG4273-3 L29402-1	+⊃* * * ª d H
-	Η×			

		<u>Qualifier</u> <u>P/F</u> U P	alifier <u>P/F</u> + P	lalifier <u>P/F</u> ** NE	L29402 28 0 ~
NE INEERING ties Company		Qu	Range Qualifier 70-130 +	<u>Range</u> <u>Oualifier</u> <30 **	Page:
BROWN ENGINEERING A Teledyne Technologies Company			Spike Recovery 109.6	RPD	
K		<u>Units</u> pCi/Total	<u>Units</u> pCi/Total	<u>Units</u> pCi/L	
		<b>1ary</b> <u>Blank Result</u> < 8.500E-01	ary <u>LCS Result</u> 6.400E+01	ry <u>DUP Result</u> < 1.620E+00	
	~	Method Blank Summary ^{Bla} <	LCS Sample Summary Value L -001	Duplicate Summary <u>Original Result</u> < 1.890E+00	e MDC
	TOTAL SR	Method	LCS S Spike Value 5.84E+001	Dupl	ot detected abov
for L29402		Count Date/Time 07/31/2006 17:05	Count Date/Time 07/31/2006 17:05	Count Date/Time 07/31/2006 17:05	ot identified and/or n
		<mark>Matrix</mark> WO	<u>Matrix</u> WO	<u>Matrix</u> WG	ed, peak no
QC Summary Report 8/1/2006 4:05:22PM		<u>Radionuclide</u> TOTAL SR	<u>Radionuclide</u> TOTAL SR 11905 002	Radionuclide TOTAL SR	Positive Result Compound/analyte was analyzed, peak not identified and/or not detected above MDC S times the MDC are not evaluated Nuclide not detected Spiking level < 5 times activity Pass Pass
QC Summar 8/1/2006		<u>TBE Sample ID</u> WG4278-1	TBE Sample IDRadiWG4278-2TOT/Spike ID:90SR-011905Spike Conc:2.34E+002Spike Vol:2.50E-001	<u>TBE Sample ID</u> WG4278-3 L29389-6	<ul> <li>+</li> <li>+</li> <li>+</li> <li>Positive Result</li> <li>U</li> <li>Compound/ana</li> <li>*</li> <li>Nuclide not det</li> <li>**</li> <li>**</li> <li>Spiking level &lt;</li> <li>Pass</li> </ul>

L29402 28 of 61

L29402 29 of 61

### Raw Data

iw Data Sheet (rawdata)	Aug 01 2006, 04:17 pm	
Raw	Al	

	Analyst	с В	БIJ	RJ	ВJ	RJ	
	Decay & Eff. Ingrowth	Factor .217	.211	.211	.212	.216	
		dt (min) 60	60	60	60	60	
	Bkg	unts dt 2.03	2.03	2.03	2.03	2.03	
Page: 1	Sample Bkg	dt (min) co 60	60	60	60	60	
	Total	counts 149	145	127	117	122	
	Counter Total	ID LS7	LS7	LS7	LS7	LS7	
	Count	06	31-ju1-06 21:10	31-jul-06 22:13	31-jul-06 23:17	01-aug-06 00:20	
	Mount	Weight 0	o	0	0	0	
	ESPZION-06	bate/time			*	*	*
Customer: <u>Exelon</u>	Project : <u>EX001-3ESPZION-06</u>	Volume/ Aliquot 10 ml	MDC: 1.78E+02 * 10 ml	MDC: 1.83E+02 * 10 ml	MDC: 1.83E+02 * 10 ml	MDC: 1.82E+02 10 ml	MDC: 1.79E+02 *
Ű		lysis Reference Date/time H-3 DIST	806-MS-003 Error: 1.14E+02 H-3 DIST	806-MS-004 Error: <u>1.16E+02</u> H-3 DIST	806-MS-005 <u>Error: 1,13E+02</u> H-3 DIST	806-TL-001 Error: 1.09E+02 H-3 DIST	806-TL-002 Error: 1.09E+02
Work Order: <b>129402</b>	11	Run Ana #	WG-ZN-MW-ZN-10U-072806-MS-003 <u>Activity: 9.34E+01 Error: 1.14E+02</u> L29402-2 H-3 DIST	WG-ZN-MW-ZN-10U-072806-MS-004 Activity: 8.33E+01 Error: 1.16E+02 L29402-3 H-3 DIST	WG-ZN-MW-ZN-10L-072806-MS-005 Activity: 1.938+01 Error: 1.138+02 L29402-4 H-3 DIST	WG-ZN-MW-ZN-11U-072806-TL-001 Activity: -1.7E+01 Error: 1.09E+02 L29402-5 H-3 DIST	WG-ZN-MW-ZN-11L-072806-TL-002 Activity: 02+00 Error: 1.05
Work O	Nuclid	Sample ID <u>Client ID</u> L29402-1	WG-ZN <u>Activi</u> L294	WG-ZN <u>Activi</u> L294	WG-ZN Activi L294	WG-ZN Activi L294	WG-Zh Activi

rawdata)	шđ
(ra	04:17
Sheet	2006, 04
Data	01 2(
Raw	Aug

Work Order: <u>L29402</u>	Cu	Customer: <b>Exelon</b>							Page: 2				
Nuclide: <u>SR-90 (FAST)</u>	Pro	Project : <u>EX001-3ESPZION-06</u>	2D-NOIZAS									Десау &	
14	Reference		Scavenge Milking	Mount Woi cht	Count Decompary Date/time		Counter Total TD county	Total counts	Sample Bkg Bkg dt(min) counts dt(min)	Bkg I ounts dt		Eff. Ingrowth Factor	Ingrowth Analyst Factor
Client ID # L29402-1 TOTAL SR	Date/time R 28-jul-06 09.15	Aliquot 1 450 ml	<u>Date/time Jate/time</u> 31-jul-06 12:30	0	86.54	31-ju1-06 17:05	U	64	80	294	400	.345 1	LCB
MG-ZN-WM-ZN-T0U-072806-WS-003													
Activity: 2.18E-01 Error: 7.3E-01 L29402-2 TOTAL SR 28-7 10:00	ju1-06	450 ml	31-ju1-06 12:30	0	90.93	31-ju1-06 17:05	X4A	66	80	284	400	.358 1	LCB
WG-ZN-WW-ZN-10U-072806-MS-004													
Activity: 3.54E-01 Error: 6.77E-01 L29402-3 TOTAL SR 28-j 11:25	1-06	450 ml	31-ju1-06 12:30	0	80.77	31-ju1-06 17:05	X4C	66	80	299	400	.35.1	LCB
WG-ZN-MW-ZN-10L-072806-MS-005													
Activity: 2.74E-01 Error: 7.81E-01 L29402-4 TOTAL SR 28-j 11:12	90-IT	450 ml	31-ju1-06 12:30	0	106.32	31-ju1-06 17:05	X4D	62	80	340	400	.353 1	LCB
-072	Ē	MDC. 1 288±00 *											
ACTIVITY: -2K-UL ETTOT: 3. L29402-5 TOTAL SR	28-jul-06 09:45	450 ml	31-ju1-06 12:30	0	100.27	31-ju1-06 20:13	XIA	82	120	308	400	.346 1	LCB
WG-ZN-MW-ZN-111L-072806-TL-002 Activity: -2.5E-01 Error: 5.04E-01		MDC: 1.08E+00 *											

Sec.	Rev	iew: Ana	lyst: I	JIMS:						
VAX/	VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 1-AUG-2006 09:59:57.87 TBE04 P-40312B HpGe ******** Aquisition Date/Time: 30-JUL-2006 21:03:58.22									
LIMS	No.	, Customer	c Name, Cl	lient II	D: WG	L29402-1	EX ZION			
Sample ID       : 04L29402-1       Smple Date: 28-JUL-2006 09:15:00.         Sample Type       : WG       Geometry : 0435L090804         Quantity       : 3.32390E+00 L       BKGFILE : 04BG072806MT         Start Channel       : 90       Energy Tol : 1.50000         End Channel       : 4090       Pk Srch Sens: 5.00000         MDA Constant       : 0.00       Library Used: LIBD										
Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec %Err	Fit	
1		66.08*	72	263		133.05		7.51E-03 40.1		
2	1	140.10*	13	279	0.99 2.53	281.18 371.77		1.38E-03249.5 3.84E-03 86.1		
3 4	1 1	185.37* 198.15*	37 84	258 199	2.53 1.59	397.35		8.76E-03 33.5		
4 5	т З	$198.15^{\circ}$ 238.46*	5	199 96	1.24	478.01		4.91E-04364.8		
5	3	241.92	54	172	1.24 1.33			5.60E-03 43.0		
7	1	295.15*	79	166	1.15	591.43		8.19E-03 33.0		
8	1	351.87*	161	134	1.17	704.91	1.17E+00	1.68E-02 17.3	1.62E+00	
9	1	595.73	50	46	1.51	1192.77		5.14E-03 30.7		
10	1	609.15*	136	78		1219.59		1.41E-02 16.4		
11	1	768.25	21	29		1537.83		2.15E-03 55.0		
12	1	1120.46*		38		2242.12		2.89E-03 52.4		
13	1	1460.66*	41	3 3		2922.16 3528.06		4.30E-03 25.3 3.38E-03 24.3		
14	1	1763.85*	33	3	2.95	3520.00	3.430-01	3.306-03 24.3		

L29402 32 of 61

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural									
	11				Uncorrected	Decay Corr	2-Sigma		
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pCi/L	%Error		
K-40	1460.81	41	10.67*	3.921E-01	8.366E+01	8.366E+01	50.51		
RA-226	186.21	37	3.28*	1.728E+00	5.511E+01	5.511E+01	172.16		
TH-228	238.63	5	44.60*	1.521E+00	5.886E-01	5.901E-01	729.66		
	240.98	54	3.95	1.508E+00	7.649E+01	7.668E+01	86.08		
U-235	143.76		10.50*	1.822E+00	Li	ne Not Found			
	163.35		4.70	1.796E+00	Li:	ne Not Found			
	185.71	37	54.00	1.728E+00	3.347E+00	3.347E+00	172.16		
	205.31		4.70	1.652E+00	Li:	ne Not Found			

Flag: "*" = Keyline

L29402 33 of 61

Summary of Nuclide Activity Page : 2 Acquisition date : 30-JUL-2006 21:03:58 Sample ID : 04L29402-1 Total number of lines in spectrum 14 Number of unidentified lines 10 Number of lines tentatively identified by NID 4 28.57% Nuclide Type : natural 2-Sigma Uncorrected Decay Corr Decay Corr pCi/L pCi/L Nuclide Hlife Decay 2-Sigma Error %Error Flags K-40 1.28E+09Y 1.00 8.366E+01 8.366E+01 4.225E+01 50.51 RA-226 1600.00Y 1.00 5.511E+01 5.511E+01 9.487E+01 172.16 1.00 5.886E-01 43.05E-01 TH-228 1.91Y 5.901E-01 729.66 U-235 7.04E+08Y 1.00 3.347E+00 5.762E+00 172.16 K 3.347E+00 ____ Total Activity : 1.427E+02 1.427E+02 Grand Total Activity : 1.427E+02 1.427E+02 Flags: "K" = Keyline not found "M" = Manually accepted "E" = Manually edited "A" = Nuclide specific abn. limit

Unidentified Energy Lines

Paqe : 3 Sample ID : 04L29402-1 Acquisition date : 30-JUL-2006 21:03:58 Bkqnd FWHM Channel Left Pw Cts/Sec %Err %Eff It Energy Area Flags 1 66.08 72 263 1.49 133.05 130 7 7.51E-03 80.2 6.39E-01 279 0.99 1 140.10 13 281.18 277 10 1.38E-03 **** 1.82E+00 1 84 199 1.59 397.35 394 10 8.76E-03 67.0 198.15 1.68E+00 1.32E+00 295.15 79 166 1.15 591.43 587 10 8.19E-03 66.1 1 700 12 1.68E-02 34.7 1 351.87 161 134 1.17 704.91 1.17E+001 595.73 50 46 1.51 1192.77 1188 11 5.14E-03 61.3 7.86E-01 78 1.60 1219.59 1215 12 1.41E-02 32.8 1 136 7.73E-01 609.15 1 768.25 21 29 1.52 1537.83 1532 10 2.15E-03 **** 6.46E-01 38 2242.12 2239 12 2.89E-03 **** 1 1.94 1120.46 28 4.81E-01 1 1763.85 33 3 2.95 3528.06 3521 14 3.38E-03 48.6 3.43E-01 Flags: "T" = Tentatively associated Summary of Nuclide Activity Total number of lines in spectrum 14 Number of unidentified lines 10 Number of lines tentatively identified by NID 4 28.57% Nuclide Type : natural Wtd Mean Wtd Mean Uncorrected Decay Corr Decay Corr 2-Sigma pCi/L Nuclide Hlife pCi/L 2-Sigma Error %Error Flags Decay K-40 1.28E+09Y 1.00 8.366E+01 8.366E+01 4.225E+01 50.51 RA-226 1600.00Y 1.00 5.511E+01 5.511E+01 9.487E+01 172.16 TH-228 1.91Y 1.00 42.96E-01 470.87 9.101E-01 9.124E-01 ------Total Activity : 1.397E+02 1.397E+02 Grand Total Activity : 1.397E+02 1.397E+02 Flags: "K" = Keyline not found "M" = Manually accepted "E" = Manually edited "A" = Nuclide specific abn. limit Interference Report No interference correction performed Combined Activity-MDA Report ---- Identified Nuclides ----. . .

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
K-40 RA-226	8.366E+01 5.511E+01	4.225E+01 9.487E+01	4.482E+01 1.157E+02	0.000E+00 0.000E+00	1.866 0.476
TH-228	9.124E-01	4.296E+00	1.003E+01	0.000E+00	0.091

---- Non-Identified Nuclides ----

L29402 34 of 61

Nuclide	Activity (pCi/L)	K.L. Ided	Act error	MDA (pCi/L)	MDA error	Act/MDA
BE-7	-2.705E+00		2.491E+01	4.055E+01	0.000E+00	-0.067
NA-24	-3.883E+01		6.565E+01	1.020E+02	0.000E+00	-0.381
CR-51	8.196E+00		2.723E+01	4.486E+01	0.000E+00	0.183
MN-54	2.454E+00		3.109E+00	5.427E+00	0.000E+00	0.452
CO-57	5.269E-02		2.884E+00	4.706E+00	0.000E+00	0.011
CO-58	2.373E+00		2.870E+00	5.062E+00	0.000E+00	0.469
FE-59	-1.040E+00		5.881E+00	9.473E+00	0.000E+00	-0.110
CO-60	1.956E+00		3.666E+00	6.769E+00	0.000E+00	0.289
ZN-65	3.056E+00		8.117E+00	1.189E+01	0.000E+00	0.257
SE-75	-5.072E-01		4.220E+00	6.874E+00	0.000E+00	-0.074
SR-85	8.153E+00		3.896E+00	7.024E+00	0.000E+00	1.161
Y-88	-2.029E-01		3.963E+00	6.514E+00	0.000E+00	-0.031
NB-94	-1.179E+00		3.047E+00	4.874E+00	0.000E+00	-0.242
NB-95	1.308E+00		3.306E+00	5.596E+00	0.000E+00	0.234
ZR-95	7.276E-01		5.804E+00	9.628E+00	0.000E+00	0.076
MO-99	3.002E+01		3.909E+01	6.888E+01	0.000E+00	0.436
RU-103	5.363E-01		3.176E+00	5.259E+00	0.000E+00	0.102
RU-106	1.762E+00		2.731E+01	4.571E+01	0.000E+00	0.039
AG-110m	-1.866E+00		2.981E+00	4.690E+00	0.000E+00	-0.398
SN-113	2.420E+00		4.000E+00	6.881E+00	0.000E+00	0.352
SB-124	3.550E+00		5.321E+00	5.067E+00	0.000E+00	0.701
SB-125	6.787E+00		8.458E+00	1.470E+01	0.000E+00	0.462
TE-129M	1.857E+01		3.352E+01	5.730E+01	0.000E+00	0.324
I-131	-3.511E+00		3.675E+00	5.785E+00	0.000E+00	-0.607
BA-133	2.150E+00		4.709E+00	7.002E+00	0.000E+00	0.307
CS-134	4.965E-01		4.679E+00	5.513E+00	0.000E+00	0.090
CS-136	-6.442E-01		3.021E+00	4.816E+00	0.000E+00	-0.134
CS-137	2.743E+00		3.384E+00	5.955E+00	0.000E+00	0.461
CE-139	-3.099E-01		2.974E+00	4.753E+00	0.000E+00	-0.065
BA-140	1.125E+01		1.230E+01	2.138E+01	0.000E+00	0.526
LA-140	-3.122E+00		4.012E+00	5.797E+00	0.000E+00	-0.539
CE-141	3.592E+00		5.993E+00	8.651E+00	0.000E+00	0.415
CE-144	3.803E+00		2.435E+01	3.749E+01	0.000E+00	0.101
EU-152	-7.308E-01		1.081E+01	1.602E+01	0.000E+00	-0.046
EU-154	-5.304E-01		6.011E+00	9.761E+00	0.000E+00	-0.054
AC-228	-1.107E+01		1.308E+01	2.082E+01	0.000E+00	-0.531
TH-232	-1.106E+01		1.307E+01	2.081E+01	0.000E+00	-0.531
U-235	5.917E+00		2.688E+01	3.798E+01	0.000E+00	0.156
U-238	-1.825E+02		3.479E+02	5.454E+02	0.000E+00	-0.335
AM-241	-5.037E-01		2.773E+01	4.534E+01	0.000E+00	-0.011

A,04L29402-1	,08/01/2006	09:59,07/28/2	006 09:15, 3	3.324E+00,WG	L29402-1 EX
B,04L29402-1	,LIBD	,07/	28/2006 09:49,	,0435L090804	
C,K-40 ,YES,		4.225E+01,	4.482E+01,,	1.866	
C,RA-226 ,YES,	5.511E+01,	9.487E+01,	1.157E+02,,	0.476	
C, TH-228 , YES,	9.124E-01,	4.296E+00,	1.003E+01,,	0.091	,
C,BE-7 ,NO ,	-2.705E+00,	2.491E+01,	4.055E+01,,	-0.067	
C,NA-24 ,NO ,	-3.883E+01,	6.565E+01,	1.020E+02,,	-0.381	
C,CR-51 ,NO ,	8.196E+00,	2.723E+01,	4.486E+01,,	0.183	
	2.454E+00,	3.109E+00,	5.427E+00,,	0.452	
C,CO-57 ,NO ,	5.269E-02,	2.884E+00,	4.706E+00,,	0.011	
C, CO-58 , NO ,	2.373E+00,	2.870E+00,	5.062E+00,,	0.469	
C,FE-59 ,NO ,	-1.040E+00,	5.881E+00,	9.473E+00,,	-0.110	
-	1.956E+00,	3.666E+00,	6.769E+00,,	0.289	
• • •	3.056E+00,	8.117E+00,	1.189E+01,,	0.257	
C,SE-75 ,NO ,	-5.072E-01,	4.220E+00,	6.874E+00,,	-0.074	
	8.153E+00,	3.896E+00,	7.024E+00,,	1.161	
C,Y-88 ,NO ,	-2.029E-01,	3.963E+00,	6.514E+00,,	-0.031	
C,NB-94 ,NO ,	-1.179E+00,	3.047E+00,	4.874E+00,,	-0.242	
C,NB-95 ,NO ,	1.308E+00,	3.306E+00,	5.596E+00,,	0.234	
	7.276E-01,	5.804E+00,	9.628E+00,,	0.076	
C, MO-99 , NO ,	3.002E+01,	3.909E+01,	6.888E+01,,	0.436	
C,RU-103 ,NO ,	5.363E-01,	3.176E+00,	5.259E+00,,	0.102	
C,RU-106 ,NO ,	1.762E+00,	2.731E+01,	4.571E+01,,	0.039	
C,AG-110m ,NO ,	-1.866E+00,	2.981E+00,	4.690E+00,,	-0.398	
	2.420E+00,	4.000E+00,	6.881E+00,,	0.352	
C,SB-124 ,NO ,	3.550E+00,	5.321E+00,	5.067E+00,,	0.701	
C,SB-125 ,NO ,	6.787E+00,	8.458E+00,	1.470E+01,,	0.462	
C,TE-129M ,NO ,	1.857E+01,	3.352E+01,	5.730E+01,,	0.324	
C,I-131 ,NO ,	-3.511E+00,	3.675E+00,	5.785E+00,,	-0.607	
C, BA-133 , NO ,	2.150E+00,	4.709E+00,	7.002E+00,,	0.307	
C,CS-134 ,NO ,	4.965E-01,	4.679E+00,	5.513E+00,,	0.090	
C,CS-136 ,NO ,	-6.442E-01,	3.021E+00,	4.816E+00,,	-0.134	
C,CS-137 ,NO ,	2.743E+00,	3.384E+00,	5.955E+00,,	0.461	
C,CE-139 ,NO ,	-3.099E-01,	2.974E+00,	4.753E+00,,	-0.065	
C, BA-140 , NO ,	1.125E+01,	1.230E+01,	2.138E+01,,	0.526	
C,LA-140 ,NO ,	-3.122E+00,	4.012E+00,	5.797E+00,,	-0.539	
C,CE-141 ,NO ,	3.592E+00,	5.993E+00,	8.651E+00,,	0.415	
C,CE-144 ,NO ,	3.803E+00,	2.435E+01,	3.749E+01,,	0.101	
C,EU-152 ,NO ,	-7.308E-01,	1.081E+01,	1.602E+01,,	-0.046	
C,EU-152 ,NO ,	-5.304E-01,	6.011E+00,	9.761E+00,,	-0.054	
C, AC-228 , NO ,	-1.107E+01,	1.308E+01,	2.082E+01,,	-0.531	
C, TH-232 , NO ,	-1.106E+01,	1.307E+01,	2.081E+01,,	-0.531	
C,U-235 ,NO ,	5.917E+00,	2.688E+01,	3.798E+01,,	0.156	
C,U-238 ,NO ,	-1.825E+02,	3.479E+02,	5.454E+02,,	-0.335	
C,AM-241 ,NO ,	-5.037E-01,	2.773E+01,	4.534E+01,,	-0.011	
	0.00/11 01/	,	,,,		

Sec. Review: Analyst: LIMS:										
VAX/VMS Teledvne Brown Eng. Laboratory Gamma Report: 31-JUL-2006 03:08:55 49										
	VAX/VMS Teledvne Brown Eng. Laboratory Gamma Report: 31-JUL-2006 03:08:55 49									
LIMS No., Customer Name, Client ID: WG L29402-2 EX ZION										
Sample ID       : 10L29402-2       Smple Date: 28-JUL-2006 10:00:00.         Sample Type       : WG       Geometry : 1035L091004         Quantity       : 3.38530E+00 L       BKGFILE : 10BG072806MT         Start Channel       : 80       Energy Tol : 1.00000       Real Time : 0 06:00:03.85         End Channel       : 4090       Pk Srch Sens: 5.00000       Live time : 0 06:00:00.00         MDA Constant       : 0.00       Library Used: LIBD										
Pk It Energy Area Bkgnd FWHM Channel %Eff Cts/Sec %Err Fit										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Ţ

Nuclide Type: natural

	- <u>7</u> F						
Nuclide K-40 TH-228	Energy 1460.81 238.63 240.98	Area 24 119	44.60*	%Eff 3.559E-01 1.400E+00	Uncorrected pCi/L 2.317E+01 7.019E+00	pĊi/L 2.317E+01	2-Sigma %Error 168.18 68.41

Flag: "*" = Keyline

L29402 38 of 61

Summary of Nuclide Activity Sample ID : 10L29402-2	Page : 2 Acquisition date : 30-JUL-2006 21:08:39						
Total number of lines in spectrum Number of unidentified lines Number of lines tentatively identified	18 16 1 by NID 2 11.11%						
Nuclide Type : natural							
	Decay Corr Decay Corr 2-Sigma pCi/L 2-Sigma Error %Error Flags 2.317E+01 3.896E+01 168.18 7.037E+00 4.814E+00 68.41						
Total Activity : 3.019E+01	3.020E+01						
Grand Total Activity : 3.019E+01	3.020E+01						
Flags: "K" = Keyline not found "E" = Manually edited	"M" = Manually accepted "A" = Nuclide specific abn. limit						

L29402 39 of 61

Unidentified Energy Lines Sample ID : 10L29402-2

TH-228

7.037E+00

Page : 3 Acquisition date : 30-JUL-2006 21:08:39

Sample ID':	10129402-	2		ACQ	uisit	101	date : 3	0-000	-2006 21	:08:39
It Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1 65.92 1 77.34 1 85.77 1 92.86 1 139.59 1 198.32 1 242.05 1 295.30 1 351.82 1 408.71 1 595.92 1 609.32 1 767.42 1 1120.29 1 239.31 1 765.28	54 40	779 553 1209 726 894 554 405 480 350 154 163 126 94 78 80 33	1.33 3.32 1.95 1.53 4.08 2.01 1.03 3.15	171.00 185.20 278.75 396.31 483.84 590.45 703.60 817.48 1192.25 1219.07 1535.57 2242.00 2480.26 3533.24	152 163 181 273 392 471 585 698 814 1186 1214 1528 2235 2470	6 6 14 5 9 5 11 1 9 5 18 6 11 5 13 1 10 2 13 3 13 1 14 2 17 3 16 2	L.66E-02 2.35E-03 3.05E-03 L.61E-02 2.39E-03 3.95E-03	57.7 **** 84.9 47.3 82.8 56.4 70.8 25.2 96.0 83.9 18.8 84.7 53.9 76.8	9.50E-0 1.16E+0 1.30E+0 1.68E+0 1.55E+0 1.39E+0 1.21E+0 9.49E-0 7.06E-0 6.94E-0 5.79E-0 4.33E-0 4.01E-0	01 00 00 00 00 00 00 01 01 01 01 01
Flags: "T" =		-	ociate	d						
TH-228	er of line unidentifi lines tent e : natura Hlife I BE+09Y	es in spa ed lines atively al Una Decay 1.00 2 1.00 7	ident td Mea correc pCi/L .317E+	ified by n Wto ted Deca 01 2.3 00 7.0	d Mear ay Con pCi/L	rr 201 200	Decay Co 2-Sigma I	Error +01	2-Sigma %Error 168.18 68.41	
Grand To	tal Activi	ity : 3	.019E+	01 3.0	)20E+(	01				
Flags: "K" "E" Interference	= Manually						ly accept e specif:		ı. limit	
No interfer Combined Ac Identi	tivity-MDA	A Report		led						
Nuclide	Activit (pCi/l	ty		error	()	MDA pCi/		MDA e	error	Act/MDA
K-40	2.317E	+01		6E+01	3.	825E	+01	0.000		0.606

4.814E+00

7.745E+00

0.000E+00

0.909

Nuclide		L.L. Act error	MDA (pCi/L)	MDA error	Act/MDA
BE-7	-2.171E+01	2.230E+01	3.500E+01	0.000E+00	-0.620
NA-24	-1.892E+01	4.776E+01	7.607E+01	0.000E+00	-0.249
CR-51	-1.883E+01	2.340E+01	3.784E+01	0.000E+00	-0.498
MN-54	-6.004E-02	2.562E+00	4.198E+00	0.000E+00	-0.014
CO-57	5.674E-01	2.791E+00	4.623E+00	0.000E+00	0.123
CO-58	-2.524E-01	2.600E+00	4.249E+00	0.000E+00	-0.059
FE-59	2.920E+00	4.829E+00	8.306E+00	0.000E+00	0.352
CO-60	-2.967E-02	2.508E+00	4.117E+00	0.000E+00	-0.007
ZN-65	1.386E+01	6.604E+00	1.084E+01	0.000E+00	1.279
SE-75	-1.929E-01	3.489E+00	5.804E+00	0.000E+00	-0.033
SR-85	1.820E+01	3.030E+00	5.835E+00	0.000E+00	3.119
Y-88	-7.384E-01	2.741E+00	4.416E+00	0.000E+00	-0.167
NB-94	-4.360E-01	2.537E+00	4.160E+00	0.000E+00	-0.105
NB-95	3.753E-01	2.598E+00	4.309E+00	0.000E+00	0.087
ZR-95	2.194E+00	5.042E+00	7.602E+00	0.000E+00	0.289
MO-99	3.838E+01	3.693E+01	6.398E+01	0.000E+00	0.600
RU-103	-4.511E-01	2.677E+00	4.339E+00	0.000E+00	-0.104
RU-106	6.299E+00	2.307E+01	3.783E+01	0.000E+00	0.167
AG-110m	-1.590E+00	2.500E+00	4.018E+00	0.000E+00	-0.396
SN-113	6.588E-01	3.488E+00	5.778E+00	0.000E+00	0.114
SB-124	-1.899E+00	6.177E+00	4.182E+00	0.000E+00	-0.454
SB-125	2.600E+00	7.432E+00	1.235E+01	0.000E+00	0.210
TE-129M	-9.026E-01	3.041E+01	4.971E+01	0.000E+00	-0.018
I-131	-1.509E-01	3.204E+00	5.278E+00	0.000E+00	-0.029
BA-133	1.878E+01	4.590E+00	7.501E+00	0.000E+00	2.504
CS-134	1.227E+01	6.294E+00	5.775E+00	0.000E+00	2.125
CS-136	-7.841E-01	2.803E+00	4.531E+00	0.000E+00	-0.173
CS-137	6.339E-01	2.773E+00	4.643E+00	0.000E+00	0.137
CE-139	-4.299E-01	2.742E+00	4.478E+00	0.000E+00	-0.096
BA-140	-1.726E+00	1.029E+01	1.662E+01	0.000E+00	-0.104
LA-140	4.139E-02	3.129E+00	5.100E+00	0.000E+00	0.008
CE-141	9.325E-01	5.823E+00	8.158E+00	0.000E+00	0.114
CE-144	2.812E+00	2.483E+01	3.482E+01	0.000E+00	0.081
EU-152	-2.385E+00	1.009E+01	1.396E+01	0.000E+00	-0.171
EU-154	3.107E+00	5.807E+00	9.677E+00	0.000E+00	0.321
RA-226	-1.887E+00	7.015E+01	1.133E+02	0.000E+00	-0.017
AC-228	-1.226E+00	1.035E+01	1.690E+01	0.000E+00	-0.073
TH-232	-1.225E+00	1.034E+01	1.689E+01	0.000E+00	-0.073
U-235	3.166E+01	2.576E+01	3.719E+01	0.000E+00	0.851
U-238	1.024E+00	2.834E+02	4.613E+02	0.000E+00	0.002
AM-241	2.039E+01	2.819E+01	3.956E+01	0.000E+00	0.515

# L29402 41 of 61

A,10L29402	- 2	07/31/2006	03:08,07/28/2	2006 10.00	3.385E+00,WG	T-29402-2	ΞX
B,10L29402				28/2006 09:50			
				3.825E+01,,	0.606		
•	,YES,				0.909		
•			4.814E+00,				
	,NO,	<b>,</b>		3.500E+01,,	-0.620		
	,NO,			7.607E+01,,	-0.249		
		· ·		3.784E+01,,	-0.498		
	,NO,	-6.004E-02,		4.198E+00,,	-0.014		
			2.791E+00,		0.123		
	,NO,		2.600E+00,	4.249E+00,,	-0.059		
C,FE-59	,NO,	2.920E+00,	4.829E+00,		0.352		
	,NO,	-	2.508E+00,	4.117E+00,,	-0.007		
C,ZN-65	,NO,	1.386E+01,	6.604E+00,	1.084E+01,,	1.279		
C,SE-75	,NO,	-1.929E-01,	3.489E+00,	5.804E+00,,	-0.033		
C,SR-85	,NO,	1.820E+01,	3.030E+00,	5.835E+00,,	3.119		
		-7.384E-01,	2.741E+00,	4.416E+00,,	-0.167		
			2.537E+00,	4.160E+00,,	-0.105		
			2.598E+00,	4.309E+00,,	0.087		
C,ZR-95	, NO .		5.042E+00,	7.602E+00,,	0.289		
			3.693E+01,	6.398E+01,,	0.600		
C,RU-103	NO .	-4.511E-01,		4.339E+00,,	-0.104		
C,RU-106	NO .	6.299E+00,	2.307E+01,	3.783E+01,,	0.167		
C,AG-110m				4.018E+00,,	-0.396		
C, SN-113		6.588E-01,	-	5.778E+00,,	0.114		
	,NO ,		•	4.182E+00,,	-0.454		
C,SB-124		2.600E+00,		1.235E+01,,	0.210		
	,NO ,	-9.026E-01,		4.971E+01,,	-0.018		
•	,NO ,	-1.509E-01,		5.278E+00,	-0.029		
C,I-131		1.878E+01,		7.501E+00,,	2.504		
C,BA-133	,NO ,	•		5.775E+00,,	2.125		
C,CS-134	,NO ,	1.227E+01,		4.531E+00,,	-0.173		
C,CS-136	,NO ,	-7.841E-01,			0.137		
C,CS-137	,NO ,	6.339E-01,	-	4.643E+00,,			
C,CE-139	,NO,	-4.299E-01,		4.478E+00,,	-0.096		
C,BA-140	,NO,	-1.726E+00,		1.662E+01,,	-0.104		
C,LA-140	,NO,	4.139E-02,		5.100E+00,,	0.008		
C,CE-141	,NO,	9.325E-01,		8.158E+00,,	0.114		
C,CE-144	,NO,			••			
C,EU-152	,NO ,	-2.385E+00,	1.009E+01,	1.396E+01,,	-0.171		
C,EU-154	,NO,	3.107E+00,	5.807E+00,	9.677E+00,,	0.321		
C,RA-226	,NO ,	-1.887E+00,	7.015E+01,	1.133E+02,,	-0.017		
C,AC-228	,NO,	-1.226E+00,	1.035E+01,	1.690E+01,,	-0.073		
C,TH-232	,NO ,	-1.225E+00,	1.034E+01,	1.689E+01,,	-0.073		
C,U-235	,NO,	3.166E+01,	2.576E+01,	3.719E+01,,	0.851		
C,U-238	,NO,	1.024E+00,	2.834E+02,	4.613E+02,,	0.002		
C,AM-241	,NO,	2.039E+01,	2.819E+01,	3.956E+01,,	0.515		
•							

Sec.	Rev	view: Ana	lyst: L	IMS:					_		
VAX/ TBE1	VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 30-JUL-2006 23:48:57.03 TBE11 P-20610B HpGe ******** Aquisition Date/Time: 30-JUL-2006 21:08:42.83										
LIMS No., Customer Name, Client ID: WG L29402-3 EX ZION											
Samp Quan Star End	Sample ID       : 11L29402-3       Smple Date: 28-JUL-2006 11:25:00.         Sample Type       : WG       Geometry : 1135L090204         Quantity       : 3.37210E+00 L       BKGFILE : 11BG072806MT         Start Channel       : 40       Energy Tol : 1.00000         End Channel       : 4090       Pk Srch Sens: 5.00000         MDA Constant       : 0.00       Library Used: LIBD										
Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec %Err Fit			
1	0	139.80*	69					7.22E-03 41.0			
2	0		46		1.00			4.81E-03 65.2			
3	6	238.60*		144	1.07			1.39E-03156.1 1.16E+00			
4	6	241.89	85	263		484.16		8.84E-03 40.9			
5	0	295.02*		211		590.69		1.01E-02 32.2			
6	0	351.85*				704.62		1.89E-02 15.7			
7	0	582.76*	20	24		1167.28		2.06E-03 58.3 4.53E-03 32.7			
8	0	595.98	43	46		1193.75 1220.26		4.53E-03 52.7 1.79E-02 13.6			
9	0	609.21*						1.04E-02 13.6 1.04E-02 14.6			
10	0	913.73	100	14		1829.71 2241.99		3.88E-03 32.9			
11	0	1119.93*	3/	23 18		2922.35		1.45E-03 89.0			
12	0	1460.57* 1762.75*	14 40	18				4.13E-03 26.0			
13 14	0 0	1845.57	4U 10	11				1.25E-03 60.8			
14 15	0	1938.34	12	1		3875.11		1.21E-03 33.7			

L29402 42 of 61

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide	Type: natural	_					
	- 1				Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pĊi/L	%Error
K-40	1460.81	14	10.67*	3.540E-01	3.080E+01	3.080E+01	177.98
TH-228	238.63	13	44.60*	1.421E+00	1.756E+00	1.760E+00	312.10
	240.98	85	3.95	1.409E+00	1.273E+02	1.276E+02	81.83

Flag: "*" = Keyline

L29402 43 of 61

Summary of Nuclide Activity Sample ID : 11L29402-3	Page : 2 Acquisition date : 30-JUL-2006 21:08:42					
Total number of lines in spectrum Number of unidentified lines Number of lines tentatively identified	15 11 d by NID 4 26.67%					
Nuclide Type : natural						
K-401.28E+09Y1.003.080E+01TH-2281.91Y1.001.756E+00	1.760E+00 5.494E+00 312.10					
Total Activity : 3.256E+01	3.256E+01					
Grand Total Activity : 3.256E+01 3.256E+01						
Flags: "K" = Keyline not found "E" = Manually edited	"M" = Manually accepted "A" = Nuclide specific abn. limit					

L29402 44 of 61 Unidentified Energy Lines Page : 3 Sample ID : 11L29402-3 Acquisition date : 30-JUL-2006 21:08:42 Channel Left Pw Cts/Sec %Err %Eff It Bkqnd FWHM Flags Energy Area 69 256 1.20 279.38 0 139.80 276 7 7.22E-03 81.9 1.69E+00238 0 198.20 46 1.00 396.53 393 10 4.81E-03 **** 1.57E+000 295.02 97 211 1.35 590.69 587 12 1.01E-02 64.5 1.23E+00 1.59 698 13 1.89E-02 31.3 0 351.85 181 133 704.62 1.08E+00 8 2.06E-03 **** 0 582.76 24 1167.28 1163 Т 20 1.76 7.27E-01 0 595.98 43 46 1.35 1193.75 1189 10 4.53E-03 65.3 7.14E-01 78 0 609.21 172 1.63 1220.26 1216 13 1.79E-02 27.2 7.02E-01 0 913.73 100 14 9.07 1829.71 1817 28 1.04E-02 29.1 5.12E-01 2241.99 2235 13 3.88E-03 65.8 0 37 23 1.99 4.37E-01 1119.93 2.86 3525.17 3518 14 4.13E-03 52.0 0 1762.75 40 11 3.04E-01 3690.25 3682 11 1.25E-03 **** 1845.57 12 0.84 2.93E-01 0 11 3875.11 3872 6 1.21E-03 67.5 0 1938.34 12 1 1.28 2.82E-01 Flags: "T" = Tentatively associated Summary of Nuclide Activity Total number of lines in spectrum 15 Number of unidentified lines 11 Number of lines tentatively identified by NID 4 26.67% Nuclide Type : natural Wtd Mean Wtd Mean Uncorrected Decay Corr Decay Corr 2-Siqma 2-Sigma Error Nuclide Hlife Decay pCi/L pCi/L %Error Flags K-40 1.28E+09Y 1.00 3.080E+01 3.080E+01 5.482E+01 177.98 TH-228 1.91Y 5.486E+00 260.30 1.00 2.103E+00 2.108E+00 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 3.291E+01 Total Activity : 3.290E+01 Grand Total Activity : 3.290E+01 3.291E+01 Flags: "K" = Keyline not found "M" = Manually accepted "A" = Nuclide specific abn. limit "E" = Manually edited Interference Report No interference correction performed Combined Activity-MDA Report ---- Identified Nuclides ----Activity MDA Act/MDA Act error MDA error Nuclide (pCi/L)(pCi/L)K-40 4.437E+01 0.000E+00 0.694 3.080E+01 5.482E+01 TH-228 2.108E+00 5.486E+00 9.066E+00 0.000E+00 0.232 ---- Non-Identified Nuclides ----

Key-Line

Nuclide	Activity (pCi/L)	K.L. Ided	Act error	MDA (pCi/L)	MDA error	Act/MDA
BE-7	1.094E+01		2.638E+01	4.496E+01	0.000E+00	0.243
NA-24	1.673E+01		4.654E+01	8.015E+01	0.000E+00	0.209
CR-51	6.869E-01		2.880E+01	4.630E+01	0.000E+00	0.015
MN-54	6.568E-01		3.252E+00	5.357E+00	0.000E+00	0.123
CO-57	-2.455E-01		3.145E+00	5.183E+00	0.000E+00	-0.047
CO-58	1.276E+00		3.174E+00	5.341E+00	0.000E+00	0.239
FE-59	-1.423E+00		5.741E+00	9.224E+00	0.000E+00	-0.154
CO-60	2.243E-01		3.039E+00	5.033E+00	0.000E+00	0.045
ZN-65	1.106E+00		7.728E+00	1.118E+01	0.000E+00	0.099
SE-75	-2.405E+00		4.252E+00	6.660E+00	0.000E+00	-0.361
SR-85	-3.607E+00		4.217E+00	6.657E+00	0.000E+00	-0.542
Y-88	-2.875E-01		4.379E+00	6.316E+00	0.000E+00	-0.046
NB-94	2.813E+00		3.371E+00	5.852E+00	0.000E+00	0.481
NB-95	2.638E+00		3.202E+00	5.590E+00	0.000E+00	0.472
ZR-95	3.399E-01		5.680E+00	9.269E+00	0.000E+00	0.037
MO-99	-4.157E+01		4.611E+01	6.846E+01	0.000E+00	-0.607
RU-103	1.929E+00		3.364E+00	5.778E+00	0.000E+00	0.334
RU-106	3.872E+00		2.913E+01	4.825E+01	0.000E+00	0.080
AG-110m	1.032E+00		3.043E+00	5.121E+00	0.000E+00	0.202
SN-113	-4.121E-01		3.933E+00	6.519E+00	0.000E+00	-0.063
SB-124	-2.624E+00		4.767E+00	5.018E+00	0.000E+00	-0.523
SB-125	1.025E+01		9.507E+00	1.683E+01	0.000E+00	0.609
TE-129M	-2.196E+01		3.731E+01	5.937E+01	0.000E+00	-0.370
I-131	-1.854E+00		3.823E+00	6.209E+00	0.000E+00	-0.299
BA-133	-1.103E+00		5.016E+00	7.111E+00	0.000E+00	-0.155
CS-134	-4.362E-01		3.670E+00	5.090E+00	0.000E+00	-0.086
CS-136	-1.339E+00		3.644E+00	5.669E+00	0.000E+00	-0.236
CS-137	6.320E-01		3.547E+00	5.880E+00	0.000E+00	0.107
CE-139	-1.272E+00		3.263E+00	5.268E+00	0.000E+00	-0.241
BA-140	-2.088E+00		1.252E+01	2.035E+01	0.000E+00	-0.103
LA-140	-2.677E+00		4.089E+00	5.911E+00	0.000E+00	-0.453
CE-141	-9.295E-01		5.999E+00	9.243E+00	0.000E+00	-0.101
CE-144	-9.258E+00		2.605E+01	3.988E+01	0.000E+00	-0.232
EU-152	-6.886E+00		1.028E+01	1.464E+01	0.000E+00	-0.470
EU-154	-3.983E+00		6.607E+00	1.067E+01	0.000E+00	-0.373
RA-226	3.140E+01		8.010E+01	1.343E+02	0.000E+00	0.234
AC-228	1.787E+00		1.222E+01	2.207E+01	0.000E+00	0.081
TH-232	1.785E+00		1.221E+01	2.205E+01	0.000E+00	0.081
U-235	4.340E+00		2.828E+01	4.067E+01	0.000E+00	0.107
U-238	-2.114E+02		3.325E+02	5.133E+02	0.000E+00	-0.412
AM-241	8.569E-03		3.704E+01	6.213E+01	0.000E+00	0.000

# L29402 46 of 61

A,11L29402-3	,07/30/2006	23:48,07/28/2	2006 11:25,	3.372E+00,WG	L29402-3	ΕX
B,11L29402-3		,07,	/28/2006 09:50			
C,K-40 ,YES,	3.080E+01,	5.482E+01,	4.437E+01,,			
C,TH-228,YES,	2.108E+00,	5.486E+00,	9.066E+00,,			
C,BE-7 ,NO ,	1.094E+01,	2.638E+01,	4.496E+01,,	0.243		
C,NA-24 ,NO ,	1.673E+01.	4.654E+01,	8.015E+01,,	0.209		
	6.869E-01,			0.015		
	6.568E-01,			0.123		
C,CO-57 ,NO ,		3.145E+00,				
	1.276E+00,	3.174E+00,		0.239		
C,FE-59 ,NO ,				-0.154		
	2.243E-01,			0.045		
	1.106E+00,			0.099		
	-2.405E+00,					
	-3.607E+00,			-0.361		
	-2.875E-01,		6.657E+00,, 6.316E+00,,	-0.542		
	2.813E+00,			-0.046		
C,NB-94 ,NO ,	2.813E+00,	3.371E+00,	5.852E+00,,	0.481		
C,NB-95 ,NO ,	2.638E+00,		5.590E+00,,	0.472		
	3.399E-01,		9.269E+00,,	0.037		
C,MO-99 ,NO ,	-4.157E+01,	4.611E+01,	6.846E+01,,	-0.607		
C,RU-103 ,NO ,	1.929E+00,	3.364E+00,	5.778E+00,,	0.334		
C,RU-106 ,NO ,	3.872E+00,	2.913E+01,	4.825E+01,,	0.080		
C,AG-110m ,NO ,			5.121E+00,,	0.202		
	-4.121E-01,	3.933E+00,	6.519E+00,,	-0.063		
	-2.624E+00,		5.018E+00,,	-0.523		
	1.025E+01,		1.683E+01,,	0.609		
C,TE-129M ,NO ,	-2.196E+01,	3.731E+01,		-0.370		
C,I-131 ,NO ,	-1.854E+00,			-0.299		
C,BA-133 ,NO ,	-1.103E+00,	5.016E+00,	7.111E+00,,	-0.155		
C,CS-134 ,NO ,	-4.362E-01,	3.670E+00,	5.090E+00,,	-0.086		
C,CS-136 ,NO ,	-1.339E+00,	3.644E+00,	5.669E+00,,	-0.236		
C,CS-137 ,NO ,	6.320E-01,	3.547E+00,	5.880E+00,,	0.107		
C,CE-139 ,NO ,	-1.272E+00,	3.263E+00,	5.268E+00,,	-0.241		
C,BA-140 ,NO ,	-2.088E+00,	1.252E+01,	2.035E+01,,	-0.103		
C,LA-140 ,NO ,	-2.677E+00,	4.089E+00,	5.911E+00,,	-0.453		
C,CE-141 ,NO ,	-9.295E-01,	5.999E+00,	9.243E+00,,	-0.101		
	-9.258E+00,	2.605E+01,	3.988E+01,,	-0.232		
C,EU-152 ,NO ,		1.028E+01,	1.464E+01,,	-0.470		
	-3.983E+00,	6.607E+00,	1.067E+01,,	-0.373		
· · ·	3.140E+01,	8.010E+01,	1.343E+02,,	0.234		
C,AC-228 ,NO ,	1.787E+00,	1.222E+01,	2.207E+01,,	0.081		
C,TH-232 ,NO ,	1.785E+00,	1.221E+01,	2.205E+01,,	0.081		
C,U-235 ,NO ,	4.340E+00,	2.828E+01,	4.067E+01,,	0.107		
C,U-238 ,NO ,	-2.114E+02,	3.325E+02,	5.133E+02,,	-0.412		
C,AM-241 ,NO ,	8.569E-03,	3.704E+01,	6.213E+01,,	0.000		
-, , , ,	0.0002 007	0./011/01/	0.2101.0111	0.000		

L29402 47 of 61

Sec.		19	$(1^{*})^{\prime}$	LIMS: <u>l</u>					
VAX/ TBE1	VMS 4 P	Teledyne H -10933A HpC	Brown Eng. Ge ******	. Labora **** Aqu	atory uisiti	Gamma Re lon Date,	eport: 31-3 /Time: 30-3	JUL-2006 03:0 JUL-2006 21:0	9:03.44 8:47.79
LIMS	No	., Custome:	r Name, Cl	lient II	D: WG	L29402-4	4 EX ZION		
Samp Quan Star End	Sample ID       : 14L29402-4       Smple Date: 28-JUL-2006 11:12:00.         Sample Type       : WG       Geometry : 1435L091304         Quantity       : 3.36510E+00 L       BKGFILE : 14BG072806MT         Start Channel       : 90       Energy Tol : 1.00000         End Channel       : 4090       Pk Srch Sens: 5.00000         MDA Constant       : 0.00       Library Used: LIBD								
Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec %Er	rr Fit
1	1	65.77*	320	1315	2.82	132.85	4.37E-01	1.48E-02 24.	9 2.04E+00
2	1	74.89*	111	990	2.02	151.18	6.93E-01	5.14E-03 60.	9 4.90E+00
3	1	140.21*	265	772	1.95	282.39	1.67E+00	1.23E-02 20.	9 3.77E+00
4	1	185.54*	43	785	1.57	373.43	1.64E+00	2.00E-03132	.5 8.01E-01
5	1	198.71*	114	595	1.24	399.86	1.60E+00	5.30E-03 41.	.3 1.57E+00
6	1	238.96*	76	606	1.30	480.66	1.47E+00	3.53E-03 64.	.7 8.19E-01
7	1	295.81*	163	643	1.86	594.73	1.29E+00	7.54E-03 35	.1 5.21E+00
8	1	352.20*	445	475	1.57			2.06E-02 12	.4 1.24E+00
9	1	583.75*	28	178	2.85	1171.74	7.91E-01	1.28E-03113	.2 2.44E+00
10	1	596.05	68	238	1.12	1196.35	7.79E-01	3.17E-03 51	.0 1.51E+00
11	1	609.40*	404	209	1.62	1223.07	7.66E-01	1.87E-02 9	.7 1.29E+00
12	1	768.23	89	127		1540.76		4.12E-03 29	
13	1	1120.11*		65		2243.20		4.67E-03 19	
14	1	1238.52*		100		2479.16		2.19E-03 57	
15	1	1461.16*	18	52		2922.26		8.52E-04129	
16	1	1766.01*	74	58	2.39	3527.78	3.43E-01	3.44E-03 30	.2 7.64E-01

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	&Abn	%Eff	pCi/L	pCi/L	%Error
K-40	1460.81	18	10.67*	3.927E-01	1.633E+01	1.633E+01	259.40
RA-226	186.21	43	3.28*	1.641E+00	2.979E+01	2.979E+01	265.07
TH-228	238.63	76	44.60*	1.467E+00	4.327E+00	4.338E+00	129.49
	240.98		3.95	1.461E+00	Li	ne Not Found	
U-235	143.76		10.50*	1.680E+00	Li:	ne Not Found	
	163.35		4.70	1.685E+00	Li:	ne Not Found	
	185.71	43	54.00	1.641E+00	1.810E+00	1.810E+00	265.07
	205.31		4.70	1.582E+00	Li	ne Not Found	

Flag: "*" = Keyline

L29402 48 of 61

Summary of Nuclide Activity	Page : 2					
Sample ID : 14L29402-4	Acquisition date : 30-JUL-2006 21:08:47					
Total number of lines in spectrum	16					
Number of unidentified lines	12					
Number of lines tentatively identifie	d by NID 4 25.00%					
Nuclide Type : natural						
Uncorrected           Nuclide         Hlife         Decay         pCi/L           K-40         1.28E+09Y         1.00         1.633E+01           RA-226         1600.00Y         1.00         2.979E+01           TH-228         1.91Y         1.00         4.327E+00           U-235         7.04E+08Y         1.00         1.810E+00           Total Activity :	pCi/L 2-Sigma Error %Error Flags 1.633E+01 4.237E+01 259.40 2.979E+01 7.897E+01 265.07 4.338E+00 5.618E+00 129.49 1.810E+00 4.797E+00 265.07 K					
Grand Total Activity : 5.226E+01 5.227E+01						
Flags: "K" = Keyline not found	"M" = Manually accepted					
"E" = Manually edited	"A" = Nuclide specific abn. limit					

L29402 49 of 61

Unidentified Energy Lines Sample ID : 14L29402-4 Page : 3 Acquisition date : 30-JUL-2006 21:08:47

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Ρw	Cts/Sec	%Err	%Eff :	Flags
1	65.77	320	1315	2.82	132.85	126	14	1.48E-02	49.9	4.37E-01	
1	74.89	111	990	2.02	151.18	145	12	5.14E-03	* * * *	6.93E-01	
1	140.21	265	772	1.95	282.39	277	10	1.23E-02	41.8	1.67E+00	
1	198.71	114	595	1.24	399.86	396	9	5.30E-03	82.6	1.60E+00	
1	295.81	163	643	1.86	594.73	587	14	7.54E-03	70.2	1.29E+00	
1	352.20	445	475	1.57	707.83	700	16	2.06E-02	24.8	1.14E+00	
1	583.75	28	178	2.85	1171.74	1166	13	1.28E-03	* * * *	7.91E-01	Т
1	596.05	68	238	1.12	1196.35	1190	15	3.17E-03	* * * *	7.79E-01	
1	609.40	404	209	1.62	1223.07	1216	14	1.87E-02	19.3	7.66E-01	
1	768.23	89	127	5.35	1540.76	1537	15	4.12E-03	58.2	6.43E-01	
1	1120.11	101	65	1.87	2243.20	2238	10	4.67E-03	39.1	4.81E-01	
1	1238.52	47	100	3.69	2479.16	2466	21	2.19E-03	* * * *	4.45E-01	
1	1766.01	74	58	2.39	3527.78	3518	21	3.44E-03	60.3	3.43E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum	16	
Number of unidentified lines	12	
Number of lines tentatively identified by NID	4	25.00%

Nuclide Type : natural

		Wtd Mean	Wtd Mean		
		Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife Decay	pCi/L	pĈi/L	2-Sigma Error	%Error Flags
	E+09Y 1.00	1.633E+01	1.633E+01	4.237E+01	259.40
RA-226 160	0.00Y 1.00	2.979E+01	2.979E+01	7.897E+01	265.07
	1.91Y 1.00	4.327E+00	4.338E+00	5.618E+00	129.49
Tot	al Activity :	5.045E+01	5.046E+01		
	-				
Grand Tot	al Activity :	5.045E+01	5.046E+01		

Flags:	"K"	==	Keyline not found	"M" = Manually accepted	
J			Manually edited	"A" = Nuclide specific abn. li	mit

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
K-40	1.633E+01	4.237E+01	4.628E+01	0.000E+00	0.353
RA-226	2.979E+01	7.897E+01	1.219E+02	0.000E+00	0.244
TH-228	4.338E+00	5.618E+00	8.736E+00	0.000E+00	0.497

Nuclide		.L. Act error ded	MDA (pCi/L)	MDA error	Act/MDA
BE-7	1.182E+01	2.448E+01	4.118E+01	0.000E+00	0.287
NA-24	-3.631E+01	4.876E+01	7.725E+01	0.000E+00	-0.470
CR-51	-1.784E+01	2.614E+01	4.203E+01	0.000E+00	-0.424
MN-54	-1.966E-01	2.652E+00	4.389E+00	0.000E+00	-0.045
CO-57	-1.163E+00	3.167E+00	5.125E+00	0.000E+00	-0.227
CO-58	1.565E-01	2.925E+00	4.770E+00	0.000E+00	0.033
FE-59	1.928E+00	5.015E+00	8.412E+00	0.000E+00	0.229
CO-60	2.989E-01	2.873E+00	4.709E+00	0.000E+00	0.063
ZN-65	1.686E+01	7.585E+00	1.204E+01	0.000E+00	1.400
SE-75	-4.149E+00	3.942E+00	6.327E+00	0.000E+00	-0.656
SR-85	1.844E+01	3.126E+00	5.952E+00	0.000E+00	3.098
Y-88	-5.495E-02	2.855E+00	4.664E+00	0.000E+00	-0.012
NB-94	1.085E+00	2.688E+00	4.467E+00	0.000E+00	0.243
NB-95	1.684E+00	3.330E+00	4.703E+00	0.000E+00	0.358
ZR-95	-2.760E+00	5.199E+00	7.815E+00	0.000E+00	-0.353
MO-99	-4.288E+00	3.835E+01	6.228E+01	0.000E+00	-0.069
RU-103	3.386E+00	2.949E+00	5.059E+00	0.000E+00	0.669
RU-106	6.634E+00	2.774E+01	4.369E+01	0.000E+00	0.152
AG-110m	-1.143E+00	2.703E+00	4.354E+00	0.000E+00	-0.262
SN-113	-3.376E+00	3.788E+00	5.997E+00	0.000E+00	-0.563
SB-124	-8.563E-01	7.346E+00	4.844E+00	0.000E+00	-0.177
SB-125	3.577E+00	8.167E+00	1.375E+01	0.000E+00	0.260
TE-129M	4.646E+00	3.352E+01	5.585E+01	0.000E+00	0.083
I-131	-1.059E+00	3.841E+00	5.846E+00	0.000E+00	-0.181
BA-133	2.728E+01	5.231E+00	8.517E+00	0.000E+00	3.202
CS-134	1.810E+01	7.448E+00	6.541E+00	0.000E+00	2.767
CS-136	6.349E-01	3.171E+00	5.203E+00	0.000E+00	0.122
CS-137	1.205E+00	3.014E+00	5.019E+00	0.000E+00	0.240
CE-139	-2.056E+00	3.013E+00	4.949E+00	0.000E+00	-0.415
BA-140	4.109E+00	1.142E+01	1.909E+01	0.000E+00	0.215
LA-140	8.175E-02	3.468E+00	5.722E+00	0.000E+00	0.014
CE-141	2.308E+00	6.567E+00	9.068E+00	0.000E+00	0.254
CE-144	-7.254E+00	2.831E+01	3.852E+01	0.000E+00	-0.188
EU-152	-7.372E+00	1.113E+01	1.487E+01	0.000E+00	-0.496
EU-154	1.938E+00	6.615E+00	1.083E+01	0.000E+00	0.179
AC-228	6.229E+00	1.076E+01	1.763E+01	0.000E+00	0.353
TH-232	6.223E+00	1.075E+01	1.762E+01	0.000E+00	0.353
U-235	5.032E+01	2.923E+01	4.148E+01	0.000E+00	1.213
U-238	-2.279E+01	2.996E+02	4.920E+02	0.000E+00	-0.046
AM-241	3.956E+00	5.091E+01	7.109E+01	0.000E+00	0.056

# L29402 51 of 61

ΕX

A,14L29402			03:09,07/28/2		3.365E+00,WG	L29402-4
B,14L29402		,LIBD		27/2006 14:28		
C,K-40	,YES,	1.633E+01,	4.237E+01,		0.353	
C,RA-226	,YES,	2.979E+01,	7.897E+01,		0.244	
C,TH-228	,YES,	4.338E+00,	5.618E+00,	8.736E+00,,	0.497	
C,BE-7	,NO ,	1.182E+01,	2.448E+01,	4.118E+01,,	0.287	
C,NA-24	,NO ,	-3.631E+01,	4.876E+01,	7.725E+01,,	-0.470	
C,CR-51	,NO ,	-1.784E+01,	2.614E+01,	4.203E+01,,	-0.424	
C,MN-54	,NO,	-1.966E-01,	2.652E+00,	4.389E+00,,	-0.045	
C,CO-57	,NO,	-1.163E+00,	3.167E+00,	5.125E+00,,	-0.227	
C,CO-58	,NO,	1.565E-01,	2.925E+00,	4.770E+00,,	0.033	
C,FE-59	,NO,	1.928E+00,	5.015E+00,	8.412E+00,,	0.229	
C, CO-60	,NO,	2.989E-01,	2.873E+00,	4.709E+00,,	0.063	
C, ZN-65	,NO,	1.686E+01,	7.585E+00,	1.204E+01,,	1.400	
C,SE-75	,NO,	-4.149E+00,	3.942E+00,	6.327E+00,,	-0.656	
C,SR-85	,NO,	1.844E+01,	3.126E+00,	5.952E+00,,	3.098	
C,Y-88	,NO,	-5.495E-02,	2.855E+00,	4.664E+00,,	-0.012	
C,NB-94	, NO ,	1.085E+00,	2.688E+00,	4.467E+00,,	0.243	
C,NB-95	,NO,	1.684E+00,	3.330E+00,	4.703E+00,,	0.358	
C,ZR-95	,NO ,	-2.760E+00,	5.199E+00,	7.815E+00,,	-0.353	
C,MO-99	,NO ,	-4.288E+00,	3.835E+01,	6.228E+01,,	-0.069	
C,RU-103	,NO ,	3.386E+00,	2.949E+00,	5.059E+00,,	0.669	
C,RU-106	,NO ,	6.634E+00,	2.774E+01,	4.369E+01,,	0.152	
C,AG-110m	,NO ,	-1.143E+00,	2.703E+00,	4.354E+00,,	-0.262	
C, SN-113	,NO,	-3.376E+00,	3.788E+00,	5.997E+00,,	-0.563	
C,SB-124	,NO,	-8.563E-01,	7.346E+00,	4.844E+00,,	-0.177	
C,SB-125	,NO,	3.577E+00,	8.167E+00,	1.375E+01,,	0.260	
C, TE-129M	,NO ,	4.646E+00,	3.352E+01,	5.585E+01,,	0.083	
C,I-131	,NO ,	-1.059E+00,	3.841E+00,	5.846E+00,	-0.181	
C, BA-133	,NO ,	2.728E+01,	5.231E+00,	8.517E+00,,	3.202	
C,CS-134	,NO ,	1.810E+01,	7.448E+00,	6.541E+00,,	2.767	
C,CS-136	,NO ,	6.349E-01,	3.171E+00,	5.203E+00,,	0.122	
C,CS-137	, NO ,	1.205E+00,	3.014E+00,	5.019E+00,,	0.240	
C,CE-139	, NO ,	-2.056E+00,	3.013E+00,	4.949E+00,,	-0.415	
C,BA-140	,NO,	4.109E+00,	1.142E+01,	1.909E+01,,	0.215	
		4.109E+00, 8.175E-02,		5.722E+00,,	0.014	
C,LA-140		•	3.468E+00,		0.254	
C,CE-141	,NO,	2.308E+00,	6.567E+00,	9.068E+00,,		
C,CE-144	,NO ,	-7.254E+00,	2.831E+01,	3.852E+01,,	-0.188	
C,EU-152	,NO ,	-7.372E+00,	1.113E+01,	1.487E+01,,	-0.496	
C,EU-154	,NO ,	1.938E+00,	6.615E+00,	1.083E+01,,	0.179	
C,AC-228	,NO,	6.229E+00,	1.076E+01,	1.763E+01,,	0.353	
C,TH-232	,NO ,	6.223E+00,	1.075E+01,	1.762E+01,,	0.353	
C,U-235	,NO ,	5.032E+01,	2.923E+01,	4.148E+01,,	1.213	
C,U-238	,NO ,	-2.279E+01,	2.996E+02,	4.920E+02,,	-0.046	
C,AM-241	,NO,	3.956E+00,	5.091E+01,	7.109E+01,,	0.056	

LIMS: ~ Analyst/ Sec. Review: _____ VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 31-JUL-2006 03:09:02.40 TBE15 P-10635B HpGe ******* Aquisition Date/Time: 30-JUL-2006 21:08:51.67 LIMS No., Customer Name, Client ID: WG L29402-5 EX ZION Smple Date: 28-JUL-2006 09:45:00. : 15L29402-5 Sample ID : 1535L090104 : WG Geometry Sample Type : 15BG072806MT BKGFILE : 3.47150E+00 L Ouantity Energy Tol : 1.00000 Real Time : 0 06:00:02.27 Start Channel : 40 Live time : 0 06:00:00.00 Pk Srch Sens: 5.00000 End Channel : 4090 Library Used: LIBD MDA Constant : 0.00 %Eff Cts/Sec %Err Fit FWHM Channel Bkqnd Pk It Area Energy 4.31E-01 7.06E-03 30.7 4.02E-01 152 616 1.79 119.63 1 1 66.15* 1.48E+00 3.76E-03 42.9 3.13E+00 400 1.17 267.42 2 139.58* 81 1 326 580.55 1.05E+00 3.14E-03 53.1 1.31E+00 1.37 3 295.19* 68 1 9.16E-01 1.04E-02 19.1 1.37E+00 1.53 694.27 224 305 4 1 351.71* 5.97E-01 4.04E-03 28.2 3.44E-01 1.47 1185.02 5 1 595.70 87 129 5.87E-01 8.81E-03 18.8 1.92E+00 197 1.60 1211.39 6 1 608.82* 190 3.58E-01 2.72E-03 31.9 9.92E-01 3.14 2239.34 7 1 1120.26* 59 49

L29402 52 of 61

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Flaq: "*" = Keyline

### L29402 53 of 61

Page : 2 Summary of Nuclide Activity Acquisition date : 30-JUL-2006 21:08:51 Sample ID : 15L29402-5 Total number of lines in spectrum 7 Number of unidentified lines 7 Number of lines tentatively identified by NID 0 0.00% **** There are no nuclides meeting summary criteria **** Flags: "K" = Keyline not found "M" = Manually accepted "A" = Nuclide specific abn. limit "E" = Manually edited

Unidentified Energy Lines Page : 3 Acquisition date : 30-JUL-2006 21:08:51 Sample ID : 15L29402-5 Bkgnd FWHM Channel Left Pw Cts/Sec %Err Flags %Eff Ιt Energy Area 66.15 152 616 1.79 119.63 116 8 7.06E-03 61.4 4.31E-01 1 6 3.76E-03 85.9 400 1.17 267.42 265 1 139.58 81 1.48E+00 580.55 576 9 3.14E-03 **** 68 1.05E+00 1 295.19 326 1.37 351.71 224 305 1.53 694.27 687 14 1.04E-02 38.2 9.16E-01 1 595.70 1.47 1185.02 1179 12 4.04E-03 56.4 5.97E-01 1 87 129 197 1.60 1211.39 1205 15 8.81E-03 37.6 608.82 190 5.87E-01 1 3.14 2239.34 2231 15 2.72E-03 63.7 49 3.58E-01 1120.26 59 1 Flags: "T" = Tentatively associated Summary of Nuclide Activity 7 Total number of lines in spectrum 7 Number of unidentified lines Number of lines tentatively identified by NID 0 0.00% **** There are no nuclides meeting summary criteria **** "M" = Manually accepted Flags: "K" = Keyline not found "E" = Manually edited "A" = Nuclide specific abn. limit Interference Report

L29402 54 of 61

No interference correction performed

_ .

Combined Activity-MDA Report

---- Non-Identified Nuclides ----

Nuclide	Key-Line Activity K.L. (pCi/L) Ideo		MDA (pCi/L)	MDA error	Act/MDA
BE-7	7.008E+00	2.558E+01	4.289E+01	0.000E+00	0.163
NA-24	-7.559E+00	5.890E+01	9.560E+01	0.000E+00	-0.079
K-40	2.767E+01	4.217E+01	7.972E+01	0.000E+00	0.347
CR-51	-1.011E+01	2.623E+01	4.265E+01	0.000E+00	-0.237
MN-54	1.845E+00	2.827E+00	4.834E+00	0.000E+00	0.382
CO-57	1.513E+00	2.885E+00	4.819E+00	0.000E+00	0.314
CO-58	9.429E-01	2.794E+00	4.707E+00	0.000E+00	0.200
FE-59	5.450E+00	5.510E+00	9.710E+00	0.000E+00	0.561
CO-60	2.493E+00	3.060E+00	5.324E+00	0.000E+00	0.468
ZN-65	1.049E+01	7.390E+00	1.162E+01	0.000E+00	0.902
SE-75	-2.292E+00	3.958E+00	6.462E+00	0.000E+00	-0.355
SR-85	1.472E+01	3.300E+00	6.204E+00	0.000E+00	2.372
Y-88	-3.134E+00	3.177E+00	4.696E+00	0.000E+00	-0.667
NB-94	-1.164E+00	2.937E+00	4.686E+00	0.000E+00	-0.248
NB-95	1.664E+00	2.927E+00	4.993E+00	0.000E+00	0.333
ZR-95	-4.879E+00	5.202E+00	8.217E+00	0.000E+00	-0.594
MO-99	-3.835E+01	4.104E+01	6.491E+01	0.000E+00	-0.591
RU-103	1.428E+00	3.066E+00	5.169E+00	0.000E+00	0.276
RU-106	-1.762E+01	2.923E+01	4.441E+01	0.000E+00	-0.397
AG-110m	-1.090E+00	2.766E+00	4.424E+00	0.000E+00	-0.246
SN-113	-4.726E-01	3.989E+00	6.480E+00	0.000E+00	-0.073

SB-124	2.914E+00	6.275E+00	4.784E+00	0.000E+00	0.609
SB-125	8.578E-01	8.703E+00	1.419E+01	0.000E+00	0.060
TE-129M	-3.758E+01	3.461E+01	5.517E+01	0.000E+00	-0.681
I-131	2.085E-01	3.722E+00	6.102E+00	0.000E+00	0.034
BA-133	1.794E+01	4.978E+00	8.000E+00	0.000E+00	2.242
CS-134	2.004E+01	5.364E+00	6.618E+00	0.000E+00	3.028
CS-136	-3.914E-01	3.069E+00	5.036E+00	0.000E+00	-0.078
CS-137	7.304E-01	3.126E+00	5.165E+00	0.000E+00	0.141
CE-139	-9.157E-01	2.816E+00	4.578E+00	0.000E+00	-0.200
BA-140	1.241E+01	1.198E+01	2.062E+01	0.000E+00	0.602
LA-140	1.708E+00	4.096E+00	6.989E+00	0.000E+00	0.244
CE-141	-5.783E-02	6.001E+00	8.371E+00	0.000E+00	-0.007
CE-144	6.682E+00	2.591E+01	3.656E+01	0.000E+00	0.183
EU-152	-1.194E+01	1.103E+01	1.446E+01	0.000E+00	-0.826
EU-154	1.268E+00	6.215E+00	1.014E+01	0.000E+00	0.125
RA-226	-2.661E+01	7.474E+01	1.191E+02	0.000E+00	-0.223
AC-228	1.371E+00	1.156E+01	1.900E+01	0.000E+00	0.072
TH-228	8.326E+00	5.718E+00	9.715E+00	0.000E+00	0.857
TH-232	1.370E+00	1.155E+01	1.898E+01	0.000E+00	0.072
U-235	2.971E+00	2.704E+01	3.759E+01	0.000E+00	0.079
U-238	2.418E+01	3.398E+02	5.558E+02	0.000E+00	0.044
AM-241	-4.193E+01	4.422E+01	5.947E+01	0.000E+00	-0.705

A,15L29402-5	5	,07/31/2006	03:09,07/28/2			L29402-5	EX	1
B,15L29402-5	5	,LIBD			9,1535L090104			
C,BE-7 ,1	NO,	7.008E+00,	2.558E+01,					
C,NA-24 ,N	NO,	-7.559E+00,	5.890E+01,					
C,K-40 ,1	NO,	2.767E+01,	4.217E+01,	7.972E+01,,	0.347			
C,CR-51 ,1	NO,	-1.011E+01,	2.623E+01,	4.265E+01,,	-0.237			
C,MN-54 ,1	NO,	1.845E+00,	2.827E+00,	4.834E+00,,	0.382			
C,CO-57 ,1	NO,	1.513E+00,	2.885E+00,	4.819E+00,,	0.314			
C,CO-58 ,I	NO,	9.429E-01,	2.794E+00,	4.707E+00,,	0.200			
C,FE-59 ,I	NO,	5.450E+00,	5.510E+00,	9.710E+00,,	0.561			
	NO,	2.493E+00,	3.060E+00,	5.324E+00,,	0.468			
	NO,	1.049E+01,	7.390E+00,	1.162E+01,,	0.902			
	NO,	-2.292E+00,	3.958E+00,	6.462E+00,,	-0.355			-
		1.472E+01,	3.300E+00,	6.204E+00,,	2.372			
	NO,	-3.134E+00,	3.177E+00,	4.696E+00,,	-0.667			
	NO,	-1.164E+00,	2.937E+00,	4.686E+00,,	-0.248			
		1.664E+00,	2.927E+00,	4.993E+00,,	0.333			
	NO,	-4.879E+00,	5.202E+00,	8.217E+00,,	-0.594			
	NO,	-3.835E+01,	4.104E+01,	6.491E+01,,	-0.591			
		1.428E+00,	3.066E+00,	5.169E+00,,	0.276			
	NO ,	-1.762E+01,	2.923E+01,	4.441E+01,,	-0.397			
C,AG-110m ,		-1.090E+00,	2.766E+00,	4.424E+00,,	-0.246			
•	NO,	-4.726E-01,	3.989E+00,	6.480E+00,,	-0.073			
•		2.914E+00,	6.275E+00,	4.784E+00,,	0.609			
-	NO,	8.578E-01,	8.703E+00,	1.419E+01,,	0.060			
C,TE-129M ,		-3.758E+01,	3.461E+01,	5.517E+01,,	-0.681			
•	NO,	2.085E-01,	3.722E+00,	6.102E+00,,	0.034			
•		1.794E+01,	4.978E+00,	8.000E+00,,	2.242			
	NO,	2.004E+01,	5.364E+00,	6.618E+00,,	3.028			
	NO,	-3.914E-01,	3.069E+00,	5.036E+00,,	-0.078			
	NO,	7.304E-01,	3.126E+00,	5.165E+00,,	0.141			
		-9.157E-01,	2.816E+00,	4.578E+00,,	-0.200			
		1.241E+01,	1.198E+01,	2.062E+01,,	0.602			
	NO ,	1.708E+00,	4.096E+00,	6.989E+00,,	0.244			
	NO ,	-5.783E-02,	6.001E+00,	8.371E+00,,	-0.007			
	NO ,	6.682E+00,	2.591E+01,	3.656E+01,,	0.183			
•	NO ,	-1.194E+01,	1.103E+01,	1.446E+01,,	-0.826			
	NO ,	1.268E+00,	6.215E+00,	1.014E+01,,	, 0.125			
	, NO ,	-2.661E+01,	7.474E+01,	1.191E+02,,	, -0.223			
	NO ,	1.371E+00,	1.156E+01,	1.900E+01,,				
	,NO ,	8.326E+00,	5.718E+00,	9.715E+00,				
	,NO,	1.370E+00,	1.155E+01,	1.898E+01,				
	,NO,	2.971E+00,	2.704E+01,	3.759E+01,				
	,NO,	2.418E+01,	3.398E+02,	5.558E+02,				
	,NO,	-4.193E+01,	4.422E+01,	5.947E+01,				
-, ,	, ,	· · · · · · · · · · · · · · · · · · ·	,		-			

LIMS: 1 Analyst: Sec. Review: _____ VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 31-JUL-2006 03:53:31.86 TBE07 P-10768B HpGe ******** Aquisition Date/Time: 30-JUL-2006 23:53:22.27 LIMS No., Customer Name, Client ID: WG WG4276-1 EX ZION Sample ID : 07WG4276-1 Smple Date: 28-JUL-2006 07:15:00. Sample Type : WG Geometry : 0735L090904 : 07BG072806MT Quantity : 3.32390E+00 L BKGFILE Start Channel : 40 Energy Tol : 1.00000 Real Time : 0 04:00:03.04 : 4090 Pk Srch Sens: 5.00000 Live time : 0 04:00:00.00 End Channel MDA Constant : 0.00 Library Used: LIBD %Eff Cts/Sec %Err Pk It Bkqnd FWHM Channel Fit Energy Area 1 1 53.03 94 306 1.36 106.89 2.85E-01 6.53E-03 33.7 6.49E-01 2 66.34* 108 346 1.03 133.54 7.25E-01 7.50E-03 30.2 2.31E+00 1 3 1 139.87* 101 407 1.34 280.80 2.09E+00 6.99E-03 39.3 2.49E+00 4 1 299 1.22 398.07 1.98E+00 8.72E-03 26.6 5.86E-01 198.43* 126 5 1 295.23* 1.13 591.88 1.61E+00 7.42E-03 33.1 2.16E+00 107 288 1.43E+00 2.12E-02 11.8 1.98E+00 6 1 351.83* 305 221 1.09 705.20 7 1 2.05 1193.35 9.97E-01 4.65E-03 36.3 1.66E+00 595.68 67 128 8 1 239 1.68 1220.92 9.80E-01 1.66E-02 14.2 2.03E+00 609.45* 161 9 1 831.67 28 55 2.07 1665.62 7.82E-01 1.96E-03 52.3 2.16E+00 20 1.95 1817.94 7.32E-01 2.51E-03 22.6 1.99E+00 10 1 907.79 36 11 1 1120.33* 85 42 2.59 2243.17 6.26E-01 5.88E-03 19.6 1.97E+00 12 1 1730.79 15 24 1.60 3463.93 4.60E-01 1.06E-03 78.1 7.62E-01

2.74 3532.30

L29402 57 of 61

4.54E-01 3.87E-03 25.2 2.47E+00

Flag: "*" = Peak area was modified by background subtraction

19

56

Nuclide Line Activity Report

1764.99*

Flag: "*" = Keyline

1

13

### L29402 58 of 61

Summary of Nuclide Activity Sample ID : 07WG4276-1 Total number of lines in spectrum Number of unidentified lines Number of lines tentatively identified by NID Number of lines tentatively identified by NID **** There are no nuclides meeting summary criteria **** Flags: "K" = Keyline not found "E" = Manually edited "A" = Nuclide specific abn. limit

L29402 59 of 61

Page :

3

Unidentified Energy Lines Sample ID : 07WG4276-1

Acquisition date : 30-JUL-2006 23:53:22

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1	53.03	94	306	1.36	106.89	104	8	6.53E-03	67.3	2.85E-01	
1	66.34	108	346	1.03	133.54	131	6	7.50E-03	60.4	7.25E-01	
1	139.87	101	407	1.34	280.80	276	9	6.99E-03	78.6	2.09E+00	
1	198.43	126	299	1.22	398.07	394	8	8.72E-03	53.1	1.98E+00	
1	295.23	107	288	1.13	591.88	587	10	7.42E-03	66.1	1.61E+00	
1	351.83	305	221	1.09	705.20	700	12	2.12E-02	23.7	1.43E+00	i i
1	595.68	67	128	2.05	1193.35	1189	12	4.65E-03	72.6	9.97E-01	
1	609.45	239	161	1.68	1220.92	1215	15	1.66E-02	28.3	9.80E-01	
1	831.67	28	55	2.07	1665.62	1660	10	1.96E-03	****	7.82E-01	
l	907.79	36	20	1.95	1817.94	1815	17	2.51E-03	45.3	7.32E-01	
1	1120.33	85	42	2.59	2243.17	2236	14	5.88E-03	39.2	6.26E-01	
1	1730.79	15	24	1.60	3463.93	3456	15	1.06E-03	* * * *	4.60E-01	
1	1764.99	56	19	2.74	3532.30	3526	16	3.87E-03	50.5	4.54E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum13Number of unidentified lines13Number of lines tentatively identified by NID0**** There are no nuclides meeting summary criteria****

Flags: "K" = Keyline not found "M" = Manually accepted "E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Non-Identified Nuclides ----

Nuclide	Key-Line Activity K.L. (pCi/L) Ideo		MDA (pCi/L)	MDA error	Act/MDA
BE-7	-3.899E+00	2.057E+01	3.370E+01	0.000E+00	-0.116
NA-24	-3.487E+01	6.251E+01	9.807E+01	0.000E+00	-0.356
K-40	-1.114E+01	3.314E+01	6.189E+01	0.000E+00	-0.180
CR-51	-3.733E+00	2.299E+01	3.767E+01	0.000E+00	-0.099
MN-54	1.404E+00	3.072E+00	4.373E+00	0.000E+00	0.321
CO-57	9.824E-01	2.527E+00	4.131E+00	0.000E+00	0.238
CO-58	-2.661E-01	2.551E+00	4.139E+00	0.000E+00	-0.064
FE-59	5.041E+00	4.840E+00	8.454E+00	0.000E+00	0.596
CO-60	3.885E-01	2.525E+00	4.197E+00	0.000E+00	0.093
ZN-65	1.738E+01	6.579E+00	1.117E+01	0.000E+00	1.556
SE-75	-2.283E-01	3.377E+00	5.617E+00	0.000E+00	-0.041
SR-85	2.095E+01	3.136E+00	6.212E+00	0.000E+00	3.372
Y-88	1.854E-02	2.765E+00	4.506E+00	0.000E+00	0.004
NB-94	-1.187E+00	2.520E+00	4.060E+00	0.000E+00	-0.292
NB-95	1.924E+00	2.620E+00	4.463E+00	0.000E+00	0.431

# L29402 60 of 61

ZR-95	-1.311E+00	4.512E+00	7.284E+00	0.000E+00	-0.180
MO-99	2.569E+00	3.706E+01	6.117E+01	0.000E+00	0.042
RU-103	2.070E+00	2.562E+00	4.375E+00	0.000E+00	0.473
RU-105 RU-106	-3.049E+00	2.505E+01	3.840E+01	0.000E+00	-0.079
AG-110m	-1.970E+00	2.454E+00	3.900E+00	0.000E+00	-0.505
SN-113	-2.577E-01	3.286E+00	5.326E+00	0.000E+00	-0.048
SB-124	-2.377E-01	5.953E+00	4.209E+00	0.000E+00	-0.139
SB-124 SB-125	-4.500E+00	6.762E+00	4.209E+00 1.093E+01	0.000E+00	-0.412
SB-125 TE-129M	-4.500E+00 5.870E-01	8.782E+00 2.975E+01	4.934E+01	0.000E+00	0.012
	5.870E-01 6.465E-01	2.975E+01 3.113E+00	4.934E+01 5.130E+00	0.000E+00 0.000E+00	0.012
I-131		3.113E+00 4.221E+00	6.769E+00	0.000E+00 0.000E+00	1.850
BA-133	1.252E+01				1.691
CS-134	9.149E+00	6.009E+00	5.409E+00	0.000E+00	
CS-136	-1.774E-01	2.721E+00	4.362E+00	0.000E+00	-0.041
CS-137	2.659E+00	2.711E+00	4.715E+00	0.000E+00	0.564
CE-139	-3.043E+00	2.504E+00	4.009E+00	0.000E+00	-0.759
BA-140	5.517E+00	1.007E+01	1.696E+01	0.000E+00	0.325
LA-140	1.694E+00	3.446E+00	5.905E+00	0.000E+00	0.287
CE-141	2.837E+00	5.063E+00	7.378E+00	0.000E+00	0.385
CE-144	-2.502E+01	2.176E+01	2.981E+01	0.000E+00	-0.839
EU-152	-1.035E+01	9.480E+00	1.236E+01	0.000E+00	-0.837
EU-154	-1.956E+00	5.331E+00	8.531E+00	0.000E+00	-0.229
RA-226	-1.044E+02	6.480E+01	1.036E+02	0.000E+00	-1.008
AC-228	-1.274E+00	9.790E+00	1.667E+01	0.000E+00	-0.076
TH-228	5.975E+00	5.038E+00	8.617E+00	0.000E+00	0.693
TH-232	-1.273E+00	9.781E+00	1.665E+01	0.000E+00	-0.076
U-235	4.517E-01	2.251E+01	3.210E+01	0.000E+00	0.014
U-238	5.207E+01	2.943E+02	4.796E+02	0.000E+00	0.109
AM-241	-5.565E+01	2.897E+01	3.631E+01	0.000E+00	-1.532
LIL ES L'IL	0.0001.01	2.02/2/01	0.0010101	3.0002.00	

# L29402 61 of 61

A,07WG4276-1	07/31/2006	03.53 07/28/2	2006 07.15 3	324E+00 WG	WG4276-1 EX
C, BE-7 , NO ,	,LIBD -3.899E+00,	2 057E+01	3370E+01	-0.116	
C,NA-24 ,NO ,		6.251E+01,		-0.356	
C,K-40 ,NO ,		3.314E+01,		-0.180	
	-3.733E+00,	2.299E+01,		-0.099	
	1.404E+00,	3.072E+00,		0.321	
	9.824E-01,	2.527E+00,		0.238	
		2.551E+00, 2.551E+00,		-0.064	
	-2.661E-01,	•	8.454E+00,,	0.596	
	5.041E+00,			0.093	
	3.885E-01,	2.525E+00,			
	1.738E+01,	6.579E+00,		1.556	
	-2.283E-01,	3.377E+00,		-0.041	
	2.095E+01,	3.136E+00,	6.212E+00,,	3.372	
	1.854E-02,	2.765E+00,	4.506E+00,,	0.004	
	-1.187E+00,	2.520E+00,	4.060E+00,,	-0.292	
	1.924E+00,	2.620E+00,	4.463E+00,,	0.431	
	-1.311E+00,	4.512E+00,	7.284E+00,,	-0.180	
	2.569E+00,	3.706E+01,	6.117E+01,,	0.042	
	2.070E+00,	2.562E+00,	4.375E+00,,	0.473	
	-3.049E+00,	2.505E+01,	3.840E+01,,	-0.079	
C,AG-110m ,NO ,		2.454E+00,	3.900E+00,,	-0.505	
	•	3.286E+00,	5.326E+00,,	-0.048	
	-5.865E-01,	5.953E+00,	4.209E+00,,	-0.139	
C,SB-125 ,NO ,	-4.500E+00,	6.762E+00,	1.093E+01,,	-0.412	
	5.870E-01,	2.975E+01,	4.934E+01,,	0.012	
	6.465E-01,	3.113E+00,	5.130E+00,,	0.126	
	1.252E+01,	4.221E+00,	6.769E+00,,	1.850	
	9.149E+00,	6.009E+00,	5.409E+00,,	1.691	
C,CS-136 ,NO ,	-1.774E-01,	2.721E+00,	4.362E+00,,	-0.041	
	2.659E+00,	2.711E+00,	4.715E+00,,	0.564	
C,CE-139 ,NO ,	-3.043E+00,	2.504E+00,	4.009E+00,,	-0.759	
	5.517E+00,	1.007E+01,	1.696E+01,,	0.325	
C,LA-140 ,NO ,	1.694E+00,	3.446E+00, 5.063E+00,	5.905E+00,, 7.378E+00,,	0.287 0.385	
C,CE-141 ,NO ,	2.837E+00,	2.176E+01,		-0.839	
C, CE-144 , NO ,	-2.502E+01,	•	2.981E+01,, 1.236E+01,,		
C,EU-152 ,NO , C,EU-154 ,NO ,	•	9.480E+00,	8.531E+00,,	-0.837 -0.229	
	-1.956E+00,	5.331E+00, 6.480E+01,	1.036E+02,,	-1.008	
	-1.044E+02,	9.790E+00,	1.667E+01,,	-0.076	
C,AC-228 ,NO ,	-1.274E+00,			0.693	
C,TH-228 ,NO , C,TH-232 ,NO ,	5.975E+00, -1.273E+00,	5.038E+00, 9.781E+00,	8.617E+00,, 1.665E+01,,	-0.076	
	4.517E-01, 5.207E+01,	2.251E+01, 2.943E+02,	3.210E+01,, 4.796E+02,,	0.014 0.109	
0.314 0.44 370	-5.565E+01,	2.897E+02, 2.897E+01,	4.796E+02,, 3.631E+01,,	-1.532	
C,AM-241 ,NO ,	-3.303E+01,	2.09/17UL/	J.UJIHTUI//	·· エ・シンム	

**Revision 1** 

# APPENDIX E

# DATA VALIDATION MEMORANDUM



45 Farmington Valley Drive Plainville, Connecticut 06062 Telephone: (860) 747-1800 www.CRAworld.com

Fax: (860) 747-1900

	MEMORANDUM		
То:	Steve Quigley	Ref. No.:	45136-30
FROM:	Kathy Shaw/ks/11/CT	Date:	July 6, 2006
		Revision Date:	August 23, 2006
Re:	Data Quality Assessment and Verification Fleetwide Assessment - Hydrogeologic Investigation Zion Station - Zion, Illinois		

This memorandum details a data verification of the radiochemical data resulting from the collection of 25 groundwater, one (1) surface water and three (3) quality control samples from the Zion Station in Zion, Illinois. The sample summary detailing sample identification, sample location, quality control samples, and analytical parameters is presented in Table 1. Sample analysis was completed at Teledyne Brown Engineering in Knoxville, Tennessee (TBE) in accordance with the methodologies presented in Table 2. The quality control criteria used to assess the data were established by the methods.¹

## Sample Quantitation

The laboratory reported several radionuclides with activity concentrations above the minimum detectable concentration (MDC) and greater than the three (3) sigma critical level (99% confidence interval), but qualified them as not detected due to the presence of interference preventing identification of the major peaks, with a U* flag. Based on the laboratory qualification definition these concentrations should be qualified as not-detected (U*) above the laboratory reported MDC.

### Sample Preservation

Samples collected for gamma scan and total strontium analyses are to be preserved to a pH of less than or equal to two (2) during shipment and laboratory storage with nitric acid at the time of collection. The samples were shipped and maintained in accordance with the sample preservation requirements.

## Method Blank Samples

Contamination of samples contributed by laboratory conditions or procedures was monitored by concurrent preparation and analysis of method blank samples. The method blank samples were reported to be free of radioactive material contamination produced by the laboratory conditions or procedures.

PRESCRIBED PROCEDURE FOR MEASUREMENT OF RADIOACTIVITY IN DRINKING WATER EPA-600/4-80-032.



## Laboratory Control Sample Analysis

The laboratory control sample (LCS) is a sample containing a known amount of a radionuclide that is equivalent to internal or external control samples prepared by the analytical laboratory or a Federal/State agency. The LCS percent recoveries were within the laboratory or agency control limits, indicating that an acceptable level of overall performance was achieved.

## Duplicate Sample Analyses

The laboratory precision of matrix-specific measurement system was monitored by the analyses of duplicate samples. The duplicate relative percent difference (RPD) data were within the acceptance criteria. No targeted analytes were reported as detected in the laboratory duplicate sample sets.

## Field Quality Assurance/Quality Control

The field quality assurance/quality control consisted of three (3) field duplicate sample sets. No targeted radionuclides were reported as detected in the field duplicate sample sets.

## **Overall Assessment**

The data were found to exhibit acceptable levels of accuracy and precision, based on the provided information, and may be used with the qualifications noted.

#### TABLE 1

### SAMPLE KEY FLEETWIDE ASSESSMENT ZION STATION ZION , ILLINOIS

Sample Location	Sample Identification	QC Sample	Date	Sample Matix	Analysis
MW-ZN-08S(L)	WG-Zion-MW-8L-052406-MS-001		3/24/06	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-ZN-04S(U)	WG-Zion-MW-4U-052406-MB-002		5/24/06	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-ZN-08S(U)	WG-Zion-MW-8U-052406-MS-003		5/24/06	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-ZN-04S(L)	WG-Zion-MW-4L-052406-MB-004		5/24/06	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-ZN-07S(U)	WG-Zion-MW-7U-052406-MS-005		5/24/06	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-ZN-07S(L)	WG-Zion-MW-7L-052506-MS-007		5/25/06	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-ZN-06S(L)	WG-Zion-MW-6L-052506-MS-009		5/25/06	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-ZN-03S(U)	WG-ZN-MW-ZN-03U-052506-DS-01		5/25/06	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-ZN-03S(U)	WG-ZN-MW-ZN-03U-052506-DS-02	Duplicate (01)	5/25/06	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-ZN-03S(L)	WG-ZN-MW-ZN-03L-052506-DS-03		5/25/06	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-ZN-02S(U)	WG-ZN-MW-ZN-02U-052606-DS-04		5/26/06	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-ZN-01S(U)	WG-ZN-MW-ZN-01U-052606-DS-05		5/26/06	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-ZN-02S(L)	WG-ZN-MW-ZN-02L-052606-DS-06		5/26/06	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-ZN-01S(L)	WG-ZN-MW-ZN-01L-052606-DS-07		5/26/06	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-ZN-09S	WG-ZN-MW-ZN-09-052606-DS-08		5/26/06	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-ZN-09S	WG-ZN-MW-ZN-09-052606-DS-09	Duplicate (08)	5/26/06	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-ZN-06S(U)	WG-Zion-MW-6U-052606-MS-011		5/26/06	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-ZN-05S(L)	WG-Zion-MW-5L-052606-MS-013		5/26/06	Groundwater	Tritium/Strontium/Gamma Spectrum
SW-ZN-1	WS-Zion-Lake-052606-MS-015		5/26/06	Surface Water	Tritium/Strontium/Gamma Spectrum
MW-ZN-05S(U)	WG-Zion-MW-5U-052606-MS-017		5/26/06	Groundwater	Tritium/Strontium/Gamma Spectrum
TW-ZN-100	GW-071706-JL-TW-ZN-100		7/17/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
TW-ZN-101	GW-071706-JL-TW-ZN-101		7/17/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
TW-ZN-102	GW-071706-JL-TW-ZN-102		7/17/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
TW-ZN-103	GW-071706-JL-TW-ZN-103		7/17/2006	Groundwater	Tritium/Strontium/Gamma Spectrum

#### TABLE 1

#### SAMPLE KEY FLEETWIDE ASSESSMENT ZION STATION ZION , ILLINOIS

Sample Location	Sample Identification	QC Sample	Date	Sample Matix	Analysis
MW-ZN-10S(U)	WG-ZN-MW-ZN-10U-072806-MS-003		7/28/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-ZN-10S(U)	WG-ZN-MW-ZN-10U-072806-MS-004	Duplicate (003)	7/28/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-ZN-10S(L)	WG-ZN-MW-ZN-10L-072806-MS-005		7/28/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-ZN-11S(U)	WG-ZN-MW-ZN-11U-072806-TL-001		7/28/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-ZN-11S(L)	WG-ZN-MW-ZN-11L-072806-TL-002		7/28/2006	Groundwater	Tritium/Strontium/Gamma Spectrum

Gamma Spectrum - Barium-140, Cesium-134, Cesium-137, Cobalt-58, Cobalt-60, Iron-59, Lanthanum-140,

Manganese-54, Niobium-95, Zinc-65, Zirconium-95

Page 2 of 2

QC - Quality Control

Isotopes not listed in Table 1, but typically detected in environmental samples

⁽i.e. Ac-228, K-40, Be-7, Ra-226, Th-228, Th-232, etc.) were reported if detected.

### TABLE 2

### SUMMARY OF ANALYTICAL METHODS, HOLDING TIME PERIODS, AND PRESERVATIVES FLEETWIDE ASSESSMENT ZION STATION ZION, ILLINOIS

Parameter	$Method^{1}$	Matrix	Holding Time	Preservation
Tritium	EPA 906.0	Water	- 6 months	None
Strontium - 89/90 (Total)	EPA 905.0	Water	- 6 months	HNO3 to pH<2
Gamma Spectrum	EPA 901.1	Water	- 6 months	HNO3 to pH<2

[†] EPA-60/40-80-032 August 1980 "Precribed Procedures For Measurement of Radioactivity In Drinking Water